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Abstract

This vignette is not completely finished. Version 1.0 fo the package will
have the full vignette. This paper is the first of two papers describing the
editrules package. The current paper is concerned with the treatment of
numerical data under linear constraints, while the accompanying paper is
concerned with constrained categorical and mixed data. The editrules
package is designed to offer user-friendly interface for edit definition and
manipulation. The package offers funtionality for edit checking, error
localization based on the paradigm of Fellegi and Holt, and a flexible
interface to binary programming based on the choice point paradigm.
Lower-level functions include echelon transformation of linear systems,
variable subtitution and a fast Fourier-Motzkin elimination routine. We
describe theory, implementation and give examples of package usage.
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1 Introduction

The value domain of real numerical data records with n variables is often re-
stricted to a subdomain of R™ due to linear equality and inequality relations
which the variables in the record have to obey. Examples include equality re-
strictions imposed by financial balance accounts, positivity demands on certain
variables or limits on the ratio of variables.

Any such restriction is of the form

a-xObwith ® € {<,<,=}, (1)

where x is a numerical data record, a, x € R™ and b € R. In data editing
literature, data restriction rules are refered to as edits, or edit rules. We will call
edits, written in the form of Eq. (1), edits in normal form.

Large complex surveys are often endowed with dozens or even hundreds of
edit rules. For example, the Dutch Structural Business Survey, which aims to
report on the financial structure of companies in the Netherlands, contains on
the order of 100 variables, endowed with a similar number of linear equality and
inequality restrictions.

Defining and manipulating large edit sets can be a daunting task when imple-
mented directly as matrix representations. Also, edit violations give rise to the
error localization problem, which can quite simply be stated as which variables
contain the errors that cause a record to violate certain edits rules?.

The editrules package for the R statistical computing environment (R De-
velopment Core Team, 2011) aims to provide an environment to conveniently
define, parse and check linear (in)equality restrictions, perform common edit
manipulations and offer error localization functionality based on the (gener-
alized) paradigm of Fellegi and Holt (1976). This paradigm is based on the
assumption that errors are distributed randomly over the variables, and there
is no detectable cause of error. The paradigm also decouples the detection from
correction of corrupt variables. Certain causes of error, such as sign flips, typing
errors or rounding errors can be detected and are closely related to their reso-
lution. The reader is referred to the deducorrect package (Van der Loo et al.,
2011; Scholtus, 2008, 2009) for treating such errors.

The following chapters demonstrates the functionality of the editrules
package with coded examples as well a description of of the underlying theory
and algorithms. For a detailed per-function description the reader is referred to
the reference manual accompanying the package. Unless mentioned otherwise,
all code shown in this paper can be executed from the R commandline after
loading the editrules package.

2 Defining and checking numerical restrictions
2.1 The editmatrix object
For computational processing, a set of edits of the form

a-xo0bwith ©® € {<,<,=,>,>}. (2)

is most conveniently represented as a matrix. In the editrules package, a set
of linear edits is stored as an editmatrix object. This object stores the linear



relations as an augmented matrix [A,b], where A is the matrix obtained by
combining the a vecors of Eq. (2) in rows of A and constants b in b. A second
attribute holds the comparison operators as a character vector. Formally, we
denote that every editmatrix F is defined by

E = ([A,b],®) with [A,b] e R™* " &€ {<,<,=,> >}, (3)

where n is the number of variables, m the number of edit rules and the notation
(, ) denotes a combination of objects. Retrieval functions for various parts
of an editmatrix are available, see Table 1 (p. 7) for an overview. Defining
augmented matrices by hand is tedious and prone to error, which is why the
editmatrix function derives edit matrices from a textual representation of edit
rules. Since most functions of the editrules package expect an editmatrix
in normal form (that is ® € {<,<,=}), the editmatrix function by default
transforms all linear edits to normal form.
As an example, consider the set of variables

turnover t

personell cost ¢,
housing cost ch
total cost Ct
profit D,

subject to the rules

t = ca+p (4)
g = cpte (5)
p < 0.6t (6)
a < 0.3t (7)
e < 0.3t (8)

t > 0 (9)
c, > 0 (10)
cp, > 0 (11)
¢ > 0 (12)

Clearly, these can be written in the form of Eq. (1). Here, the equality re-
strictions correspond to balance accounts, the 3rd, 4th and 5th restrictions are
sanity checks and the last four edits demand positivity. Figure 1 shows how
these edit rules can be transformed from a textual representation to a matrix
representation with the editmatrix function.

As Figure 1 shows, the editmatrix object is shown on the console as a
matrix, as well as a set of textual edit rules. The editrules package is capable
of coercing a set of R expressions to an editmatrix and wice versa. To coerce
text to a matrix, the editmatrix function processes the R language parsetree
of the textual R expressions as provided by the R internal parse function. To
coerce the matrix representation to textual representation, an R character string
is derived from the matrix which can be parsed to a language object.

In the example, the edits were automatically named el, e2, ..., €9. It is
possible to name and comment edits by reading them from a data.frame.



> E <- editmatrix(c(
+ "t ==ct +p",

+ "ct == ch + cp",
+"p <= 0.6%t",

+ "cp <= 0.3x%t",

+ “ch <= 0.3%t",

+ "t > 0",

+ "ch > 0",

+ "cp > 0",

+ "ct > 0"), normalize=TRUE)
> E

Edit matrix:

ct p t ch cp Ops CONSTANT
el -1-1 1.0 0 0 == 0
e2 1 0 0.0 -1-1 == 0
e3 0 1-0.6 0 0 <= 0
e4 0 0-0.3 0 1 <= 0
e6 0 0-0.3 1 0 <= 0
e6 0 0-1.0 0 0 < 0
e7 0 0 0.0-1 0 < 0
e8 0 0 0.0 0-1 < 0
e9 -1 0 0.0 0 0 < 0
Edit rules:
el : t ==ct +p
e2 : ct == ch + cp

e3 : p <= 0.6%t
e4 : cp <= 0.3x%t
e5 : ch <= 0.3x%t

e6 : 0 <t

e7 : 0 <ch
e8 : 0 < cp
ed : 0 < ct

Figure 1: Defining an editmatrix from a character vector containing ver-
bose edit statements. The option normalize=TRUE ensures that all comparison
operators are either <, < or ==.

The ability to read edit sets from a data.frame facilitates defining and main-
taining the rules outside of the R environment by storing them in a user-filled
database or textfile. Manipulating and combining edits, for example through
variable elimination methods will cause editrules to drop or change the names
and drop the comments, as they become meaningless after certain manipula-
tions.

2.2 Basic manipulations and edit checking

Table 1 shows simple manipulation functions available for an editmatrix. Basic
manipulations include retrieval functions for the augmented matrix, coefficient
matrix, constant vector and operators of an editmatrix. There are functions
to test for and transform to normality. The function violatedEdits expects




> data(edits)

> edits

name edit description
1 bl t==ct+p total balance
2 b2 ct ==ch+ cp cost balance
3 si p <= 0.6%t profit sanity
4 52 cp <= 0.3%t personell cost sanity
5 83 ch <= 0.3*%t housing cost sanity
6 pl t >0 turnover positivity
7 p2 ch > 0 housing cost positivity
8 p3 cp > 0 personel cost positivity
9 p4 ct >0 total cost positivity

> editmatrix(edits)

Edit matrix:

ct p t ch cp Ops CONSTANT
b1 -1 -1 1.0 0 0 == 0
b2 1 0 0.0 -1 -1 == 0
st 0 1-0.6 0 0 <= 0
s2 0 0-0.3 0 1 <= 0
s3 0 0-0.3 1 0 < 0
pt 0 0-1.0 0 0 < 0
p2 0 0 0.0-1 0 < 0
p3 0 0 0.0 0-1 < 0
p4-1 0 0.0 0 0 < 0
Edit rules:

bl : t == ct + p [ total balance ]

b2 : ct == ch + cp [ cost balance ]

sl : p <= 0.6+t [ profit sanity ]

s2 : cp <= 0.3*t [ personell cost sanity ]
s3 : ch <= 0.3*%t [ housing cost sanity ]
pl : 0 <t [ turnover positivity ]

p2 : 0 < ch [ housing cost positivity ]
p3 : 0 < cp [ personel cost positivity ]
p4 : 0 < ct [ total cost positivity ]

Figure 2: Declaring an editmatrix with a data.frame. The input data.frame
is required to have three columns named name, edit (textual representation of
the edit rule) and description (a comment stating the intent of the rule). All
must be of type character.

an editmatrix and a data.frame or a named numeric vector. It returns a
logical array where every row indicates which edits are violated (TRUE) by
records in the data.frame. Figure 3 demonstrates the result of checking two
records against the editrules defined in Egs. (4)—(12). Indexing of edits with
the [ operator is restricted to selection only. No assignment can be made to
indexed editmatrix objects. In stead, as.editmatrix should be used.




Table 1: Simple manipulation functions for objects of class editmatrix.
Only the mandatory arguments are shown, refer to the built-in documenta-
tion for optional arguments.

function description

getA(E) Get matrix A

getb(E) Get constant vector b

getAb(E) Get augmented matrix [A, b]
getOps (E) Get comparison operators

E[i,] Select edit(s)
as.editmatrix(A,b,ops) Create an editmatrix from its attributes
normalize(E) Transform E to normal form
isNormalized(E) Check whether E is in normal form
violatedEdits(E, x) Check which edits are violated by x
duplicated(E) Check for duplicates in rows of E

isObviouslyRedundant (E) Check for tautologies and duplicates in E
isObviouslyUnfeasible(E) Check for contradictions in rows of E
isFeasible Complete feasibility check for E

> # define two records in a data.frame
> dat <- data.frame(

t = ¢(1000, 1200),

ct = c(400, 200),

ch = ¢c(100, 350),

cp = ¢(500, 575),

+ p = ¢(500, 652))

> # check for violated edits

> violatedEdits (E,dat)

+ o+ + +

el e2 e3 el eb e6 e7 e8 e9
[1,] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[2,] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Figure 3: Checking which edits are violated for every record in a data.frame.
The first record violates el and e2, the second record violates el,e2, and e4.

2.3 Obvious redundancy and infeasibility

When manipulating linear edit sets by value substitution and/or variable elimi-
nation, the edit set can become polluted with redundant edits or, when variable
values are substituted, become infeasible. The editrules package has two
methods available which check for easily detectable redundancies or infeasibil-
ity. The Fourier-Motzkin elimination method has auxilary built-in redundancy
removal, which is described in Section 3.3.

A system of inequalities Ax < b is called infeasible when there is no real
vecor x satisfying it. It is a consequence of Farkas’ lemma (Farkas (1902), but see
Schrijver (1998) and/or Kuhn (1956)) on feasibility of sytems of linear equalities,
that a system is infeasible if and only if 0 < —1 can be derived by taking
positive linear combinations of the rows of the augmented matrix [A,b]. The
function isObiouslyinfeasible returns a logical indicating whether such a
contradiction is present. Subsitution of values may also lead to equalities of the




Algorithm 1 1SOBVIOUSLYINFEASIBLE(E)
Input: a normalized editmatrix F

fora-x®be E do

if a=0 then
if (@e{=}Ab#0)V(0e{<,<}Ab<0) then
return TRUE

return FALSE

Output: > logical indicating if F is obviously infeasible.

Algorithm 2 1sSOBVIOUSLYREDUNDANT(F, duplicates, ¢)

Input: a normalized editmatrix F, with m edits, a boolean “duplicates”, and
a tolerance €.
v < (FALSE)*™
for a; - x®b; € E do

if a =0 then
if (@e{=}Ab=0)V(©e{<,<}Ab>0) then
v; < TRUE

if duplicates then
for {(a; - x®;bj,a; - xO;bj)) c ExXE : j>i} do
if |(a;,b;) — (a;,b;)| < € elementwise A ©; = ®; then
v; < TRUE
Output: v > logical vector indicating which rows of E are obviously
redundant.

form 0 = 1, which also indicate that the system has become infeasible. Being
obviously infeasible is sufficient for an editmatrix to be infeasible, but not
necessary. Algorithm 1 gives the pseudocode for reference purposes.

The function isFeasible eliminates variables one by one using Fourier-
Motzkin elimination (Section 3.3), and checks for obvious infeasibilities. If no
obvious inconsistencies are found after the last variable has been eliminated, the
system is consistent.

When new edits are derived, either by value substitution or by variable
elimination, redundant rules of the form 0 < 1 or 0 = 0 can be generated.
The function isObviouslyRedundant detects such rules and returns a logical
vector indicating which rows of an editmatrix are redundant. By default, the
function detects row duplicates (within an adjustable tolerance), but this may be
swithched of by providing the option duplicates=FALSE. Pseudocode is given
in Algorithm 2. The actual implementation avoids explicit loops and makes use
of R’s built-in duplicated function, which is also overloaded for editmatrix
(see Table 1).

3 Manipulation of linear restrictions

There are two fundamental operations possible on edit sets, both of which (pos-
sibly) reduce the number of variables involved in the edit set. The first, most
simple one is when a value is substituted into an edit. The second possibility
is variable elimination. For a set of linear equalities, one can apply Gaussian



Algorithm 3 SUBSTVALUE(FE, j, x)
Input: E = ([A =[aj,as,...,a;,...,8,||b],®), z € R, j € {1,2,...n}

> Note that here, the subscripts of a denote the column index of A
Output: <[A = [al, agz,...,a;_1, 07 Aj41,- .- an} |b — ajm], ®>

> substValue(E, "t", 10)

Edit matrix:

ct p t ch cp Ops CONSTANT
el -1-10 0 0 == -10
e2 1 00-1-1 == 0
e3 0 10 0 0 <= 6
e4 0 00 O 1 <= 3
e 0 00 1 0 <= 3
e7 0 00-1 0 < 0
e8 0 00 0-1 < 0
e9 -1 00 0 O < 0
Edit rules:

el : 10 == ct + p
e2 : ct == ch + cp

e3 : p<=6
ed : cp <=3
eb : ch <=3
e7 : 0 <ch
e8 : 0 < cp

ed : 0 < ct

Figure 4: Substituting the value 10 for the turnover variable using the subst-
Value function.

elimination, while for sets of inequalities or mixed sets of equalities and inequal-
ities Fourier-Motzkin elimination is applied. While variable substitution and
Gaussian elimination guarantee that the eliminated variable is not involved in
the derived edit set anymore, this is not necessarily the case for Fourier-Motzkin
elimination.

3.1 Value substitution

Given a set of m linear edits as defined in Eq. (3). For any record x it must
hold that

Ax©®b, ®e{<, < =2>2,>" (13)

Substituting one of the unknowns z; by a certain value  amounts to replacing
the j* column of A with 0 and b with b — ajz. After this, the reduced
record of unknowns, with z; replaced by = has to obey the adapted system
(13). For reference purposes, Algorithm 3 spells out the substitution routine.
The function was named substValue since substitute is already defined in the

R-base. Figure 4 shows how substValue can be called from the R environment.




Algorithm 4 ECHELON(E)

Input: An editmatrix of the form ([A|b],=), [A|b] € R™*"*1 m < n +1.
I+ {1,2,...,m}
J«{1,2,...,n+1}
for j € I do > eliminate variables
14— arg max; (j<i’<m |Ai’j‘
if |A”| > 0 then
if ¢ > j then
Swap rows i and j of [A|b].
[Ab]1\j,5  [Alblns — [Alblp,; @ [Albl; A5
Divide each row [A|b]; s by A;; when A;; #0
Move rows of [A|b] with all zeros to bottom.
Output: FE, transformed to reduced row echelon form.

3.2 Gaussian elimination

The well-known Gaussian elimination routine has been implemented here as a
utility function, enabeling users to reduce the equality part of their edit matrices
to reduced row echelon form. The echelon function has been overloaded to
take either an R matrix or an editmatrix as argument. In the latter case, the
equalities are transformed to reduced row echelon form, while inequalities are
left untreated. Gaussian elimination is explained in many textbooks. Algorithm
4 is written in a notation which is close to our R implementation in the sence
that it involves just one explicit loop. Figure 5 demonstrates a call to the R
function.

3.3 Fourier-Motzkin elimination

Fourier-Motzkin elimination [Fourier (1826); Motzkin (1936), but see Williams
(1986) for an elaborate or Schrijver (1998) for a consice description] is an ex-
tension of Gaussian elimination to solving systems of linear inequalities. While
Gaussian elimination is based on the reversible operations of row permutation
and linear combination, Fourier-Motzkin elimination is based on the irreversible
action of taking positive combinations of rows.

A full Fourier-Motzkin operation on a system of inequalities involves elimi-
nating variables (where possible) one by one from the augmented matrix [A|b].
Eliminating a single variable is an important step in the error localization algo-
rithms elaborated in Section 4.

Consider a system of inequalities Ax < b. The j* variable is eliminated by
generating a positive combination of every row of [A|b] where A;; > 0 with every
row of [A|b] where A;; < 0 such that for the resulting row the j* coefficient
equals zero. Rows of [A|b] for which A;; = 0 are copied to the resulting system.
If the system does not contain rows for which A;; > 0 and rows for which
A;; <0, an elimination operation leaves the system unchanged.

Mixed systems with linear restrictions of the form a-x®b with ® € {<, <, =}
can in principle be transformed to a form where every ® € {<}. However, it
is more efficient to take the comparison operators into account when combining
rows. In that case, new rules are derived by first solving the the j™ from

10



> echelon(E)

Edit matrix:

ct p t ch cp Ops CONSTANT
el 10 0.0-1-1 == 0
e2 01-1.0 1 1 == 0
e3 01-0.6 0 0 <= 0
e4 00-0.3 0 1 <= 0
e6 00-0.3 1 0 <= 0
e6 00-1.0 0 0 < 0
e7 00 0.0-1 0 < 0
e8 00 0.0 0-1 < 0
e9-10 0.0 0 0 < 0
Edit rules:

el : ct == ch + cp

e2 : p+ch+cp==t
e3 : p <= 0.6%t

e4 : cp <= 0.3x%t

eb : ch <= 0.3%t

e6 : 0 <t

e7 : 0 <ch
e8 : 0 < cp
e9 : 0 < ct

Figure 5: Transforming linear equalities of an editmatrix to reduced row ech-
elon form. See Figure 1 for the original definition of E.

each equality and substituting them in each inequality. Next, inequalities are
treated as stated before. When inequalities are combined where one comparison
operator is < and the other is <, it is not difficult to show that < becomes the
operator for the resulting inequality.

It is a basic result of the theory of linear inequalities that the system re-
sulting from a single variable elimination is equivalent to the original system
(that is, they have the same solution set {x}). In fact, k elimination steps
can generate up to (%m)zk new rows (m being the original number of rows),
of which many are redundant. Since the number of redundant rows increases
fast during elimination, removing (most of) them is highly desirable. In our
implementation, we use the property that if k variables have been eliminated,
any row derived from more than k4 1 rows of the original system is redundant.
This result was originally stated by Cernikov (1963) and rediscovered by Kohler
(1967). A proof can also be found in Williams (1986). For the implementation
in R, an editmatrix is augmented with an integer h, recording the number of
eliminations and a logical array H, which records for each edit from which
original edit it was derived. Obviously, H is TRUE only on the diagonal when
h = 0. It is worth mentioning that by using R’s vectorized indices and recy-
cling properties, it is possible to avoid any explicit looping in the elimination
process. Algorithm 5 gives an overview of the algorithm where explicit loops
are included for readability. Figure 6 shows how one or more variables can be
eliminated from an editmatrix with the eliminateFM function. Note that when
multiple variables are eliminated, the editmatrix must be overwritten to at
every iteration to ensure that the history H is updated accordingly.

11




Algorithm 5 ELIMINATEFM(FE, 7). In the actual implementation all explicit
loops are avoided by making use of R’s recycling properties and vectorized in-
dices.

Input: A normalized editmatrix E = ([A|b],®,H,h), and a variable index

7.

if H = 2 then
H + diag(TRUE)™
h<+0

J—{1,2,...,n+1}
Io(*{l : AHZO}
I« {i:0,e{=}N\
I+ — {Z : Aij > 0}\[:
I+ {Z : Aij < O}\I:
for i € {1,2,...,m}\Ip do > All rows get j*% coefficient in {—1,0,1}
if ©; € {<,<} then
[Abli.s ¢ [Alb; 5| Au| ™!
else
[Abli; « [Alb]; 745!
> Substitute equalities and inequalities with positive j' coefficient in
inequalities with negative j* coefficient:
for (i,j) e (InUI;) x I_do
k<« k+1
[A[b]k,; < [Ab];,s + [Alb];;
Hy;+H;, ;VH; ;
if ©; € {<} then &) + ©; else Oy + O,
> Substitute equalities in inequalities with positive j* coefficient
for (i,7) € It x I do
k<< k+1
[A[b]k,s < [Ab];s — [Alb];,
Hy s < Hi;VH;,
O < ©;
for {(i,7) € IX? : j > i} do > Substitute equalities in equalities
k<« k+1
[A[b]k,s < [Ab]i; — [Alb];,
HkJ (*HLJ\/H]"J
Ok < ©;
!

B ([ABriamY, .| (©.00).fh 1)
Remove edit rules of E which have more than h + 1 elements of H, ; TRUE

Remove edit rules of E for which 1SOBVIOUSLYREDUNDANT(E) is TRUE
Output: editmatrix E with variable j eliminated and updated history

12



> eliminateFM(E, "t")

Edit matrix:

ct pt ch cp Ops CONSTANT
el -1 0.6666667 0 0.000000 0.000000 <= 0
e2 -1 -1.0000000 0 0.000000 3.333333 <= 0
e3 -1 -1.0000000 0 3.333333 0.000000 <= 0
e4 -1 -1.0000000 0 0.000000 0.000000 0
e5 1 0.0000000 0 -1.000000 -1.000000 == 0
e6 0 0.0000000 0 -1.000000 0.000000 < 0
e7 0 0.0000000 0 0.000000 -1.000000 < 0
e8 -1 0.0000000 0 0.000000 0.000000 < 0
Edit rules:

el : 0.666666666666667*p <= ct

e2 : 3.33333333333333%cp <= ct + p
e3 : 3.33333333333333%ch <= ct + p
ed : 0 <ct+p

eb : ct == ch + cp

e6 : 0 < ch
e7 : 0 < cp
e8 : 0 < ct
> F <- E

> for (var in c("t", "cp", "p")) F <- eliminateFM(F, var)
> F

Edit matrix:

ctpt ch cp Ops CONSTANT
el -2.5000000 0 O 0.000000 0O < 0
e2 0.8333333 0 0 -3.333333 0 <= 0
e3 -2.5000000 0 O 3.333333 0 <= 0
e4 -1.0000000 0 O 1.000000 0O < 0
e5 0.0000000 0 0 -1.000000 0O < 0
e6 -1.0000000 0 O 0.000000 0O < 0

Edit rules:

el : 0 < 2.5*ct

e2 : 0.833333333333334*ct <= 3.33333333333333*ch
e3 : 3.33333333333333*ch <= 2.5*ct

ed : ch < ct

eb : 0 < ch

e6 : 0 < ct

Figure 6: Above: eliminating t from the editmatrix with the eliminateFM
function. Below: to eliminate multiple variables, the original editmatrix must
be overwritten at each iteration to ensure that the derivation history is updated
at every step.

13




4 Error localization for numerical data

While checking whether a numerical record violates any imposed restrictions
(within a certain limit) is easy, finding out which variable(s) of the record cause
the violation(s) can be far from trivial. When possible, the cause of the vio-
lation, should be sought out, since it leads immediately to repair suggestions.
The deducorrect package (Van der Loo et al., 2011) mentioned above offers
functionality to detect and repair common errors like typing errors, rounding
errors and sign errors. Although not directly available in R, methods for detect-
ing repairing unit measure errors or other systematic errors have been described
in literature and may readily be implemented in R (see De Waal et al. (2011)
Chapter 2 for an overview).

After systematic errors with detectable causes in a data set have been re-
solved, one may assume that remaining errors are distributed randomly (but
not necessarily uniformly) over one or more of the variables. In that case, er-
ror localization based on the (generalized) principle of Fellegi and Holt can be
applied.

4.1 The generalized Fellegi-Holt paradigm

In line with the good practice of altering source data as little as possible, the
paradigm of Fellegi and Holt (1976) advises to edit an as small amount of vari-
ables as possible, under the condition that after editing, every edit rule can
be obeyed. A generalization of this principle says that a weighted number of
variables should be minimized. More formally, the principle yields the following
problem. Given a record x, violating a number of edits in an edit matrix E (see
Eqn. (3)) with m rules and n variables, find G such that

G = argmin E w;0(z;, &),
9C{1,2,...,n} j€g

such that a solution x € RIC! exists for

ZAij'%j ®; b; — ZAU‘LL‘]‘, 1€ {1,2,...,7’)7,}. (14)
JEG Jg¢aG

In other words, for every variable in x, we have to deceide wheter to adapt it
or not. Variables which are not adapted will be replaced with their value z;
while variables that will be adapted will have to bereplaced by a value Z;, which
has to to be determined. The solution to (14) need not be unique, but there is
always at least one solution unless the edit rules in E are contradictory.

The minimization (14) amounts to a binary search problem, of which the
search space increases as 2" (n the number of variables). De Waal (2003) and De
Waal et al. (2011) describe a branch-and-bound binary search algorithm which
generates all minimal weight solutions. It works by generating the following
binary tree: the root node contains F and x and weight w = 0. Both left
and right nodes receive a copy of the objects in their parents. In the left child
node, z; is assumed correct and its value is substituted in E. In the right child
node, x1 is assumed to contain an error and it is eliminated from E by Fourier-
Motzkin elimination. The weight w in the right node is increased by w;. Each
child node gets a left and right child node where x5 is substituted or eliminated,
and so on untill every variable has been treated. Every path from root to leave
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Figure 1: Graphic representation of editrules and the allowed area. Left panel:
a convex case, as defined by Eq. (15). Right panel: the nonconvex nonconnected
case, as defined by Eq. (23). Grey areas indicate the valid record domain, black
dots indicate erroneous records and black arrows indicate the solution of the
error localization problem, while the thin black lines show the range of solutions.
The dotted arrows in the left panel indicate the range of directions in which the
record (0,0) can move to reach the valid area.

represents one element of the search space. A branch is pruned when E contains
obvious inconsistencies, so no combinations not satisfying the condition in (14)
are generated. If a solution, with certain weight w is found, branches developed
later, receiving a higher weight are pruned as well.

To clarify the above, in the next subsection we give two worked examples.
Subsection (4.4) describes a flexible binary search algorithm, which we imple-
memted to support general binary search problems. Subsection 4.3 describes its
application to the branch-and-bound algorithm mentioned above.

4.2 Two examples

To illustrate the binary search algorithm outlined above we will consider a simpe
two-dimensional example. The reader is encouraged to follow the reasoning be-
low by checking the calculations using the R-functions mentioned in the previous
sections.

Consider a 2-variable record (z,y) subject to the set of constaints E:

er: y>x—1
e2: y>—-x+3
e3: y<z+1
es: y<—x+5.

(15)

Each separate inequality yields a half-plane of which the borders is determined
by the line obtained by replacing < or > by =. The intersection of the four
half-planes is the region of allowed records. In this example, the region is a
diamond, depicted as the grey area in Figure 1. The borders are labed with
the editrules in Eq. (15). Consider the record (y = 2,2 = —1), depicted as
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the bottom black dot in Figure 1. It is easy to confirm either graphically or
by substitution that (2, —1) violates edits e; and ez, and that the record can
be made consistent by altering only y and leaving x constant (indicated by the
black arrow). It is also clear from the graph that the allowed values for y are
between 1 and 3 (indicated by the thin black vertical line in the diamond). The
case (z = 0,y = 0) also violates e; and e; and can only be replaired by altering
both = and y, while the record (x = —1,y = 2) can be repaired by changing x
only.

In the following we show that the binary search algorithm described in the
previous subsection indeed solves the error localization problem for (z = 2,y =
—1). To find the unweighted, least number of variables to adapt, so that E can
be fulfilled, consider the triple

To=(E,(2,-1),w =0)), (16)

This is the root node of the binary search tree described in the previous subsec-
tion, with w the initial solution weight. The left child is generated by assuming
that the first value in the record is correct. We therefore replace the variable x
in E by its value in the record, which yields after removing redundancies,

Ty = < y>1 —1),0>. (17)

y<3’

In this notation, each time a left (right) node is added, the subscribt of T is
augmented with an [ (r). Substituting one of the values further restricts the
possible values for variables that have not been treated yet. In fact, after the
error localization problem has been solved, subsitituting all unaltered values
into E yields a set of equations which determine the range of the variable vector
which have to be altered or imputed.

Since no variables were eliminated, the weight in Ty, is 0, and the record
has not changed. In the right child of the root, x is assumed to be wrong, and
therefore eliminated using Fourier-Motzkin elimination:

Toy = < y>1 ), 1>. (18)

y<3’

The system of equations left after elimination of x illustrates the geometrical
interpretation of Fourier-Motzkin elimination. The range of y corresponds to
the projection of the diamond in the left pane of Figure 1 onto the y-axis. (The
fact that Tpy; yields the same system is mere coincidence and depends on the
fact that the z-coordinate in the record at hand equals 2). Calculating the left
child of Tp; means substiting y by —1 in the edits of Ty;. This yields

—-1>1
Tu=( )75 2-1.0), (19)

where the contradiction —1 > 1 which indicates that Tp;; is not a solution (which
is obvious since none of the values in the records are assumed incorrect). The
right child of Ty; is obtained by eliminating y:

Toir = <®7 (27 y)v 1> ) (20)
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where the tautology 0 < 2 was removed. This endnode does represent a solution,
since no conflicting rules have been generated. To see if any other solutions exist,
continue to calculate the left child node of Ty,

-1>1
TO’I"l = < ~1<3 7($7_1)7 1>a (21)

which is no solution since its edits hold a contradiction. The final, right child
node of Ty, reads

CZ—‘O’I"I” - <@7 (xv y); 2> ) (22)

which also is a solution, but since both = and y have to be adapted, it has a
higher weight than the solution Tg;,. found earlier.

The edit sets described so far involved a single set of (in)equalities, yielding
a convex record domain in R™. However, in practical cases the sets of allowed
values for a record need not be convex, or even connected. As an example
consider the space of allowed records, indicated by the grey areas in the right
panel of Figure 1. Such a range can be defined by a conditional edit of the form

e1: y>x+3 el y>x

1
. ) ea: y>—x+1 eh: y>—x+4
ifeg: <0 then st y<az+5 else e y<a+2 (23)
es: y<-—zx+1 ey y<—x+6.

The error localization problem fo this can be handled by solving the partial
localization problems for {eg,e1,...,es} and {€p,€},...,e}} separately, where
€g stands for the complement €y : z > 0. The partial solution with the lowest
weight solves the complete optimization problem. As an illustration consider
the record (xz = 2,y = 0) in the right panel of Figure 1. The error localization
problem corresponding to z < 0 yields a solution where both = and y have to
be altered, while the localization problem corresponding to z > 0 implies that
only y needs to be altered.
To generalize this example, note that a conditional edit sets of the form

if Ey then E; else E, (24)
can be written as
(Eo ANEy) V (Eg A Ey) (25)

which may be treated by finding the minimum weight solution between the
solutions generated by Ey A E1 and Eg A E,. Taking the complement can cause
the number of partial localization problems to grow quickly. As an illustration,
consider the following case where taking the complement yields three cases to
be treated by the error localization routine.

if (x =0) then E,; else E;
< ((x=0)AE)V((x#0)AEy)
S ((x=0)ANE)V((x<0)AE3)V((x>0)AEs). (26)
The number of partial error localization problems to be treated grows as 2n.q +

Nineq, Where neq is the number of equalities and nipeq the number of inequalities
in Ey. This is easily derived from Eq. (25) since by De Morgan’s rule

Fo=eciAes ... Neg=e¢1VeEaV...VE. (27)
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Here, each negated inequality translates to a single inequality, while each negated
equality yields two inequalities (as in Eq. (26)).

We will have more to say on conditional edits in the accompanying paper
where the error localization problem for categorical and mixed data are treated.

4.3 Error localization with errorLocalizer

The error localization problem detailed in the previous subsections can be auto-
mated with errorLocalizer. This function expects an editmatrix, a named
numerical record and optionally a vector of reliability weights with the same
length as the record. The return value is not the solution to the error localiza-
tion problem but an object of class choicepoint. With a choicepoint object
the branch-and-bound tree can be generated to find solutions one by one. As
an example, consider the edits of Eqn. (15), and the record (z = 1,y = —1).
Figure 4.3 shows how the error localization problem can be solved with the
choicepoint object returned by errorLocalizer. The internal machinery of
choicepoint objects is detailed in the next subsection, in this section we show
how to use such objects to solve error localization problems. In Figure 4.3, the
edits of Eqn. (15) and the record (2,—1) are offered to errorLocalizer. By
calling the built-in searchNext function, the choicpoint object traverses the bi-
nary search tree depth-first, untill the first solution is found. When a solution
is found, is is returned to the user as a list, containing the solution weight w, the
edit matrix left after all substitutions and eliminations, and the logical vector
adapt which is TRUE for variables which need to be changed, and FALSE for
variables which can retain their original values. As expected, y is pointed out
as the variable to change. Another call to searchNext will search for the next
solution in the tree, with lower weight. However, since in this example there is
only one solution, searchNext returns NULL.

The method searchNext is not the only method of the choicepoint object
returned by cp.editmarix. The avaliable methods are

e $searchNext Searches for the next solution with a lower weight than the
previously found solution.

e $searchAll Returns all solutions, regardless of the weight.

e $searchBest Returns the last solution. Note that although this is a
lowest-weight solution, it does not need to be unique.

In fact, any choicepoint object is equipped with the searchNext and searchAll
methods. The searchBest method is specific for errorLocalizer.

The choicepoint method offers a flexible interface for error localization. To
understand what happens when there are multiple solutions, consider the case
of a simple balance account for profit (p), loss (I) and turnover ():

> E <- editmatrix(c("p + ¢ == t"))
> r <- c¢(p=755, c=125, t=200)
> cp <- errorLocalizer(E, r)

The record obviously violates the edit in E. Since there is only a single edit rule,
there are three solutions, all of which can be found by calling cp$searchNext

> cp$searchNext () $adapt
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E1 = editmatrix(c(

"y o> ox o+ 17,

"y > -x + 3",

"yo<ox o+ 1M,

"y < -x + 5"))
> cp <- errorLocalizer(El, c(x=2,y=-1))
> cp$searchNext ()

+ + + + Vv

$w
[1] 1

$E
Edit matrix:

x y Ops CONSTANT
el 00 < 0

Edit rules:
el : 0<O0

$adapt
X y
FALSE TRUE

> cp$searchNext ()

NULL

Figure 7: Localizing errors with the choicepoint object generated by error-
Localizer

P c t
FALSE FALSE TRUE
> cp$searchlNext () $adapt

p c t
FALSE TRUE FALSE

> cp$searchlNext () $adapt

p c t
TRUE FALSE FALSE

Each solution has weight 1. Suppose that the turnover value is trusted more,
for example because it comes from a more reliable source. We may increase its
reliability weight by providing a weight vector:

> cp <- errorLocalizer(E, r, weight=c(1,1,2))
> cp$searchNext () $adapt

P c t
FALSE TRUE FALSE

> cp$searchNext () $adapt
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P c t
TRUE FALSE FALSE

> cp$searchlNext () $adapt

NULL

The solution where turnover must be adapted is not even found here. The
reason is that errorLocalizer makes sure that during the search for solutions,
variables with the highest reliability weight are the last ones to be assumed
incorrect.

If we add more restrictions, the number of solutions to the error localization
problem decreases. Here, we demand that the cost to turnover ration does not
exceed 0.6.

E <- editmatrix(c(

"p + c ==1t",

"c - 0.6%t >= 0"))
cp <- errorLocalizer(E, r)
cp$searchNext () $adapt

vV VvV + + Vv

P [¢ t
FALSE TRUE TRUE

> cp$searchlNext () $adapt

P c t
TRUE FALSE FALSE

> cp$searchlNext () $adapt

NULL

Here, first a solution of weight 2 is found, which may later be rejected in favor
of the solution which demands only that the profit variable should be changed.

With errorLocalizer records with missing data can be handled as well.
Since variables with missing values have to be replaced, they are eliminated
from the edit matrix prior to further error localization. In the next example we
add some extra variables and positivity demands on all variables.

> # An example with missing data.

> E <- editmatrix(c(

"p + cl + c2==1t",

"cl - 0.3%t >= 0",

Hp > Oll’

et > on,

"e2 > on,

" > 0m)

> cp <- errorLocalizer(E,x=c(p=755, c1=50, c2=NA,t=200))
> cp$searchNext () $adapt

+ + + + + +

P cl c2 t
FALSE FALSE TRUE TRUE

> cp$searchlNext () $adapt
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P cl c2 t
FALSE TRUE TRUE FALSE

> cp$searchNext () $adapt

NULL

There are two solutions, both of which include the field c2 with the missing
value.

4.4 General binary search with the choicepoint object

As stated in subsection 4.1, the error localization problem can be interpreted
as a (pruned) binary programming problem. To facilitate implementation of
error localization for numerical, categorical and mixed data, as well as to help
further research in error localization algorithms, general-purpose binary search
functionality was implemented in the form of binary choice point programming.

The term “choice point” stems from the field of nondeterministic program-
ming. In nondeterministic programming, the control flow of a program is not
determined explicitly by the programmer with standard branching statements.
In stead, choice points may be created which store the full state of a program so
that control flow can at any time return to a stored state and choose a new path
from there. Choice point programming is supported by various niche program-
ming environments, such as Alma-0 (Partington, 1997) and ELAN (Vittek, 1996).
See Moreau (1998) for a clear introduction or Mart-Oliet and Mesguer (2002) for
a bibliographic overview. The choice point paradigm offers an excellent environ-
ment for programming backtracking algorithms, of which the branch-and-bound
algorithm of subsection 4.1 is just a specific example.

The R language is ideally suited to develop choice point-like systems because
of its first-class environments. An R environment can be thought of as a list of
R objects, forming the scope for expression evaluation. Expressions are a series
of R statements which may create, manipulate and remove R objects within
an environment. Having first-class environments means that expressions can
also be used to create, manipulate and delete environments like any other R
object. Moreover, expressions can be evaluated in any environment created by
the programmer.

In our implementation, a sequence of connected nodes in a binary search tree
is represented by a sequence of nested environments. Such a series of nested
environments is equivalent to a stack, where a PUSH-operation corresponds to
nesting a new environment and a POP-operation ensures that the next expression
will be evaluated in the last-pushed environment. Since environments are nested,
expressions evaluated in a child node have read access to information stored in
the parent node. Pseudocode for the CHOICEPOINT object is given in Algorithm
6. Expressions are denoted with greek letters ¥ or ¢, environments are denoted
as £ and :: is the scope resolution operator. The symbol S denotes a formal
stack. We denote the result of evaluating an expression ¢ in an environment
€ as ¢(€). One can think of ¢ as a subroutine which alters the internal state
of £. Tt is also possible for ¢ to generate a return value (by issuing a return
statement) which is pushed to the enveloping environment, similar to the action
of a standard function.
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Algorithm 6 Choicepoint object. ¢; and 1 are expressions, £ and £ environ-
ments :: is the scope resolution operator and S a stack.
Struct CHOICEPOINT (¢, ¢1, ¢r, )
S + NEWSTACK
£ < NEWENVIRONMENT
£ :: treatedleft + FALSE
£ :: treatedright < FALSE

#0(E) > ¢ Initialize root node
PUSH(E, S)
Method SEARCHNEXT

& < POP(S) > POP returns NULL if stack is empty

while ¢(£) € {FALSE,NULL} A £ # NULL do
if =& :: treatedleft then

&'+ & > Create child node
&i(&) > Treat child node
£ :: treatedleft +— TRUE > Mark parent node
PUSH(E, S)
PUSH(E', S)
else if —& :: treatedright then
&+ &
¢ (')
€ :: treatedright < TRUE
pPUSH(E, S)
PUSH(E', S)
& « PopP(S)
return £
EndMethod

EndStruct

To construct a CHOICEPOINT object, the user provides an expression ¢q
to initialize the root node, expressions ¢; and ¢, to be evalated at left and
right child nodes and an expression v to evaluate a node. The initialisation
expression usually consists of a number of variable declarations. Expressions ¢;
and ¢, alter the state of left or right child node, any returned values are ignored.
The expression 1 serves two purposes. First of all, it judges a node £and must
return one of the following values:

TRUE if environment £ contains a solution
() = { FALSE if environment £ cannot lead to a solution (28)
NULL if environment £ contains no solution

Secondly, 1) may be used to update weights and to prepare the variables in a
node for output. The method SEARCHNEXT generates nodes in the binary tree,
depth-first and returns the (contents of) the first environment corresponding to
a solution. If CP is the instance of a CHOICEPOINT object, then each call to
CP::SEARCHNEXT will return a new, and better solution, untill all solutions are
found, in which case NULL is returned.

As an example, Figure 8 shows how to implement the branch-and-bound
algorithm for error localization. The choicepoint function accepts the following
arguments:
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e isSolution : An R expression, corresponding to ¢ of Eqn. (28).

e choiceLeft : An R expression, to be executed for left child nodes (¢;) .
e choiceRight : An R expression, to be executed for left child nodes (¢;.).
e ... : Named arguments, to initialize the root node (¢g).

In Figure 8 the top environment (root node) receives an edit matrix E, a record
r, a vector of variable names that have yet to be treated (totreat), a logical
vector indicating whether a variable should be altered or not (adapt), a weight
vector weight with reliability weights for each variable, and the weight wsol of
the current solution is initialized to the maximum possible weight.

The expression isSolution first computes the weight of the current solution
by adding all elements of weight for which adapt==TRUE. Next, it checks if the
editmatrix is unfeasible, or if the current weight exceeds the weight of the last
found solution. Since wsol is initialized on the maximum weight, the latter can
only happen when at least one solution has been found. If either condition is
met, the branch must be pruned, so FALSE is returned. Ortherwise, it is checked
whether any variables are left to treat, if so, the expression ends, otherwise. The
solution weight in the top environment is set (using the <<- operator) and TRUE
is returned. Before returning, output is prepared by copying the variable adapt
from the enveloping environment, and removing the empty vector totreat.

In choiceLeft, the first variable to be treated is chosen and its value re-
placen in the editmatrix. The value of E in the call to substValue is copied
automagically from the enveloping environment which by construction holds the
parent node of the node under treatment. For the same reason the assigning the
indexed value of adapt the value FALSE works. The value corresponding to the
variable under treatement in adapt is set to FALSE since a variable who’s value
is substituted in the editmatrix is assumed correct in the treated node. Finally,
the vector of variables to be treated is updated.

In choiceRight, the same administrative chores are performed as in the
choiceLeft. The only difference is that in the right node a variable is eliminated
from the editmatrix, and therefore assumed incorrect.

The editmatrix used here corresponds to edit e; and ez of Eqn. (15), which
are the edits violated by the record (z = 2,y = —1). As expected, a single call
to cp$searchNext () yields the correct solution.
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> cp <- choicepoint(

+ isSolution = { # check for solution or pruning
+ w <- sum(weight [adapt])
+ if ( isObviouslyInfeasible(E) || w > wsol ) return(FALSE)
+ if (length(totreat) == 0){
+ wsol <<- w

+ adapt <- adapt

+ rm(totreat)

+ return (TRUE)

+ }

+ },

+ choiceleft = { # things to do in the left node
+ .var <- totreat[1]

+ E <- substValue(E, .var , r[.var])

+ adapt[.var] <- FALSE

+ totreat <- totreat[-1]

+ },

+ choiceRight = { # things to do in the right node
+ .var <- totreat[1]

+ E <- eliminateFM(E, .var)

+ adapt[.var] <- TRUE

+ totreat <- totreat[-1]

+

+

+

+

+

+

+

+

+

>

-

Initialize variables in root node
editmatrix(c("y > x-1 ","y > -x+3")),
c(x=2,y=-1),

totreat = c("x","y"),

adapt = c(x=FALSE, y=FALSE),

weight = ¢(1,1),

wsol = 2

R R W

)
cp$searchNext ()

$w
[1] 1

$E
Edit matrix:

x y Ops CONSTANT
el 0 -1 < -1

Edit rules:
el : 1 <y

$adapt

X y
FALSE TRUE

Figure 8: Solving a simple error localization problem using the choicepoint
object directly.
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5 Conclusions

The editrules package offers a convenient interface to define and manipulate
sets of linear (in)equality restrictions. Linear restrictions can be entered textu-
ally for for automated translation to matrix form or wice versa. Edit sets can
be manipulated by value substitution or variable elimination, through a newly
developed fast routine for Fourier-Motzkin elimination. The latter routine also
allows the user to check sets of linear (in)equalities for internal consistency.

The package offers the ability to efficiently identify the edit rules violated
by a set of records. Moreover, based on the Fellegi-Holt assumption, one can
localize the erroneous fields in edit-violating records. The error localization
routines are based on a choicepoint-programming paradigm which is exported
to user space, providing users with a flexible and easy to use interface for solving
binary programming problems.
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