
Linear edit manipulation and error localization

with the editrules package

Edwin de Jonge and Mark van der Loo

May 11, 2011

Abstract

This vignette is far from finished. Version 1.0 fo the package will have
the full vignette.

Contents

1 Introduction 2

2 Defining and checking numerical restrictions 2
2.1 The editmatrix object . 2
2.2 Basic manipulations and edit checking 4
2.3 Obvious redundancy and infeasibility 6

3 Manipulation of linear restrictions 7
3.1 Value substitution . 8
3.2 Gaussian elimination . 8
3.3 Fourier-Motzkin elimination . 9

4 Error localization for numerical data 9
4.1 The generalized Fellegi-Holt paradigm 9
4.2 General binary search with the choicepoint algorithm 9
4.3 Error localization with cp.editmatrix 9

5 Conclusions 9

1

1 Introduction

The value domain of real numerical data records with n variables is often re-
stricted to a subdomain of Rn due to linear equality and inequality relations
which the variables in the record have to obey. Examples include equality re-
strictions imposed by financial balance accounts, positivity demands on certain
variables or limits on the ratio of variables.

Any such restriction is of the form

a · x� b with � ∈ {<,≤,=}, (1)

where x is a numerical data record, a, x ∈ Rn and b ∈ R. In data editing
literature, data restriction rules are refered to as edits, or edit rules. We will call
edits, written in the form of Eq. (1), edits in normal form.

Large complex surveys are often endowed with dozens or even hundreds of
edit rules. For example, the Dutch Structural Business Survey, which aims to
report on the financial structure of companies in the Netherlands, contains on
the order of 100 variables, endowed with a similar number of linear equality and
inequality restrictions.

Defining and manipulating large edit sets can be a daunting task , while edit
violations gives rise to the error localization problem, which can quite simply be
stated as which variables contain the errors that cause a record to violate certain
edits rules?.

The editrules package for the R statistical computing environment (R De-
velopment Core Team, 2011) aims to provide an environment to conveniently
define, parse and check linear (in)equality restrictions, perform common edit
manipulations and offer error localization functionality based on the (gener-
alized) paradigm of Fellegi and Holt (1976). This paradigm is based on the
assumption that errors are distributed randomly over the variables, and there
is no detectable cause of error. The paradigm also decouples the detection from
correction of corrupt variables. Certain causes of error, such as sign flips, typing
errors or rounding errors can be detected and are closely related to their reso-
lution. The reader is referred to the deducorrect package (van der Loo et al.,
2011; Scholtus, 2008, 2009) for treating such errors.

The following chapters demonstrates the functionality of the editrules

package with coded examples as well a description of of the underlying theory
and algorithms. For a detailed per-function description the reader is referred to
the reference manual accompanying the package. Unless mentioned otherwise,
all code shown in this paper can be executed from the R commandline after
loading the editrules package.

2 Defining and checking numerical restrictions

2.1 The editmatrix object

For computational processing, a set of edits of the form

a · x� b with � ∈ {<,≤,=,≥, >}. (2)

is most conveniently represented as a matrix. In the editrules package, a set
of linear edits is stored as an editmatrix object. This object stores the linear

2

relations as an augmented matrix [A,b], where A is the matrix obtained by
combining the a vecors of Eq. (2) in rows of A and constants b in b. A second
attribute holds the comparison operators as a character vector. Formally, we
denote that every editmatrix E is defined by

E = 〈[A,b],�〉 with [A,b] ∈ Rm×n+1, � ∈ {<,≤,=,≥, >}m, (3)

where n is the number of variables, m the number of edit rules and the notation
〈 , 〉 denotes a combination of objects. Retrieval functions for various parts
of an editmatrix are available, see Table 1 (p. 6) for an overview. Defining
augmented matrices by hand is tedious and prone to error, which is why the
editmatrix function derives edit matrices from a textual representation of edit
rules. Since most functions of the editrules package expect an editmatrix

in normal form (that is � ∈ {<,≤,=}), the editmatrix function by default
transforms all linear edits to normal form.

As an example, consider the set of variables

turnover t
personell cost cp
housing cost ch
total cost ct
profit p,

subject to the rules

t = ct + p (4)

ct = ch + cp (5)

p ≤ 0.6t (6)

ct ≤ 0.3t (7)

cp ≤ 0.3t (8)

t > 0 (9)

ch > 0 (10)

cp > 0 (11)

ct > 0. (12)

Clearly, these can be written in the form of Eq. (1). Here, the equality re-
strictions correspond to balance accounts, the 3rd, 4th and 5th restrictions are
sanity checks and the last four edits demand positivity. Figure 1 shows how
these edit rules can be transformed from a textual representation to a matrix
representation with the editmatrix function.

As Figure 1 shows, the editmatrix object is shown on the console as a
matrix, as well as a set of textual edit rules. The editrules package is capable
of coercing a set of R expressions to an editmatrix and vice versa. To coerce
text to a matrix, the editmatrix function processes the R language parsetree
of the textual R expressions as provided by the R internal parse function. To
coerce the matrix representation to textual representation, an R character string
is derived from the matrix which can be parsed to a language object.

In the example, the edits were automatically named e1, e2, . . ., e9. It is
possible to name and comment edits by reading them from a data.frame.

3

> E <- editmatrix(c(

+ "t == ct + p" ,

+ "ct == ch + cp",

+ "p <= 0.6*t",

+ "cp <= 0.3*t",

+ "ch <= 0.3*t",

+ "t > 0",

+ "ch > 0",

+ "cp > 0",

+ "ct > 0"), normalize=TRUE)

> E

Edit matrix:

ct p t ch cp Ops CONSTANT

e1 -1 -1 1.0 0 0 == 0

e2 1 0 0.0 -1 -1 == 0

e3 0 1 -0.6 0 0 <= 0

e4 0 0 -0.3 0 1 <= 0

e5 0 0 -0.3 1 0 <= 0

e6 0 0 -1.0 0 0 < 0

e7 0 0 0.0 -1 0 < 0

e8 0 0 0.0 0 -1 < 0

e9 -1 0 0.0 0 0 < 0

Edit rules:

e1 : t == ct + p

e2 : ct == ch + cp

e3 : p <= 0.6*t

e4 : cp <= 0.3*t

e5 : ch <= 0.3*t

e6 : 0 < t

e7 : 0 < ch

e8 : 0 < cp

e9 : 0 < ct

Figure 1: Defining an editmatrix from a character vector containing ver-
bose edit statements. The option normalize=TRUE ensures that all comparison
operators are either <, ≤ or ==.

The ability to read edit sets from a data.frame facilitates defining and main-
taining the rules outside of the R environment by storing them in a user-filled
database or textfile. Manipulating and combining edits, for example through
variable elimination methods will cause editrules to drop or change the names
and drop the comments, as they become meaningless after certain manipula-
tions.

2.2 Basic manipulations and edit checking

Table 1 shows simple manipulation functions available for an editmatrix. Basic
manipulations include retrieval functions for the augmented matrix, coefficient
matrix, constant vector and operators of an editmatrix. There are functions
to test for and transform to normality. The function violatedEdits expects

4

> # generate a csv text string

> E.csv <-

+ 'name , edit , description

+ "b1" , t == ct + p , "total balance"

+ "b2" , ct == ch + cp , "cost balance"

+ "s1" , p <= 0.6*t , "profit sanity"

+ "s2" , cp <= 0.3*t , "personell cost sanity"

+ "s3" , ch <= 0.3*t , "housing cost sanity"

+ "p1" , t >0 , "turnover positivity"

+ "p2" , ch > 0 , "housing cost positivity"

+ "p3" , cp > 0 , "personel cost positivity"

+ "p4" , ct > 0 , "total cost positivity"'

> # read into a data.frame

> E.df <- read.csv(textConnection(E.csv))

> # transform to an editmatrix

> editmatrix(E.df)

Edit matrix:

ct p t ch cp Ops CONSTANT

b1 -1 -1 1.0 0 0 == 0

b2 1 0 0.0 -1 -1 == 0

s1 0 1 -0.6 0 0 <= 0

s2 0 0 -0.3 0 1 <= 0

s3 0 0 -0.3 1 0 <= 0

p1 0 0 -1.0 0 0 < 0

p2 0 0 0.0 -1 0 < 0

p3 0 0 0.0 0 -1 < 0

p4 -1 0 0.0 0 0 < 0

Edit rules:

b1 : t == ct + p [total balance]

b2 : ct == ch + cp [cost balance]

s1 : p <= 0.6*t [profit sanity]

s2 : cp <= 0.3*t [personell cost sanity]

s3 : ch <= 0.3*t [housing cost sanity]

p1 : 0 < t [turnover positivity]

p2 : 0 < ch [housing cost positivity]

p3 : 0 < cp [personel cost positivity]

p4 : 0 < ct [total cost positivity]

Figure 2: Declaring an editmatrix with a data.frame. The input data.frame
is required to have three columns named name,(edit name, stored as rowname
of augmented matrix) edit (textual representation of the edit rule) and de-

scription (a comment stating the intent of the rule). All must be of type
character.

an editmatrix and a data.frame or a named numeric vector. It returns a
logical array where every row indicates which edits are violated (TRUE) by
records in the data.frame. Figure 3 demonstrates the result of checking two
records against the editrules defined in Eqs. (4)–(12). Indexing of edits with
the [operator is restricted to selection only. No assignment can be made to
indexed editmatrix objects. In stead, as.editmatrix should be used.

5

Table 1: Simple manipulation functions for objects of class editmatrix

function description
getA(E) Get matrix A
getb(E) Get constant vector b
getAb(E) Get augmented matrix [A,b]
getOps(E) Get comparison operators
E[i,] Select edit(s)
as.editmatrix(A,b,ops) Create an editmatrix from it’s attributes
normalize(E) Transform E to normal form
isNormalized(E) Check whether E is in normal form
violatedEdits(E, x) Check which edits are violated by x
isObviouslyRedundant(E) Check for tautologies in rows of E
isObviouslyUnfeasible(E) Check for contradictions in rows of E

> # define two records in a data.frame

> dat <- data.frame(

+ t = c(1000, 1200),

+ ct = c(400, 200),

+ ch = c(100, 350),

+ cp = c(500, 575),

+ p = c(500, 652))

> # check for violated edits

> violatedEdits(E,dat)

e1 e2 e3 e4 e5 e6 e7 e8 e9

[1,] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

[2,] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Figure 3: Checking which edits are violated for every record in a data.frame.
The first record violates e1 and e2, the second record violates e1,e2, and e4.

2.3 Obvious redundancy and infeasibility

When manipulating linear edit sets by value substitution and/or variable elimi-
nation, the edit set can become polluted with redundant edits or, when variable
values are substituted, become infeasible. The editrules package has two
methods available which check for easily detectable redundancies or infeasibil-
ity. The fourier-motzkin elimination method has auxilary built-in redundancy
removal, which is described in Section 3.3.

A system of inequalities Ax ≤ b is called infeasible when there is no real
vecor x satisfying it. It is a consequence of Farkas’ lemma (Farkas (1902), but see
Schrijver (1998) and/or Kuhn (1956)) on feasibility of sytems of linear equalities,
that a system is infeasible if and only if 0 ≤ −1 can be derived by taking
positive linear combinations of the rows of the augmented matrix [A,b]. The
function isObiouslyinfeasible returns a logical indicating whether such a
contradiction is present. Subsitution of values may also lead to equalities of the
form 0 = 1, which also indicate that the system has become infeasible. Being
obviously infeasible is sufficient for an editmatrix to be infeasible, but not
necessary. Algorithm 1 gives the pseudocode for reference purposes.

When new edits are derived, either by value substitution or by variable

6

Algorithm 1 isObviouslyInfeasible(E)

Input: a normalized editmatrix E
for a · x� b ∈ E do

if a = 0 then
if (� ∈ {=} ∧ b 6= 0) ∨ (� ∈ {≤, <} ∧ b < 0) then

return true
end if

end if
end for
return false

Output: . logical indicating if E is obviously infeasible.

Algorithm 2 isObviouslyRedundant(E)

Input: a normalized editmatrix E, with m edits
v← (false)×m

i← 0
for a · x� b ∈ E do

i← i + 1
if a = 0 then

if (� ∈ {=} ∧ b = 0) ∨ (� ∈ {≤, <} ∧ b > 0) then
vi ←true

end if
end if

end for
Output: v . logical vector indicating which rows of E are obviously

redundant.

elimination, redundant rules of the form 0 ≤ 1 or 0 = 0 can be generated.
The function isObviouslyRedundant detects such rules and returns a logical

vector indicating which rows of an editmatrix are redundant. Pseudocode is
given in Algorithm 2.

3 Manipulation of linear restrictions

There are two fundamental operations possible on edit sets, both of which (pos-
sibly) reduce the number of variables involved in the edit set. The first, most
simple one is when a value is substituted into an edit. The second possibility
is variable elimination. For a set of linear equalities, one can apply Gaussian
elimination, while for sets of inequalities or mixed sets of equalities and inequal-
ities Fourier-Motzkin elimination is applied. While variable substitution and
Gaussian elimination guarantee that the eliminated variable is not involved in
the derived edit set anymore, this is not necessarily the case for Fourier-Motzkin
elimination.

7

Algorithm 3 replaceValue(E, j, x)

Input: E = 〈[A = [a1,a2, . . . ,aj , . . . ,an],b],�〉, x ∈ R, j ∈ {1, 2, . . . n}
Output: 〈[A = [a1,a2, . . . ,aj−1,0,aj+1, . . .an] ,b− ajx],�〉

> replaceValue(E, "t", 10)

Edit matrix:

ct p t ch cp Ops CONSTANT

e1 -1 -1 0 0 0 == -10

e2 1 0 0 -1 -1 == 0

e3 0 1 0 0 0 <= 6

e4 0 0 0 0 1 <= 3

e5 0 0 0 1 0 <= 3

e7 0 0 0 -1 0 < 0

e8 0 0 0 0 -1 < 0

e9 -1 0 0 0 0 < 0

Edit rules:

e1 : 0 == ct + p + -10

e2 : ct == ch + cp

e3 : p <= 6

e4 : cp <= 3

e5 : ch <= 3

e7 : 0 < ch

e8 : 0 < cp

e9 : 0 < ct

Figure 4: Substituting the value 10 for the turnover variable using the re-

placeValue function.

3.1 Value substitution

Given a set of m linear edits as defined in Eq. (3). For any record x it must
hold that

Ax � b, � ∈ {<,≤,=,≥, >}m. (13)

Substituting one of the unknowns xj by a certain value x amounts to replacing
the j column of A with 0 and b with b − a′jx. After this, the reduced record
of unknowns, with xj replaced by x has to obey the adapted system (13). For
reference purposes, Algorithm 3 spells out the substitution routine. The function
was named replaceValue since substitute is already defined in the R-base.
Figure 4 shows how replaceValue can be called from the R environment.

3.2 Gaussian elimination

The well-known Gaussian elimination routine has been implemented here as a
utility function, enabeling users to reduce the equality part of their edit matrices
to reduced row echelon form. The echelon function has been overloaded to
take either an R matrix or an editmatrix as argument. In the latter case, the
equalities are transformed to reduced row echelon form, while inequalities are
left untreated.

8

> echelon(E)

Edit matrix:

ct p t ch cp Ops CONSTANT

e1 1 0 0.0 -1 -1 == 0

e2 0 1 -1.0 1 1 == 0

e3 0 1 -0.6 0 0 <= 0

e4 0 0 -0.3 0 1 <= 0

e5 0 0 -0.3 1 0 <= 0

e6 0 0 -1.0 0 0 < 0

e7 0 0 0.0 -1 0 < 0

e8 0 0 0.0 0 -1 < 0

e9 -1 0 0.0 0 0 < 0

Edit rules:

e1 : ct == ch + cp

e2 : p + ch + cp == t

e3 : p <= 0.6*t

e4 : cp <= 0.3*t

e5 : ch <= 0.3*t

e6 : 0 < t

e7 : 0 < ch

e8 : 0 < cp

e9 : 0 < ct

Figure 5: The echelon function transforms the linear equalities of an edit-
matrix to reduced row echelon form. See Figure 1 for the original definition of
E.

3.3 Fourier-Motzkin elimination

4 Error localization for numerical data

4.1 The generalized Fellegi-Holt paradigm

4.2 General binary search with the choicepoint algorithm

4.3 Error localization with cp.editmatrix

5 Conclusions

9

References

Farkas, G. (1902). Über die theorie der einfachen ungleichungen. Journal für
die Reine und Angewandte Mathematik 124, 1–27.

Fellegi, I. P. and D. Holt (1976). A systematic approach to automatic edit and
imputation. Journal of the Americal Statistical Association 71, 17–35.

Kuhn, H. W. (1956). Solvability and consistency for linear equations and in-
equalities. The American Mathematical Monthly 63, 217–232.

R Development Core Team (2011). R: A Language and Environment for Statis-
tical Computing. Vienna, Austria: R Foundation for Statistical Computing.
ISBN 3-900051-07-0.

Scholtus, S. (2008). Algorithms for correcting some obvious inconsistencies and
rounding errors in business survey data. Technical Report 08015, Statistics
Netherlands, Den Haag. The papers are available in the inst/doc directory of
the R package or via the website of Statistics Netherlands.

Scholtus, S. (2009). Automatic correction of simple typing error in numerical
data with balance edits. Technical Report 09046, Statistics Netherlands, Den
Haag. The papers are available in the inst/doc directory of the R package or
via the website of Statistics Netherlands.

Schrijver, A. (1998). Theory of linear and integer programming. Wiley-
Interscience series in descrete mathematics and optimization. New York: John
Wiley and Sons.

van der Loo, M., E. de Jonge, , and S. Scholtus (2011). deducorrect: Deductive
correction of simple rounding, typing and sign errors. R package version 0.9-2.

10

