
ddhazard

Benjamin Christoffersen

2018-06-25

Introduction

This vignette will cover the ddhazard function used for estimation in the dynamichazard library. You can
install the version of the library used to make this vignette from github with the devtools library as follows:

current_version # the string you need to pass to devtools::install_github

[1] "boennecd/dynamichazard@1817aa1228d6c78380cc49ce1fc62bfeaa6f9d2a"

devtools::install_github(current_version)

You can also get the latest version on CRAN by calling:

install.packages("dynamichazard")

The ddhazard function estimates a dynamic binary regression model where the parameters are assumed to
time-varying and follow a random walk.

Why and when to use the ddhazard

The ddhazard function is intended for situation where you have a dynamic binary regression model with
time-varying coefficients. The advantage of the state spaces methods used here is that you can extrapolate to
time periods beyond the data used in estimation. An example is forecasting firm failures given the firms
present accounting data. The task is to use the present data to estimate a model and forecast the likelihood of
default for the firms in the following year. Another use of this package is as an alternative to other methods
of modelling time-varying coefficients in survival analysis.

The estimation function ddhazard is implemented such that:

1) The time complexity of the computation is linear in the number of observations and in time.
2) The dimension of the observation equation can vary through time allowing for late entry and censoring.
3) It is fast due to the C++ implementation which uses Armadillo library and supports multithreading.
4) The methods a fast compared to e.g., sequential Monte Carlo alternatives.

Guide to vignettes

The vignette here is the primary vignette where the models and estimation methods are explained. The
package also contains other supplementary vignettes. Simulation study with logit model presents a simulation
study where the methods in this package are compared to each other and to Generalized Additive models.
Comparing methods for time-varying logistic models applies the methods to a real world data set. Both
vignettes illustrate how to use the estimation function ddhazard and other functions in this package. They
only use the discrete time model. This vignette also describes the continuous time model. The Bootstrap
illustration vignette shows how to use the ddhazard_boot function which is a wrapper for the boot from the
boot library. ddhazard Diagnostics illustrates how the residuals and hatvalues functions can be used to
check the model fit.

1

Dynamic binary regression

We will introduce the setup and discrete model in the following paragraphs. We are observing individual
1, 2, . . . who each has an event at time T1, T2, We will also refer to an event as death as is typical in
survival analysis. In addition we see covariate vectors xi1,xi2, . . . for each individual i. Each covariate vector
xij is valid in a period (ti,j−1, tij]. Thus, a data frame may look as follows:

id tstart tstop event x1 x2

1 0.00 1.26 0 0.377 0.463
1 1.26 12.00 1 -0.241 -0.353
2 9.91 12.62 0 -0.140 0.122
2 12.62 16.94 0 0.188 0.352
2 16.94 18.45 0 -0.490 0.281
2 18.45 28.00 0 0.193 0.208
3 0.00 5.00 1 0.441 -0.476
4 0.00 1.09 0 0.297 0.352
4 1.09 7.00 1 -0.304 -0.324
5 24.71 28.00 0 -0.390 0.363

This is in the typical start-stop time format. The column id shows which individual the row belongs to.
tstart is point at which the row is valid from and tstop is when the row is valid to. event is one if the
individual dies at tstop and x1 and x2 are two covariates. Thus, the individual with id 1 dies at time 12
while id 2 survives all the periods we observe. The models we look at will allow for censoring to deal handle
an individual like id 2.

We will put the observations into intervals 1, 2, . . . , d each with length ψ1, ψ2, . . . , ψd. That is, we observe a
total of d intervals. Assume that each ψt = 1 for simplicity. Then we define the a series of indicators for each
individual given by:

yijt = 1{Ti∈(ti,j−1,tij]∧t−1<tij≤t}

which denotes whether individual i has event with the j’th covariate vector in interval t. Next, the risk set in
interval t is given by:

Rt = {(i, j) ∈ Z+ × Z : ti,j−1 ≤ t− 1 ≤ ti,j}
where Z are the natural number 1, 2, We will refer to this as the discrete risk set as we later introduce a
continuous version. For simplicity we assume that we have removed all observation that are strictly inside an
interval. I.e. those where:

∃t ∈ Z+ : t− 1 < ti,j−1 < tij < t

Further, we change the event flag for the last observation in case an individual has an event with a covariate
vector inside an interval. Later, we introduce the continuous model where we can handle the information of
such observations. For a given individual i who has covariate vector j in interval t, we model the chance of
an event by:

P (Yijt = 1|y1, . . . ,yt−1,αt) = h(α⊤
t xijt)

where yt is the vector of outcomes given risk set Rs and h is the inverse link function. For example, this
could be the inverse logistic function such that h(η) = exp(η)/(1 + exp(η)). The ddhazard function estimates
models in the state space form:

yt = zt(αt) + ǫt ǫt ∼ (0,Var (yt|αt))
αt+1 = Fαt + Rηt ηt ∼ N(0, ψtQ)

, t = 1, . . . , d

2

The equation for yt is denoted the observational equation. ∼ (v, b) denotes a random variable(s) with mean
(vector) v and variance (co-variance matrix) b. It needs not be a normal distribution. αt is the state
vector with the corresponding state equation. Again, we will fix ψt = 1. However, the ddhazard function
is implemented to handle any equidistant interval length. That is, ψt = ψ for a pre-specified constant ψ.
Further, we define the observational equations covariance matrix as Ht(αt) = Var (yt|αt). The mean zt(αt)
and variance H(αt) are state dependent with:

zft(αt) = E (Yijt|αt) = h(α⊤
t xijt)

Hff ′t(αt) =

{
Var (Yijt|αt) f = f ′

0 otherwise

=

{
zft(αt)(1− zft(αt)) f = f ′

0 otherwise

where we assumed that individual i with covariate vector j was at the f ’th index of the risk set at time t.
The state equation is implemented with a 1. and 2. order random walk. For the first order random walk
F = R = Im where m is the number of time varying coefficients and Im is the identity matrix with dimension
m. As for the second order random walk, we have:

F =

(
2Im −Im

Im 0m

)
, R =

(
Im

0m

)

where 0m is a m × m matrix with zeros in all entries. The vector in the state equation is ordered as
αt = (α̃⊤

t , α̃
⊤
t−1)⊤ to match the definition of F and R where the tilde is added to indicate the coefficients

used when computing the linear predictor. The likelihood of the model where αt are observed can be written
as follows by application of the markovian property of the model:

P (α0, . . . ,αd|yt, . . . ,yT) ∝ L (α0, . . . ,αd)

= p(α0)

d∏

t=1

P (αt|αt−1)
∏

(i,j)∈Rt

P (yijt|αt)

which we can expand to:

L (α0, . . . ,αd) = logL (α0, . . . ,αd) =− 1

2
(α0 − a0)

⊤
Q−1

0 (α0 − a0)

− 1

2

d∑

t=1

(αt − Fαt−1)
⊤

R⊤ψ−1
t Q−1R (αt − Fαt−1)

− 1

2
log |Q0| −

d

2
log |Q|

+

d∑

t=1

∑

(i,j)∈Rt

lijt(αt)

lijt(αt) = yijt log h(x⊤
ijtαt) + (1− yijt) log

(
1− h(x⊤

ijαt)
)

The unknown parameters are the initial state vector α0 and the covariance matrix Q . We estimate these
using an EM-algorithm. The E-step is carried out first by filtering with an Extended Kalman filter (EKF),
an Unscented Kalman filter (UKF) or an approximation of the posterior modes. We apply a smoother
after the filtering. The method is chosen by passing a list to the control argument of ddhazard with e.g.,
list(method = "EKF", ...). All filtering methods requires an initial state vector α0, co-variance matrix
Q and initial co-variance matrix Q0 to start.

3

A key thing to notice (and a likely source of errors if forgotten) is that the Q argument for Q is scaled by the
length of the time interval, ψt. The motivation for this behavior is that you can alter ψt and get comparable
estimates of Q. Further, it will also be useful if unequal intervals lengths are implemented later. Q_0 is not
scaled and thus will exactly match Q0 in the estimation. The reasoning is that Q0 is independent of our
time interval length and reflects our uncertainty of α0

We will make two fits to illustrate how to call the ddhazard looks and to show that Q will be scaled by ψt.
To do so, we use the data frame where we showed the first few entries from before. An estimation call will
look like:

library(dynamichazard)

library(survival)

dd_fit_short <- ddhazard(

Surv(tstart, tstop, event) ~ x1 + x2, # Formula like for coxph from survival

data = simple_ex,

by = 1, # Length of time intervals

Q = diag(0.1, 3), # Covariance matrix in state eqn

Q_0 = diag(10000, 3), # Covariance matrix for initial state

vector

max_T = 28, # Last time we observe

id = simple_ex$id # id of individuals

)

Print diagonal of covariance matrix

diag(dd_fit_short$Q)

(Intercept) x1 x2

0.210 0.218 0.213

Above, we estimate the model with a time intervals of length by = 1. The model is the logistic model which
we introduced later. For now, let us see what happens if we increase the interval length by changing the by

argument:

library(dynamichazard)

library(survival)

dd_fit_wide <- ddhazard(

Surv(tstart, tstop, event) ~ x1 + x2,

data = simple_ex,

by = 2, # increased

Q = diag(0.1, 3),

Q_0 = diag(10000, 3),

max_T = 28,

id = simple_ex$id)

Print relative differences between diagonal of covariance matrices

Q_short <- dd_fit_short$Q

Q_wide <- dd_fit_wide$Q

diag((Q_wide - Q_short) / Q_short)

(Intercept) x1 x2

-0.599 -0.263 0.262

We see that the diagonal entries are not “too far” from each other with the two fits. Plots of the two
predictions of the coefficients are similar in terms of width of the confidence bounds (black is the short interval
and red is long interval):

4

par(mfcol = c(2, 2), mar = c(5, 4, 1, 1))

for(i in 1:3){

plot(dd_fit_short, cov_index = i, col = "Black")

plot(dd_fit_wide, cov_index = i, col = "Red", add = T)

}

0 5 10 15 20 25

−
4.

5
−

3.
5

−
2.

5

Time

(I
nt

er
ce

pt
)

0 5 10 15 20 25

−
1

0
1

2
3

4

Time

x1

0 5 10 15 20 25

−
6

−
4

−
2

Time

x2

Further, as expected the intercept is larger when we use longer intervals length. To ease the notation, we
assume that ψt = 1 in the rest of the vignette. The rest of this vignette is structured as follows. The section
‘EM algorithm’ will cover the EM algorithm. This is followed by the sections ‘Extended Kalman Filter’,
‘Unscented Kalman Filter’ and ‘Approximation of the posterior mode’ which respectively covers the EKF,
UKF and approximation of the posterior mode used to make the filtering in the E-step of the EM algorithm.
Next, the section ‘Weights’ and ‘Fixed effects’ covers how estimation is done with weights or fixed effects.
The sections ‘Logistic model’ and ‘Continuous time model’ covers the models implemented in this package.
Finally, we end with a section on diagnostics.

I encourage you to use the shiny app while reading this vignette. You can launch the shiny app by installing
this package and running:

dynamichazard::ddhazard_app()

The app will allow you to compare the methods and models described here on simulated data sets.

5

EM algorithm

An EM algorithm is used to estimate the initial state space vector α0 and the co-variance matrix Q. Optionally
Q0 is also estimated if control = list(est_Q_0 = T, ...). Though this is discourage as we are estimating
more parameters than observations without penalization. Define

a t|s = E (αt|y1, . . . ,ys) , V t|s = E (Vt|y1, . . . ,ys)

for the conditional mean and co-variance matrix. Notice that the letter ‘a’ is used for mean estimates while
‘alpha’ is used for the unknown state as is typical in the state space literature. The notation above both covers
filter estimates in the case where s ≤ t and smoothed estimates when s > t. We suppress the dependence of
the covariates (xijt) here to simplify the notation. The initial values for α0, Q and Q0 can be set by passing
a vector for the a_0 argument of ddhazard for α0 and matrices to Q_0 and Q argument of ddhazard for
respectively Q0 and Q.

E-step

The outcome of the E-step are the smoothed estimates:

a
(k)
t|d, V

(k)
t|d, t = 0, 1, . . . , d

where d is the number of periods we observe. Superscripts ·(k) is used to distinguish between the estimates

from each iteration of the EM-algorithm. Thus, a
(k)
t|d is the smoothed state space vector for interval t in

iteration k of the EM algorithm. The required input to start the E-step is an initial mean vector â
(k−1)
0 and

co-variance matrix Q̂(k−1). Given these input, we compute the following estimates by using a filter:

a j|j−1, a i|i, V j|j−1, V i|i, i = 0, 1, . . . , d ∧ j = 1, 2, . . . , d

Then the estimates are smoothed by computing:

B
(k)
t = V t−1|t−1FV−1

t|t−1

a
(k)
t−1|d = a t−1|t−1 + Bt(a

(k)
t|d − a t|t−1)

V
(k)
t−1|d = V t−1|t−1 + Bt(V

(k)
t|d −V t|t−1)B⊤

t

t = d, d− 1, . . . , 1

Kalman Filter

The standard Kalman filter is carried out by recursively doing a prediction step and a correction step. This
also applies for all the implemented filters. Thus, this paragraph is included to introduce general notions.
The first step in the Kalman Filter is the prediction step where we estimate a t|t−1 and V t|t−1 based on
a t−1|t−1 and V t−1|t−1. Secondly, we carry out the correction step where we estimate a t|t and V t|t based on
a t|t−1 and V t|t−1 and the observations. We repeat the process until t = d.

6

M-step

The M-step updates the mean â
(k−1)
0 and co-variance matrices Q̂(k−1) and Q̂

(k−1)
0 (the latter being optional).

These are computed by:

α̂
(k)
0 = a

(k)
0|d, Q̂

(k)
0 = V

(k)
0|d

Q̂(k) =
1

d

d∑

t=1

R⊤

((
a

(k)
t|d − Fa

(k)
t−1|d

)(
a

(k)
t|d − Fa

(k)
t−1|d

)⊤

+ V
(k)
t|d − FB

(k)
t V

(k)
t|d −

(
FB

(k)
t V

(k)
t|d

)⊤

+ FV
(k)
t−1|dF⊤

)
R

We test the relative norm of the change in the state vectors to check for convergence. You can select the
threshold for convergence by setting the eps element of the list passed to the control argument of ddhazard

(e.g., list(eps = 0.001, ...)).

Extended Kalman Filter

The idea of the Extended Kalman filter is to replace the observational equation with a first order Taylor
expansion. This approximated model can then be estimated with a regular Kalman Filter. The EKF presented
here is originally described in Fahrmeir (1994) and Fahrmeir (1992) where the EM-algorithm as shown above
is also from. The formulation in Fahrmeir (1994) differs from the standard Kalman Filter by re-writing the
correction step using the Woodbury matrix identity. This has two computational advantages. The first one is
that the time complexity is O(nt) instead of O(n3

t) where nt = |Rt| denotes the cardinality of the risk set.
Secondly, we do not have store an intermediate nt × nt matrix. The EKF starts with prediction step where
we compute:

a t|t−1 = Fa t−1|t−1,

V t|t−1 = FV t−1|t−1F⊤ + RQR⊤

Secondly, we perform the correction step by:

V t|t =
(

V−1
t|t−1 + Ut(a t|t−1)

)−1

a t|t = a t|t−1 + V t|tut(a t|t−1)

where ut(a t|t−1) and Ut(a t|t−1) are given by:

ut(αt) =
∑

(i,j)∈Rt

uijt(αt), uijt(αt) = xij
∂h(η)/∂η

Hfft(αt)
(yijt − h(η))

∣∣∣∣
η=x⊤

ij
αt

Ut(αt) =
∑

(i,j)∈Rt

Uijt(αt), Uijt(αt) = xijx⊤
ij

(∂h(η)/∂η)
2

Hfft(αt)

∣∣∣∣∣
η=x⊤

ij
αt

Rt is the set of indices of individuals who are at risk in time interval t. Further, the f in Hfft(αt) are set
such that the match with the i’th individuals j’th covariate matrix.

Divergence

Initial testing showed that the EKF has issues with divergence for some data set. The cause of divergence
seems to be overstepping in the correction step where we update a t|t. In particular, the signs of the elements

7

of a t|t tends to alter between t− 1, t, t+ 1 etc. and the absolute values tends to increase in each iteration
when the algorithm diverges. The following section describes solutions to this issue. Fahrmeir (1992) mentions
that the correction step can be viewed as a single Fisher Scoring step. This motivates:

1) To take multiple steps if a t|t is far from a t|t−1.
2) Introduce a learning rate.

Simulated data sets show that the learning rate solves the issues with divergence. Let 1 ≥ ζ0 > 0 denote the
learning rate and ǫNR denote the tolerance for convergence in the correction step. Then set a = a t|t−1 and
compute:

V t|t =
(

V−1
t|t−1 + Ut(a)

)−1

a t|t = V t|t

(
Ut(a)a + V−1

t|t−1a t|t−1 + ζ0ut(a)
)

if ‖a t|t − a‖/(‖a‖+δ) < ǫNR then exit

else set a = a t|t and repeat

where δ is small like 10−9. The arguments for the above formulas are covered later in the global mode
approximation section. Selecting ζ0 < 1 in case of divergence can solve the non-convergence issue. Thus, the
following procedure is used if the algorithm fails with initial learning rate ζ0: try a learning of ζ0 for given
0 < ζ0 ≤ 1 and define 0 < ζ < 1. If that fails then try a rate of ζ0ζ

1. If that fails then try a rate of ζ0ζ
2 etc.

The process is stopped when we succeed to fit the model or we fail to estimate the model with a learning rate
of ζ0ζ

b for a given integer b.

While Fahrmeir (1992) does not observe improvements with multiple iterations, we find improvements in
terms of out-of-sample prediction (for example by setting ǫNR = 10−2 or lower) with a moderate or large
amount of observations. See the vignette “Simulation study with logit model” for details.

The value of ζ0 and ǫNR are set by respectively setting the elements LR and NR_eps of the list passed to the
control argument of ddhazard. By default, LR = 1 and NR_eps = NULL which yields a learning rate of 1
and a single Fischer scoring step. These arguments can be altered by setting e.g. control = list(LR =

0.75, NR_eps = 0.00001) for a learning rate of 0.75 and a threshold in the Fisher Scoring of 10−5.

In addition, a minor term is added covariance matrix to reduce the influence of extreme values. Thus, the
score and information matrix are computed with:

ut(αt) =
∑

(i,j)∈Rt

uijt(αt), uijt(αt) = xijt
∂h(η)/∂η

Hfft(αt) + ξ
(yijt − h(η))

∣∣∣∣
η=x⊤

ijt
αt

Ut(αt) =
∑

(i,j)∈Rt

Uijt(αt), Uijt(αt) = xijtx
⊤
ijt

(∂h(η)/∂η)
2

Hfft(αt) + ξ

∣∣∣∣∣
η=x⊤

ijt
αt

where ξ > 0 is a small number. The default can be changed by altering the denom_term in the list passed to
the control argument of ddhazard. The approach is similar to how the glmnet package handles close to
boundary estimates (see Friedman, Hastie, & Tibshirani (2010)).

Unscented Kalman Filter

The UKF selects state vectors called sigma point with given sigma weigths chosen to match the moments
of observation equation. Thus, we approximate the density rather than approximating the observational
equation. The idea is similar to a Monte Carlo method for state space models but where the state vectors are
chosen deterministically rather than randomly drawn.

8

The motivation to use the UKF in place of the EKF is that we avoid the linerization error in the EKF. Julier
& Uhlmann (1997) introduce a UKF that approximate the first two moments and up to fourth moment in
certain settings. Julier & Uhlmann (2004) further develop the UKF and extended to what is later called
the Scaled Unscented Transformation. We will cover the the Scaled Unscented Transformation with the
parametrizion from E. A. Wan & Van Der Merwe (2000) and formulas from Menegaz (2016).

One of the reasons the UKF has received a lot of attention (especially in engineering) is for settings where
the observation equation is complicated since the UKF does not require computation of the Jacobian matrix.
However, deriving the Jacobian matrix for the models in this package is not difficult.

The usual UKF formulation

We start by introducing a common notation used in the UKF literature. For two random vectors vt and bt,
let:

Pvt,bt
= Cov (vt, bt|y1, . . . ,yt)

Notice that Pαt,αt = V t|t. The UKF start with the prediction step. As pointed out in Julier & Uhlmann
(2004) and Menegaz (2016), the regular Kalman filter prediction step can be used when the state equation is
a linear Gaussian model. Thus, the prediction step is:

a t|t−1 = Fa t−1|t−1,

V t|t−1 = FV t−1|t−1F⊤ + RQR⊤

That is, we use the closed form solution. This version is both exact given the previous estimates a t−1|t−1

and V t−1|t−1 and computationally less demanding. Then we select 2q + 1 so-called sigma points (where q is
the dimension of the state equation) denoted by â0, â1, . . . , â2q+1 according to:

â0 = a t|t−1

âj = a t|t−1 +
√
q + λ

(√
V t|t−1

)
j

âj+q = a t|t−1 −
√
q + λ

(√
V t|t−1

)
j

j = 1, 2, . . . , q

where
(√

V t|t−1

)
j

is the j’th column of the lower triangular matrix of the Cholesky decomposition of V t|t−1.

We assign the following weights to each sigma point (we will cover selection of the hyperparameters α, β and
κ shortly):

W
[m]
0 =

λ

q + λ

W
[c]
0 =

λ

q + λ
+ 1− α2 + β

W
[cc]
0 =

λ

q + λ
+ 1− α

W
[m]
j = W

[c]
j =

1

2(q + λ)
, j = 1, . . . , 2q

λ = α2(q + κ)− q

Next, we proceed to the correction step. We start by defining the following intermediates:

9

ŷj = zt (âj) , j = 0, 1, . . . , 2q

Ŷ = (ŷ0, . . . , ŷ2q)

y =

2q∑

j=0

W
[m]
j yj , ∆Ŷ = Ŷ− y1⊤, Ĥ =

2q∑

j=0

W
[c]
j Ht(âj)

∆Â = (â0, . . . , â2q)− a t|t−11⊤

Pyt,yt =

2q∑

j=0

W
[c]
j

(
(ŷj − y)(ŷj − y)⊤ + Ĥ

)
= ∆Ŷdiag

(
W [c]

)
∆Ŷ⊤ + Ĥ

Pαt,yt =

2q∑

j=0

W
[cc]
j (âj − a t|t−1)(ŷj − y)⊤ = ∆Âdiag

(
W [cc]

)
∆Ŷ⊤

Then the correction step is:

a t|t = a t|t−1 + Pαt,ytP
−1
yt,yt

(yt − y)

V t|t = V t|t−1 −Pαt,yt
P−1

yt,yt
P⊤

αt,yt

Re-writting

The above formulation has the drawback that we have to invert Pyt,yt
which is in-feasible when the number

of observations is large. We can re-write the correction step above by using the Woodbury matrix identity
to get algorithm O(nt) instead of O(n3

t) where nt = |Rt| is the number of elements of the risk set. The
correction step can be computed as:

ỹ = ∆Ŷ⊤Ĥ−1(yt − y)

G = ∆Ŷ⊤Ĥ−1∆Ŷ

c = ỹ −G

(
diag

(
W (c)

)−1

+ G

)−1

ỹ

L = G−G

(
diag

(
W (c)

)−1

+ G

)−1

G

a t|t = a t|t−1 + ∆Âdiag
(

W (cc)
)

c

V t|t = V t|t−1 −∆Âdiag
(

W (cc)
)

Ldiag
(

W (cc)
)

∆Â⊤

where ỹ, G, L and c are intermediates. The above algorithm is O(nt) since Ĥ is a diagonal matrix.

The Square-root Unscented Kalman filter

Another idea could be to try the Square-root Unscented Kalman filter suggested in Merwe & Wan (2001).
The idea is to use a QR decompositions and Cholesky updates to get more stable method. While Merwe &
Wan (2001) shows that this scales equally well in the dimension of the state vector we show below that it
does not scale well with the number of individuals at risk, nt. The prediction step is as before. Next, let

qr (B) = C, C is the Choleksy decomposition of BB⊤ = C⊤C

cholupdate (C, c, v) = C̃, C̃ is the updated Cholesky factor C̃⊤C̃ = C⊤C + vcc⊤

10

Whether we make an update or a downdate depends on the sign of v. The correction step can done as follows:

C = qr
([√

W
[c]
1 (ŷ1 − y)

√
W

[c]
2 (ŷ2 − y) . . .

√
W

[c]
2q (ŷ2q − y)

√
Ĥ

])

C← cholupdate

(
C, ŷ0 − y, sign

(
W

[c]
0

)√
|W [c]

0 |
)

Pαt,yt
= ∆Âdiag

(
W [cc]

)
∆Ŷ⊤

K = Pαt,yt
C−1

(
C−1

)⊤

a t|t = a t|t−1 + K (yt − y)

V t|t = V t|t−1 −KC⊤CK⊤

where we use the left arrow, ←, to indicate an update and all definitions of matrices and vectors are as in the
beginning of this section. We will show that this is equivalent to the first method. First, assume that the

first weight is positive, W
[c]
0 > 0, such that we do not need the Cholesky update. Then:

C = qr
([√

W
[c]
0 (ŷ1 − y)

√
W

[c]
2 (ŷ2 − y) . . .

√
W

[c]
2q (ŷ2q − y)

√
Ĥ

])

⇒ C⊤C =
[√

W
[c]
0 (ŷ1 − y)

√
W

[c]
2 (ŷ2 − y) . . .

√
W

[c]
2q (ŷ2q − y)

√
Ĥ

]




√
W

[c]
0 (ŷ1 − y)

⊤

√
W

[c]
2 (ŷ2 − y)

⊤

...√
W

[c]
2q (ŷ2q − y)

⊤

√
Ĥ




= ∆Ŷdiag
(

W [c]
)

∆Ŷ⊤ + Ĥ = Pyt,yt

Pαt,yt
= ∆Âdiag

(
W [cc]

)
∆Ŷ⊤

K = Pαt,ytC
−1
(
C−1

)⊤
= Pαt,yt

(
C⊤C

)−1
= Pαt,ytP

−1
yt,yt

a t|t = a t|t−1 + K (yt − y) = a t|t−1 + Pαt,yt
P−1

yt,yt
(yt − y)

V t|t = V t|t−1 −KC⊤CK⊤ = V t|t−1 −Pαt,ytP
−1
yt,yt

P⊤
αt,yt

Next, we look at the computational cost of the case where W
[c]
0 > 0. Since C ∈ R

(2q+1+nt)×nt , the cost of
finding the decomposition of C is O((2q + 1 + nt)n

2
t) as stated in Merwe & Wan (2001). Consequently, we

end with a O(n3
t) cost in every iteration of the filter making this method of little use when nt is large. I have

some ideas how we might change the method. Lets continue with the assumption that the first weight is
positive. Then one idea is to compute:

C = qr
([√

W
[c]
0 (ŷ1 − y)

√
W

[c]
2 (ŷ2 − y) . . .

√
W

[c]
2q (ŷ2q − y)

])

C← cholupdate
(

C, Ĥ, 1
)

In this case, we first find C ∈ R
(2q+1)×nt and then make a rank-nt update. The rest of the computations

are in-expensive relative to the number of observations, nt, since we have reduced the dimension of C ∈
R

(2q+1)×nt . In general, the key is that we want a Cholesky decomposition (or another decomposition)

of ∆Ŷdiag
(
W [c]

)
∆Ŷ⊤ + Ĥ which is easy to compute and ease the rest of the computations and storage

requirements. None of the above is implemented in the package.

11

Extreme values

As with the EKF, a minor addition is made to the covariance matrix of the observational equation such that
we replace Ĥ by:

˜̂
H = Ĥ + ξI

Selecting hyperparameters

We still need to select the hyperparameters κ, α and β. We will cover these in the given order. κ is usually
set to κ = 0 or κ = 3−m. Julier & Uhlmann (1997) state is that the latter is a “useful heuristic” when the
state equation is Gaussian and α = 1.

The default in this package is κ = q(1+α2(0.1−1))/(α2(1−0.1)) and can be altered by setting the list element
kappa in the list passed as the control argument to ddhazard. For example, control = list(kappa = 1,

...) yields κ = 1. The default makes W
[m]
0 = 0.1 such that all weights are positive. This ensures that V t|t−1

and Pyt,yt are positive semi-definite. This follows since both are sum of outer products with positive weights

and as Ĥ is a diagonal matrix with positive entries.

0 < α ≤ 1 controls the spread of the sigma points. Notice that λ + q → 0+, W
[c]
0 ,W

[m]
0 → −∞ and

W
[c]
j ,W

[m]
j →∞ (j > 0) as α→ 0+. Thus, the lower the value of α, the lower the spread but the higher the

absolute weights. It is generally suggested to choose α small. See Gustafsson & Hendeby (2012) and Julier &
Uhlmann (2004). However, initial simulation studies showed that α = 1 yields the smallest mean square error
of estimated coefficients. Thus, this is the default. The parameter can be altered through the alpha element
of the list passed to the argument control of ddhazard.

Lastly, β is a correction term to match the fourth-order term in the Taylor series expansion of the covariance
of the observational equation. Julier & Uhlmann (2004) show in the appendix that the optimal value with a
Gaussian state equation is β = 2. Though, initial simulation showed that β = 0 yielded the best results and
is therefore the default. It can be altered through the beta element of list passed to the argument control

of ddhazard.

Selecting starting values

Experience with different data sets and the UKF shows that the method is sensitive to the starting values
of Q and Q0 (where the latter may be fixed). The reason for divergence can be illustrated by the effect
of Q0. We start the filter by setting V 0|0 = Q0. Say that we set Q0 = vIm and a0 = 0. Then the j’th
column of the Cholesky decomposition V 0|0 is a vector with

√
v in the j’th entry and zero in the rest of

the entries. Suppose that we set v large. Then the linear predictors computed with the b < q + 1 sigma
point is

√
q + λ

√
vxijb where xijb is the b’th entry of individual i’s j’th covariate vector at time 1. This can

be potentially quite large in absolute terms if xijb is moderately different from zero. This seems to lead to
divergence in some cases where all the predicted values becomes either zero or one with variance close to zero.
The later is an issue as we divide by the weighted average of the variances in the correction step.

Q has a similar effect although it is harder to illustrate with a small example as it occurs in an intermediate
computations in the UKF. Based on experience, it seems that Q0 should be a diagonal matrix with “somewhat”
large values and Q should be a diagonal matrix with small values. Though, what is “somewhat” large and
what is small dependent on the data set.

12

Sequential approximation of the posterior mode (SMA)

Another idea is do sequential rank-one approximations of the posterior modes. This section cover the details
of this method, the implementation and the pros and cons. Say we are at a given iteration t of the filtering in
the E-step. First, we carry out the prediction step with the closed form solution:

a t|t−1 = Fa t−1|t−1,

V t|t−1 = FV t−1|t−1F⊤ + RQR⊤

Next, we would ideally like to minimize the negative log-likelihood:

arg min
α

− logP
(

α|a t|t−1,V t|t−1

)
−

∑

(i,j)∈Rt

logP (yijt|α)

However, we replace this problem with a series of update with one for each of the nt = |Rt| observations in
interval t. First, we set:

a
(0)
t|t = a t|t−1, V

(0)
t|t = V t|t−1

Then for k = 1, 2, . . . , nt we:

1. Set (i, j) to the k’th element of the risk set Rt

2. Update

a
(k)
t|t = arg min

α

− logP
(

α|a(k−1)
t|t ,V

(k−1)
t|t

)
− logP (yijt|α)

3. Update covariance matrix by computing the inverse of the Hessian at a
(k)
t|t :

V
(k)
t|t =



(

V
(k−1)
t|t

)−1

+
∂ logP (yijt|α)

∂α∂α⊤

∣∣∣∣
α=a

(k)

t|t




−1

Step 2 simplifies to a one dimensional problem of finding the constant v ∈ R that minimize:

v = arg min
b

b2 1

2

1

x⊤
ijV

(k−1)
t|t xij

− b
x⊤

ija
(k−1)
t|t

x⊤
ijV

(k−1)
t|t xij

− (yijt log h(b) + (1− yijt) log(1− h(b))

= arg min
b

b2 1

2
d1 − bd1d2 − (yijt log h(b) + (1− yijt) log(1− h(b))

d1 =
1

x⊤
ijV

(k−1)
t|t xij

, d2 = x⊤
ija

(k−1)
t|t

The update of the state vector given the constant v is done by:

a
(k)
t|t = a

(k−1)
t|t − (d1 − v)d2V

(k−1)
t|t xij

Further, step 3. can be re-written to:

V
(k)
t|t =

((
V

(k−1)
t|t

)−1

+ xijgx⊤
ij

)−1

, g = −
logP

(
yijt|x⊤

ijα = b
)

∂b2

∣∣∣∣∣
b=v

13

Further, we can apply Woodbury matrix identity (or in this case the less general Sherman–Morrison formula)
to avoid the inversions and get:

V
(k)
t|t = V

(k−1)
t|t −

V
(k−1)
t|t xijgx⊤

ijV
(k−1)
t|t

1 + gx⊤
ijV

(k−1)
t|t xij

= V
(k−1)
t|t −

V
(k−1)
t|t xijgx⊤

ijV
(k−1)
t|t

1 + g/d1

This method is selected by setting method = "SMA" in the list passed to the control argument of ddhazard.

Implementation

Finding the constant v in step 2 can be done by the Newton Raphson method to find a unique minimum
when:

1. − logP (yijt|α) is convex in b.
2. − logP (yijt|α) bounded from below.

which is true for the implemented models. Further, the learning rate ζ0 the decrease factor ζ as in the EKF
can be used here to by changing the correction step to:

a
(k)
t|t = a

(k−1)
t|t − (d1 − v)d2ζ0V

(k−1)
t|t xij

The Woodbury matrix identity can perform poorly for ill-conditioned matrices. This motivates the following
algorithm:

0. Set:
a

(0)
t|t = a t|t−1, V

(0)
t|t = V t|t−1, LL⊤ =

(
V t|t−1

)−1

where L is the lower triangular matrix from the Cholesky decomposition of
(
V t|t−1

)−1
. For k =

1, 2, . . . , nt:

1. Perform step 1 and 2 as before to find the constant v and update a
(k)
t|t .

2. Update L by a rank-one-update of xijgx⊤
ij such that LL⊤ ← LL⊤ + xijgx⊤

ij . We use the left arrow,
←, to indicate that we make an update.

3. Set V
(k)
t|t =

(
L−1

)⊤ (
L−1

)
.

Step 0 comes at an O(q3) cost per interval 1, 2, . . . , d due to the Cholesky decomposition. This is durable if
we do not have too many coefficients. Step 2 can be performed in O(q2). The current implementation use the
Fortran code from the post here http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=2646 based on
Seeger (2004). It is the algorithm mentioned in Golub & Van Loan (2012) in section 6.5.4. Step 3 can be

done in O(q2) using backward substitution when we compute
(
L−1

)⊤
. Thus, we end with an algorithm that

scales as well as with the Woodbury matrix identity a part from the first step 0

Moreover, we can save computations throughout by storing L̃ =
(
L−1

)⊤
instead of storing V

(k)
t|t . L̃ is also

a triangular matrix. Thus, we need to do less operations when doing the matrix multiplications. Another
advantage is that the rank-one update yields a positive semi definite matrix LL⊤. This is true since
xijx⊤

ij is a vector outer product and as g is positive with distributions from the exponential family. Hence,

V
(k)
t|t =

(
L−1

)⊤ (
L−1

)
will remains a positive semi definite matrix. The method described here is used

if you set the element posterior_version = "cholesky" in the list passed to the control argument of
ddhazard. The former method using the Woodbury matrix identity is used if you set posterior_version =

"woodbury".

14

http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=2646

Global approximation of the posterior mode (GMA)

We can directly minimize:

arg min
α

− logP
(

α|a t|t−1,V t|t−1

)
−

∑

(i,j)∈Rt

logP (yijt|α)

This is equivalent to a L2 penalized Generalized Linear Models (GLM) since we only use models from the
exponential family. This can be done with the usual iteratively reweighted ridge regression. Every iteration
can be done in O

(
ntq

2 + q3
)
. We will go through computations in the following paragraphs. First, we derive

the gradient and the Hessian:

h̃(α) = − logP
(

α|a t|t−1,V t|t−1

)
−

∑

(i,j)∈Rt

logP (yijt|α)

g̃(α) = h̃′(α) = V−1
t|t−1

(
α− a t|t−1

)
−

∑

(i,j)∈Rt

∂ logP (yijt|α′)

∂α′

∣∣∣∣∣∣
α′=α

= V−1
t|t−1

(
α− a t|t−1

)
−X⊤

t

∂ logP (yt| e′)

∂e′

∣∣∣∣
e′=Xtα︸ ︷︷ ︸

c′(α)

G̃(α) = h̃′′(α) = V−1
t|t−1 −

∑

(i,j)∈Rt

∂2 logP (yijt|α′)

∂α′∂ (α′)
⊤

∣∣∣∣∣∣
α′=α

= V−1
t|t−1 −X⊤

t

∂ logP (yt| e′)

∂e′∂ (e′)
⊤

∣∣∣∣∣
e′=Xtα︸ ︷︷ ︸

c′′(α)

Xt

Thus, the update equation with a learning rate, ζ0, is:

a(k) = a(k−1) + ζ0

(
G̃(a(k−1))

)−1 (
−g̃(a(k−1))

)

=
(

V−1
t|t−1 + X⊤

t (−c′′(α(k−1))Xt

)−1 (
ζ0V−1

t|t−1a t|t−1 + ζ0X⊤
t c

′(α(k−1))

+
(

X⊤
t

(
−c′′(α(k−1))

)
Xt + (1− ζ0)V−1

t|t−1

)
a(k−1)

)

The box below shows the final algorithm for the correction step:

This method is selected by setting method = "GMA" in the list passed to the control argument of ddhazard.
You can change kmax and ǫ by respectively setting the elements GMA_max_rep and GMA_NR_eps to the control

argument. The above is sensitive to the choice of Q0. An extreme example is if we have no events in the first
interval and only an intercept. Then setting Q0 to a diagonal matrix with large entries (in this case Q0 is
a scalar) implies almost no restrictions on the intercept. Thus, it will be optimal to select a value tending
towards minus infinity.

Alternative implementation

An alternative to the above algorithm for the exponential family is to re-write the original problem to get a
weighted least squares problem of the form:

15

Algorithm 1 Correction step with global mode approximation by Newton Raphson.

Set a(0) = a t|t−1, k = 0 and define:

c′(α) =
∂ log P(yt|e′)

∂e′

∣∣∣∣
e′=Xtα

c′′(α) =
∂ log P(yt|e′)

∂e′∂(e′)⊤

∣∣∣∣
e′=Xtα

repeat

V t|t =
(

G̃(a(k−1))
)−1

a(k) =
(

V−1
t|t−1 + X⊤

t (−c′′(α(k−1))Xt

)−1 (
ζ0V−1

t|t−1a t|t−1 + ζ0X⊤
t c

′(α(k−1))

+
(

X⊤
t

(
−c′′(α(k−1))

)
Xt + (1− ζ0)V−1

t|t−1

)
a(k−1)

)

until
∥∥a(k) − a(k−1)

∥∥ /(
∥∥a(k−1)

∥∥+ δ) < ǫ or k ≥ kmax else Set k ← k + 1

b = Xta
(k−1) + h′

(
Xta

(k−1)
)−1 (

yt − h
(

Xta
(k−1)

))

arg min
α

∥∥∥∥∥

(
h′
(
Xta

(k−1)
)

Var
(

Yt|Xtα
(k−1)

)−1/2
0

0 V
−1/2
t|t−1

)

︸ ︷︷ ︸
C̃1/2

((
Xt

I

)

︸ ︷︷ ︸
X̃t

α−
(

b

α t|t−1

)

︸ ︷︷ ︸
b̃

)∥∥∥∥∥

where b is the working responses, h temporarily denotes the inverse link function at time t, h′ is the derivative
w.r.t. the linear predictor Xta

(k−1) and the inverse link function h implicitly depends on the risk set at time

t. The minimum w.r.t. α is α(k) =
(

X̃⊤
t C̃X̃t

)−1

X̃⊤
t C̃b̃. Though, this is the EKF shown earlier. To see this,

set a(k−1) = a t|t−1. Then,

(
X̃⊤

t C̃X̃t

)−1

=
(

V−1
t|t−1 + Ut(a t|t−1)

)−1

(1)

Further,

X̃⊤
t C̃b̃ = XT

t h′
(
Xta t|t−1

)2
Var

(
Yt|Xta t|t−1

)−1
Xta t|t−1 + ut(a t|t−1) + V−1

t|t−1a t|t−1

=
(

V−1
t|t−1 + Ut(a t|t−1)

)
a t|t−1 + ut(a t|t−1)

(2)

Thus,

(
X̃⊤

t C̃X̃t

)−1

X̃⊤
t C̃b̃ = a t|t−1 +

(
V−1

t|t−1 + Ut(a t|t−1)
)−1

ut(a t|t−1) (3)

This is the update equation in the EKF. Taking multiple steps give us:

(
X̃⊤

t C̃X̃t

)−1

=
(

V−1
t|t−1 + Ut(a

(k−1))
)−1

(4)

X̃⊤
t C̃b̃ = XT

t h′
(

Xta
(k−1)

)2

Var
(

Yt|Xtα
(k−1)

)−1

Xta
(k−1) + ut(a

(k−1)) + V−1
t|t−1a t|t−1

= Ut(a
(k−1))a(k−1) + V−1

t|t−1a t|t−1 + ut(a
(k−1))

(5)

16

a(k) =
(

V−1
t|t−1 + Ut(a

(k−1))
)−1 (

Ut(a
(k−1))a(k−1) + V−1

t|t−1a t|t−1 + ut(a
(k−1))

)
(6)

Weights

Weights can be used in the EKF, UKF and posterior mode approximations. This can reduce the computation
in the logistic model with only categorical covariates or if we want to bootstrap the estimates. The following
section covers how the weights are handled in the previous filters. We will denote the weights at time t by
et = (e1, e2, . . . , ent

) where nt = |Rt| is the number of observations at risk at time t. Further, we denote Et

as the diagonal matrix with et as the diagonal

EKF

Weights are handled in the EKF by replacing

ut(αt) =
∑

(i,j)∈Rt

uijt(αt), Ut(αt) =
∑

(i,j)∈Rt

Uijt(αt)

with

ut(αt) =

nt∑

f=1

ef u(Rt)f t(αt), Ut(αt) =

nt∑

f=1

ef U(Rt)f t(αt)

where (Rt)f is the f ’th element of Rt.

UKF

Weights are handled in the UKF by replacing:

ỹ = ∆Ŷ⊤Ĥ−1(yt − y) G = ∆Ŷ⊤Ĥ−1∆Ŷ

with

ỹ = ∆Ŷ⊤EtĤ
−1(yt − y) G = ∆Ŷ⊤EtĤ

−1∆Ŷ

SMA

Weights are handled in the SMA by replacing:

v = arg min
b

b2 1

2
d1 − bd1d2 − (yijt log h(b) + (1− yijt) log(1− h(b))

V
(k)
t|t = V

(k−1)
t|t −

V
(k−1)
t|t xijgx⊤

ijV
(k−1)
t|t

1 + gx⊤
ijV

(k−1)
t|t xij

with

17

v = arg min
b

b2 1

2
d1 − bd1d2 − ef (yijt log h(b) + (1− yijt) log(1− h(b))

V
(k)
t|t = V

(k−1)
t|t −

V
(k−1)
t|t xijefgx⊤

ijV
(k−1)
t|t

1 + efgx⊤
ijV

(k−1)
t|t xij

GMA

Weights are handled in the same way as for the SMA by multiplying the c′(α) and c′′(α) with the weights of
the observation.

Fixed effects

This section will cover how fixed effects (non time-varying effects) are estimated. We will denote the coefficients
for the fixed effects by γ. The fixed effects can be estimated with two methods. The first one is by adding
the fixed effects to state equation with their elements of the covariance matrix Q set to zero. That is, we
estimate the fixed effects in the E-step. The second method is to estimate the fixed effects in the M-step.

Estimation in the E-step

The fixed effect can be estimated in the E-step in a similar manner to Harvey & Phillips (1979). The method
in Harvey & Phillips (1979) is similar to recursive least squares where some of the effects are time-varying.
The elements with the fixed effects have a large value in the diagonal of Q0 (say 106) and zero in the elements
of the covariance matrix Q. Thus, we end with recursive least squares for the linear model if all effects are
fixed.

In this package, we set the entries of Q0 and Q in the same way. Nothing else is changed in the E-step.
Further, we set the all rows and columns of the fixed effects in Q to zero after the update in the M-step.
This seems to work with the EKF for a large range of large diagonal elements Q0 (say 105). However, the
choice of the diagonal entry in Q0 for fixed effects do have an impact with the UKF. “Large” but not “too
large” values tends to work. Though, what is large depends data set and model. The default for the diagonal
elements of Q0 for the fixed effects can be altered by setting the Q_0_term_for_fixed_E_step of the list
passed to the control argument of ddhazard. This method to estimate the fixed effect is used when you set
the fixed_terms_method = "E_step" in the list passed to the control argument.

Estimation in the M-step

The other method is to estimate the fixed parameters in the M-step. For this section, I define γ as the fixed
parameters, xijt as the covariates corresponding to the time-varying parameters, and zijt as the covariates
corresponding to the fixed parameters. The dot product between the fixed parameters and the corresponding
covariates act as offsets in the filters because the linear predictor is x⊤

ijtαt + z⊤
ijtγ, where γ is fixed. Moreover,

the formulas for a0 and Q in the M-step are not affected because the only relevant terms for fixed effects in
the M-step are in the last line of the log likelihood. However, the optimization is not easily solved exactly
in the M-step for the fixed parameters. The log likelihood we need to maximize in the M-step in the k’th
iteration is

arg max
γ

E




d∑

t=1

∑

(i,j)∈Rt

lijt(αt,γ)

∣∣∣∣∣∣
a

(k−1)
0 ,γ(k−1),Q(k−1),Q0,y1, . . . ,yd




18

where I temporarily add an additional argument in the log likelihood terms, lijt, for the fixed effects, and
use the superscripts to differentiate between the hyperparameter estimates of different iterations of the
EM-algorithm. The above is not easy to optimize. Thus, I make a zero-order Taylor expansion about
a 1|d, . . . ,a d|d in the current implementation to get

arg max
γ

d∑

t=1

∑

(i,j)∈Rt

lijt(a t|d,γ)

One advantage of doing this is that the problem can be solved with regular methods for GLMs when the model
is from the exponential family. However, the design matrix will be big, as each individual will yield multiple
rows because of different offsets from the time-varying parameters given by x⊤

ijta t|d. To overcome this
problem, I use the Fortran code from Miller (1992) to do a series of rank-one updates of the QR-decomposition
used to solve the iteratively re-weighted least square problem. This is the same approach as in the biglm.
The computational complexity of each update is O

(
c2
)
, where c is the dimension of γ.

Alternative M-step method

First, the method shown in the previous section is the same as simultaneously making a Taylor approximation
about the fixed coefficients, γ, and the smoothed state vectors, a 1|d,a 2|d, . . . ,a d|d and making one iteration

with the previous method. To see this let Ẽ denote the conditional expectation in the previous subsection
and define l̃ijt(x) = yijt log h(x) + (1− yijt) log (1− h(x)) where h is the inverse link function. Focussing on
a single log likelihood term, lijt, a Taylor approximation about a working estimate of the fixed parameter g

and the smoothed state vectors yields

Ẽ (lijt(αt,γ))

≈ Ẽ
(
lijt(a t|d, g) + l̃′ijt(ηijt) (γ − g)

⊤
z

+
1

2
l̃′′ijt(ηijt)

((
αt − a t|d

γ − g

)⊤(
xx⊤ zx⊤

xz⊤ zz⊤

)(
αt − a t|d

γ − g

)))

= Ẽ

(
l̃′ijt(ηijt) (γ − g)

⊤
z +

1

2
l̃′′ijt(ηijt)

((
(γ − g)

⊤
z
)2

+
((

αt − a t|d

)⊤
x
)2
)

+ . . .

)

= l̃′ijt(ηijt) (γ − g)
⊤

z +
1

2
l̃′′ijt(ηijt)

(
(γ − g)

⊤
z
)2

+ . . .

where ηijt = x⊤
ijta t|d + z⊤

ijtg and I have temporarily set x = xijt and z = zijt. The first order terms cancel
out due the expectation and I have dropped terms that does not involve γ from line to line. This is the same
problem that is solved in the iterative weighted least square problem described above. One alternative is to
make a second order Taylor approximation only about the smoothed state vectors. This yields

Ẽ (lijt(αt,γ))

≈ Ẽ


lit(a t|d,γ) +

1

2

((
αt − a t|d

)⊤
xijt

)2 ∂2 l̃it
(
z⊤

ijtγ + o
)

∂o2

∣∣∣∣∣
o=x⊤

ijt
a t|d




= lijt(a t|d,γ) +
1

2
x⊤

ijtV t|dxijt

∂2 l̃it
(
z⊤

ijtγ + o
)

∂o2

∣∣∣∣∣
o=x⊤

ijt
a t|d

This is not implemented in the current version of dynamichazard.

19

1st interval 2nd interval

0 1

0 1 2 3

0 1

0 1 2 3 4

0 1 2

0 1

0 1 2 3
a

b

c

d

e

f

g

Figure 1: Illustration of going from event times to binary variables. Each horizontal line represents an
individual. A cross indicates that new covariates are observed while a filled circle indicates that the individual
have died. Open circles indicates that the individual is right censored. Vertical dashed lines are time interval
borders.

Which method to use

Neither the method that use the recursive least squares like method in the E-step, nor the zero order
Taylor expansion in the M-step have performed consistently better on the data sets seen so far. Hence,
both are valid alternatives at this point. Fixed terms can be estimated by wrapping the covariates in the
formula of ddhazard in the ddFixed function. As an example, ddhazard(Surv(tstart, tstop, y) ~ x1

+ ddFixed(x2), ...) will fit a model where x1 is time-varying and x2 is not.

Logistic model

The logistic model uses the inverse logit function as the inverse link function h. That is h(η) = exp(η)/(1 +
exp(η)). The logistic model is fitted by setting model = "logit" in the call to ddhazard. The following
paragraphs will cover the “loss” of information due to using time intervals instead of event times which
motivates the continuous time model.

Event times to binary variables

This section will illustrate how we go from event time to binary variables for the logistic model and how
this can lead to “loss” of information. It is elementary but included to stress this point and motivate the
continuous time model. We will use figure 1 as the illustration. Each horizontal line represent an individual.
A cross represents when the covariate values change for the individual and a filled circle represents the death
of an individual. Lines that ends with an open circle are right censored.

We will return to the vertical lines shortly. First, we notice that the example is where we assume that the
covariates are step functions. An example hereof is a medical trial where patients get tests taken at different
point in time (when they have a time at their doctor, visit the hospital or similar). As an example, ideally we
would like to model that individual one has a blood pressure of x at time 0, re-visits at time 1.5 and has a

20

blood pressure y and dies at time 2.5 whereas individual 2 has a blood pressure if z at time zero, never visits
the doctor again and we know that he have not died by time 2.25 (he is right censored).

However, we do not model event times in the logistic model. Instead, we model binary outcomes in each time
intervals. The vertical dashed lines in the figure represents the time interval borders. The first vertical line
from the left is where we start our estimation, the second vertical line is where the first time interval ends
and the second time intervals starts and the third vertical line is where the time interval ends. Thus, we only
have two time intervals in this example.

We can now cover how the individuals (horizontal lines) are used in the estimation:

a. is a control in both time intervals. We use the covariates from 0 in the first time interval and the
covariates from 1 in the second time interval.

b. is not included in any of the time intervals. We do not know the covariates values at the start of the
second time interval so we cannot include him.

c. is a control in the first time interval with the covariates from 0. He counts as a death in the second
time interval with the covariates from 1.

d. acts like a.
e. is a death in the first time interval with covariates from 0.
f. is a control in the first time interval with the covariates from 0. He is a death in the second time

interval with the covariates from 1.
g. is not included in any time intervals. We do not know if he survived the entire period of the first time

interval and thus we cannot include him.

The example illustrates that:

1. We loose information about covariates that are updated within time intervals. For instance, a, c, d and
f all use the covariates from 0 for the entire period of the first time interval despite that the covariates
change at 1. Moreover, we never use the information at 2 from a, d and f.

2. We loose information when we have right censoring. For instance, g is not included at all since we only
know that he survives parts of the first time interval.

3. We loose information for observation that only occurs within time intervals as is the case for b.

The above motivates the continuous time model that will be covered in the next sections where we go from
modelling binary outcomes to event times.

Continuous time model

The following section introduce the continuous time model. We start by describing the assumption of the
continuous time model. Then we turn to different estimation methods.

Assumptions

We make the following assumption in the continuous time model:

1. Coefficients (that is state variables α1, . . . ,αd) change at the end of time intervals.
2. The individuals covariates change at discrete times.
3. We have piecewise constant instantaneous hazards given by exp(x⊤

ijαt) given an individual’s current
co-covariate vector xij and state variable αt (assuming that individual i’s j’th covariate is within time
interval t).

The instantaneous hazard change when either the individuals covariates change or the coefficients change
when we change time interval. Thus, each individual’s stop time is piecewise constant exponential distributed

21

event time given the state vectors. The log likelihood up to a normalization constant is:

L (α0, . . . ,αd) =− 1

2
(α0 − a0)

⊤
Q−1

0 (α0 − a0)

− 1

2

d∑

t=1

(αt − Fαt−1)
⊤

Q−1 (αt − Fαt−1)

− 1

2
log |Q0| − log

d

2
|Q|

+

d∑

t=1

∑

(i,j)∈Rt

lijt(αt)

lijt(αt) =yijtx
⊤
ijαt − exp

(
x⊤

ijαt

)
(min{t, tij} −max{t− 1, ti,j−1})

where the lijt terms come from the log likelihood:

log (P (ti|α0, . . . ,αd)) = xi(ti)
⊤α(ti)−

∫ ti

0

exp
(
xi(u)⊤α(u)

)
du

which simplifies into the terms of lijts when both the covariates xi(t) and state space parameters α(t) are
piecewise constant. Further, Rt is the continuous risk set given by:

Rt = {(i, j) ∈ Z+ × Z : ti,j−1 < t ∧ tij > t− 1}

In words, the condition is that the j’th observation of individual i is in the risk set if the observations 1)
starts before the intervals ends and 2) ends after the interval starts. We change the risk sets Rt and the
likelihoods when we use the continuous time model to:

lijt(αt) = yijt log h(x⊤
ijtαt) + (1− yijt) log

(
1− h(x⊤

ijαt)
)

and Rt in all the previous part of this vignette. The EKF and UKF uses Poisson counts with a offset equal
to the at risk length of the covariate vector and coefficients pair for the continuous time model. The SMA
and GMA works directly with log likelihood as shown above.

Diagnostics

This section will cover diagnostics tools. These includes:

• Residuals from the observations.
• Hat values.
• Residuals from the state vector.

Residuals from the observations

For the binary outcomes in the logistic model, one idea is to look at the Pearson residuals which we denote
rP

ijt which is the i’th individual’s Pearson residual with covariate vector j in interval t. That is,

ŷijt = exp
(
x⊤

ija t|d)
)
/
(
1 + exp

(
x⊤

ija t|d)
))

rP
ijt =

yijt − ŷijt

Hfft(a t|d)−1
=

yijt − ŷijt√
ŷijt(1− ŷijt)

Then we could:

22

• Plot residuals against time and highlight the individuals with at least one “high” residual.
• Accumulate residuals for each individual i and plot against t. Any individuals with large or small values

may worth looking at.
• Stratify a covariate values into factors and plot accumulated residuals versus time. Any structural

deviations may show a missing covariate or incorrect transformation of the covariate on the linear
predictor scale.

• Accumulate residuals across intervals t and plot these.

You can get the Pearson residuals by calling residuals with a ddhazard fit and with argument type =

"pearson".

Hat values

Finding the influence matrix (also known as the hat matrix) does not seem to be possible in a computationally
efficient way. Thus, we will look at an approximation. We will focus on the logistic model. In the filters in
the E-step, each correction step in itself can be viewed as an logistic regression with an L2 penalty. Say we
at time t in the filter in the correction step with estimates a t|t−1 and V t|t−1. Then the penalty could be
interpreted as a prior N(a t|t−1,V t|t−1). With this view, regular hat values would be computed by:

Ct(α t|t−1)1/2Xt

(
X⊤

t Ct(α t|t−1)−1Xt + V−1
t|t−1

)−1

X⊤
t Ct(α t|t−1)1/2

where Xt is the design matrix in interval t and Ct(α) is the working weights as in glm. The above could
motivate the following matrix as the “hat-like” matrix in each interval:

C̃t(α t|d)1/2Xt

(
X⊤

t C̃t(α t|d)−1Xt + V−1
t|d

)−1

X⊤
t C̃t(α t|d)1/2

where we have used the final smoothed estimators. Plotting cumulative values versus time may show influential
observations. You can get these estimates by calling hatvalues with a ddhazard object as the argument.

Residuals from the state vector

We may be interested in looking at the predicted state error. The predicted state errors are given by:

η̂t = R⊤
(
a t|d − Fa t−1|d

)
∼ N (0,Var (ηt|Yd))

This will require that we find the smoothed covariance matrix Var (ηt|Yd) = R⊤Var (αt − Fαt−1|Yd) R

in order to standardize the predicted errors. We will explain how this can be estimated in the following
paragraphs when the EKF have been used. Standard results yields:

Var (αt − Fαt−1|Yd) =Var (αt|Yd) + FVar (αt−1|Yd) F⊤

− FCov (αt,αt−1|Yd)− Cov (αt,αt−1|Yd)
⊤

F⊤

Thus, we need smoothed correlation matrices Cov (αt,αt−1|Yd). We can estimate these recursively by first
setting (see Shumway & Stoffer (2006) for details):

Cov (αd,αd−1|Yd) =
(
I−Kdżd(a d|d)

)
FV d−1|d−1, żd(a d|d) =

∂zd(α)

∂α

∣∣∣∣
α=a d|d

where Kd is the Kalman gain given by:

23

Kd = FV d|d−1żd(a d|d−1)⊤C−1, C = Var (Yd|yd−1) = żd(a d|d−1)⊤V d|d−1żd(a d|d−1) + Hd(a d|d−1)

Next, for t = d, d− 1, . . . , 2 we recursively compute:

Cov (αt−1,αt−2|Yd)

= V t−1|t−1B⊤
t−1 + Bt

(
Cov (αt,αt−1|Yd)−TV t−1|t−1

)
B⊤

t−1

Though, C will be a large square matrix when we have a lot of observation and possibly singular. However,
we can apply the Woodbury matrix identity to get:

C = Hd(a d|d−1)−1 −XdV d|d−1

(
I + Ud(a d|d−1)V d|d−1

)−1

X⊤
d

where Xd is the design matrix in the final interval. This is easy to compute when Hd is a diagonal matrix
and the dimension of the state equation is low. You can get the standardized predicted state errors by calling
residuals with a ddhazard fit and type = "std_space_error" if you have used the EKF.

Appendix

Notation

General notation

Subscripts ·i Indices for individuals or indices of for state equation

Subscripts ·j and ·f Indices to differ between quantities

Subscripts ·t and ·s Time period indices

superscript ·(k) k’th iteration estimate of a given quantity in an algorithm which depends on
the given context

d Number of intervals we observe

αt State vector at interval t

γ Fixed (time in-variant) coefficients

m is the number of time-varying coefficients

q = dim(α) Dimension of state vector

nt = |Rt| Number of elements of the risk set at time t

24

xij The i’th individuals j’th covariate vector which is valid in period (ti,j−1, tij].
This will be augmented by zeros if we use the second order random walk

Xt Design matrix in interval t

Ti Event time or censoring time for individual i

Rt Risk sets in interval t for the discrete model

Rt Risk set in interval t for the continuous model

yijt Indicator for whether individual i has an event with the j’th covariate vector in
interval t

yt Outcomes in interval t. Whether they are binary or not depends on the context

zt(α) Mean function in state equation at time t given state vector α. It implicitly
depends on the covariate matrices and risk sets

hit(α) The indices of of i’th index of zt(α). Dropping the subscript implies that the
function that depends on a scalar (i.e. a linear predictor)

Ht(α) Covariance matrix of observational equation in interval t given the state vector
α. It implicitly depends on the covariate matrices and risk sets

F Transition matrix in the state equation

R Matrix mapping innovations in the state equation

Q,Q0 Covariance matrices in state equation

ηt, ǫt Innovation/error terms of respectively the state and observational equation in
interval t

ψt Length of interval t

Et, et Diagonal matrix with weights in interval t. The diagonal entries are et. They im-
plicitly depends on the covariate matrices and risk sets

ξ Parameter to reduce the effect of outliers/extreme observations

ζ ζ0 Learning rate and factor to decrease the learning rate respectively

25

a t|s Estimated state vector αt using information up to time s

V t|s Estimated state covariance matrix of αt using information up to time s

Bt Intermediate matrix used in EM algorithm

L (α0, . . . ,αd) Log-likelihood up to a normalization constant given state vectors α0, . . . ,αd.
It implicitly depends on the covariate matrices and risk sets

lijt(αt) The likelihood term from i’th individual with the j’th covariate vector in interval
t given state vector α. It implicitly depends on the covariate matrices and risk
sets

δ Small constants which values differs between contexts

ǫ Convergence threshold which values differs between contexts

v, b, g, v, b, ỹ, c,
A,C,K,G,L

Scalars, vectors and matrices which depend on the context

Z+ The natural numbers 1, 2, . . .

δijs Maximal length individual i’s observation with the j’th covariate can take in
interval s

∆ijs Right clipped outcome in the continuous time model in interval s for individual
i with the j’th covariate vector

Λijs Right clipped outcome with jump in the continuous time model in interval s
for individual i with the j’th covariate vector

Notation in EKF

ut(α) Score vector in correction step

Ut(α) Information matrix in correction step

Notation in UKF

âj j’th sigma point

26

W
[f]
j j’th sigma weight of type f

α, β, κ, λ Hyperparameters

∆K Deviation of matrix K with K defined in the context

Pat,bt
The correlation between a vector at and a vector bt using the information up
to time t

References

Fahrmeir, L. (1992). Posterior mode estimation by extended kalman filtering for multivariate dynamic
generalized linear models. Journal of the American Statistical Association, 87 (418), 501–509.

Fahrmeir, L. (1994). Dynamic modelling and penalized likelihood estimation for discrete time survival data.
Biometrika, 81 (2), 317–330.

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33 (1), 1–22. https://doi.org/10.18637/jss.v033.i01

Golub, G. H., & Van Loan, C. F. (2012). Matrix computations (Vol. 4). JHU Press.

Gustafsson, F., & Hendeby, G. (2012). Some relations between extended and unscented kalman filters. IEEE
Transactions on Signal Processing, 60 (2), 545–555.

Harvey, A. C., & Phillips, G. D. (1979). Maximum likelihood estimation of regression models with
autoregressive-moving average disturbances. Biometrika, 66 (1), 49–58.

Julier, S. J., & Uhlmann, J. K. (1997). New extension of the kalman filter to nonlinear systems. In
AeroSense’97 (pp. 182–193). International Society for Optics; Photonics.

Julier, S. J., & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Proceedings of the
IEEE, 92 (3), 401–422.

Menegaz, H. M. T. (2016). Unscented kalman filtering on euclidean and riemannian manifolds.

Merwe, R. V. der, & Wan, E. A. (2001). The square-root unscented kalman filter for state and parameter-
estimation. In 2001 ieee international conference on acoustics, speech, and signal processing. proceedings (cat.
no.01CH37221) (Vol. 6, pp. 3461–3464 vol.6). https://doi.org/10.1109/ICASSP.2001.940586

Miller, A. J. (1992). Algorithm as 274: Least squares routines to supplement those of gentleman. Journal of
the Royal Statistical Society. Series C (Applied Statistics), 41 (2), 458–478.

Seeger, M. (2004). Low rank updates for the cholesky decomposition.

Shumway, R. H., & Stoffer, D. S. (2006). Time series analysis and its applications: With r examples. Springer
Texts in Statistics.

Wan, E. A., & Van Der Merwe, R. (2000). The unscented kalman filter for nonlinear estimation. In Adaptive
systems for signal processing, communications, and control symposium 2000. as-spcc. the ieee 2000 (pp.
153–158). Ieee.

27

https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1109/ICASSP.2001.940586

	Introduction
	Why and when to use the ddhazard
	Guide to vignettes
	Dynamic binary regression

	EM algorithm
	E-step
	Kalman Filter

	M-step

	Extended Kalman Filter
	Divergence

	Unscented Kalman Filter
	The usual UKF formulation
	Re-writting
	The Square-root Unscented Kalman filter
	Extreme values
	Selecting hyperparameters
	Selecting starting values

	Sequential approximation of the posterior mode (SMA)
	Implementation

	Global approximation of the posterior mode (GMA)
	Alternative implementation

	Weights
	EKF
	UKF
	SMA
	GMA

	Fixed effects
	Estimation in the E-step
	Estimation in the M-step
	Alternative M-step method

	Which method to use

	Logistic model
	Event times to binary variables

	Continuous time model
	Assumptions

	Diagnostics
	Residuals from the observations
	Hat values
	Residuals from the state vector

	Appendix
	Notation
	General notation
	Notation in EKF
	Notation in UKF

	References

