OVERVIEW OF DURMOD

SIMEN GAURE

ABSTRACT. This is a walkthrough of an estimation of a generated dataset
with the durmod package. Also, various tunable parameters and details are
provided.

1. A DATASET

The durmod package fits a mixed proportional hazard model with competing
risks to duration data. The model is the one from [1].

Let’s have a look at a generated dataset which simulates an unemployment reg-
ister with two competing risks.

library(durmod)

data(durdata)

head(durdata,15)

id x1 x2 alpha d duration state
1: 1 -0.03751376 -0.29495984 0 job 5.98661231 unemp
2: 2 -1.57460441 -0.16972008 0 job 30.41322751 unemp
3: 3 -0.48596752 0.29442951 0 job 1.97320112 unemp
4: 4 0.46518623 0.74250053 0 program 0.06019839 unemp
5: 4 0.46518623 0.74250053 1 job 12.98877267 onprogram
6: 5 -0.90409807 -1.70517209 0 job 2.98180289 unemp
7: 6 -0.27743280 -0.15416450 0 job 8.31021131 unemp
8: 7 0.38643441 0.26033651 0 program 1.12433425 unemp
9: T 0.38643441 0.26033651 1 job 0.27791520 onprogram
10: 8 -0.06040412 1.01461940 0 job 11.35695783 unemp
11: 9 -0.68617976 -0.37062699 0 program 5.58821616 unemp
12: 9 -1.20316486 0.58482910 1 none 4.86126097 onprogram
13: 9 -1.59044730 1.23948887 1 none 69.55052288 onprogram
14: 10 -1.90613679 0.03444083 0 job 1.84738970 unemp
15: 11 1.80375975 0.13039843 0 job 0.49224085 unemp

There is an id which identifies an individual. The individuals have been through
a process. At the outset they are all unemployed, this is recorded by the factor
state. As unemployed they face two hazards, i.e. probabilites per time unit. Either
they can get a job, or they can enter a labour market programme, like a subsidized
wage job or similar.

These transitions are recorded in the d factor. In our simulation, individuals who
transition to "job", exit the dataset. If a transition to labour market programme
occurs, the state variable changes to "onprogram", and the dummy alpha changes

Date: June 26, 2019.

2 SIMEN GAURE

to 1. It is also possible to do a "none" transition, this is typically necessary if a
covariate changes, since the model has piecewise constant explanatory covariates.
Also, when on a programme, one of the hazards disappear, it is no longer possible
to make a transition to a programme, we’re already on it.

Each row of the dataset has a duration, this is the time until the transition
marked in d occurs.

In our dataset, we limit the total duration for each individudal to 80. That
means that some individuals do not exit the dataset by doing a transition, but with
a d=="none".

2. THE MIXED PROPORTIONAL HAZARD COMPETING RISK MODEL

There are two covariates, x1 and x2. These are assumed to influence the two
hazards. We also assume the alpha enters the hazard.
We model the baseline hazard for transition to job as,

(1) W (1) = exp(a1B] + w28 + aj + 1)
The hazard for transition to programme is,
(2) hP(uP) = exp(z1] + 2285 + pi”)

Here we have included an “intercept”, a p, it could equally well have been written
as a multiplicative factor exp(u) instead. This exp(u)-term is the “proportional
hazard”.

The likelihood for a single observation k consists of two parts. Let H(u) =
h7(u?) + hP(uP) be the sum of the hazards, where y is the vector (u?, uP).

For an observation k there is a survival probability/density up until the transi-
tion:

(3) sk(p) = exp(—trH (),

where tj is the duration of the period.

If there is a transition, s(p) is multiplied by the transition hazard, h%(u), where
d is either p or j. If there is no transition, h%(p) is taken to be 1. Taken together,
all the observations for an individual i yields an individual likelihood. We call it

Gi(p).

(4) () = T h™ (w)se (),

keK;

where K; is the set of observations for individual 7.

However, there is also a mixture part, designed to account for unobserved indi-
vidual heterogeneity. The p-vector is stochastic with a discrete distribution. That
is, there is an n, a set of probabilites p;, and vectors u;, for j = 1..n. Of course,
we have 327 p; = 1.

The mixture likelihood for an individual i is L; = >, p;li(p;)-

The log-likelihood for the dataset is thus, L =, log(L;).

The L must be maximized with respect to the five 3s, the n, the probabilites p;,
and the vectors p; for j = 1..n.

OVERVIEW OF DURMOD 3

3. ESTIMATION

The estimation proceeds as follows. We start with n = 1, estimate the s and
the two ps. Then we increase n to 2, let po be a small probability, and find a vector
w2 which increases the likelihood. This is used as starting point for a new likelihood
maximization. Then n is increased to 3, and we proceed in this fashion, adding
masspoints to the distribution until we are no longer able to increase the likelihood.

In durmod we use the mphcrm function for this purpose. Here is an example.
First we create a “riskset”, a specification of which hazards are experienced in
various states:

risksets <- list(unemp=c('job','program'), onprogram='job')

Note that the names of the list risksets are the same as the levels in the factor
state. And that the entries in the list are levels of the factor d, i.e. possible
transitions.

Then we create a set of control parameters. Since this vignette is to be created
by the busy CRAN repository, we limit ourselves to 6 iterations, i.e. no more than
6 masspoints in the distribution. For the same reason we also limit to 2 cpus, or
threads, in the computation. The default is to use all the available cpus/cores.

ctrl <- mphcrm.control(iters=6, threads=2)

Then we are ready to estimate. There are a couple of special terms in the formula
we use:

set.seed(42)
opt <- mphcrm(d ~ x1 + x2 +
C(job, alpha) + ID(id) + D(duration) + S(state),
data=durdata, risksets=risksets, control=ctrl)

mphcrm 11:59:37 i:1 pts:1 L:-24065.4040 g:0.0007 mp:1 rcond:0.0038 e:-0.0000 t:0.3s

mphcrm 11:59:38 i:2 pts:2 L:-23106.8269 g:3.37e-05 mp:0.29108 rcond:0.009 e:0.6031 t:0.6s
mphcrm 11:59:39 i:3 pts:3 L:-22989.6996 g:2.12e-05 mp:0.056365 rcond:0.0074 e:0.8709 t:1.9
mphcrm 11:59:40 i:4 pts:4 L:-22965.1207 g:0.000331 mp:0.034185 rcond:0.0015 e:1.0192 t:1.0
mphcrm 11:59:42 i:5 pts:5 L:-22950.4433 g:3.9e-05 mp:0.025213 rcond:0.0011 e:1.1776 t:1.6s
mphcrm 11:59:45 i:6 pts:6 L:-22942.5330 g:5.16e-05 mp:0.020932 rcond:0.00061 e:1.5231 t:3.

The left hand side of the formula, d, is the outcome, the transition that is taken.
The C(job, alpha) term is a list of conditional covariates, the alpha should only
explain the "job" transition. The ID(id) specifies that the covariate id identi-
fies individuals. The D(duration) specifies that the covariate duration contains
the durations of the observations. Finally, the S(state) term specifies that the
covariate state is a factor which indexes into the risksets argument.

mphcrm writes diagnostic output, one line per iteration. It contains potentially
useful information. There is a time stamp, the iteration number, the number of
masspoints, the resulting log likelihood, the 2-norm of the gradient, the smallest
probability in the masspoint distribution, the reciprocal condition number of the
Fisher matrix, the entropy of the masspoint distribution, and the time used in the
iteration.

mphcrm returns a list with one entry for each iteration, it has a special print
method which sums up the estimation in reverse order:

4 SIMEN GAURE

print (opt)

iter6: estimate with 6 points, log-likelihood: -22942.5330
#i#

Hit job.x1 job.x2 job.alpha program.xl program.x2

0.8872396 -0.8954421 0.1546196 0.8964912 0.4371326

#i#

Proportional hazard distribution

prob job program
point 1 0.32694721 0.09257757 0.10895815
point 2 0.25533364 0.02815197 0.02132034
point 3 0.22461763 0.13030036 0.01780745
point 4 0.13502572 0.42282266 0.19405495
point 5 0.03714412 0.00785169 0.07728948
point 6 0.02093168 0.00336387 0.00165849
#i#

iterb5: estimate with 5 points, log-likelihood: -22950.4433
iter4: estimate with 4 points, log-likelihood: -22965.1207
iter3: estimate with 3 points, log-likelihood: -22989.6996
iter2: estimate with 2 points, log-likelihood: -23106.8269
iterl: estimate with 1 points, log-likelihood: -24065.4040
nullmodel: estimate with 1 points, log-likelihood: -27087.0860

Unless something has gone wrong, you will normally be interested in the first
entry, the one with the largest likelihood. We can look at a summary:

best <- opt[[1]]

summary (best)

$loglik

[1] -22942.53

##

$coefs

value se t Pr(>Itl)
job.x1 0.8872396 0.02038280 43.528828 0.000000e+00
job.x2 -0.8954421 0.02404830 -37.235148 3.562522e-281
job.alpha 0.1546196 0.06653970 2.323719 2.016409e-02
program.xl 0.8964912 0.02868375 31.254321 4.834826e-203
program.x2 0.4371326 0.03219168 13.579056 1.449701e-41
##

$moments

mean variance sd

job 0.12417787 0.015540243 0.12466051

program 0.07417521 0.003873459 0.06223712

It has three entries, "loglik", which is simply the log likelihood, "coefs" which
is the values and standard errors of the estimated coefficients. And "moments",
which is the first and second moments of the proportional hazard distribution.

If we had limited to 5 masspoints, the alpha estimate would be negative, i.e. the
labour market programme has a negative effect on the hazard for getting a job. The

OVERVIEW OF DURMOD 5

reader may run the example with a maximum of 15 iterations to obtain a positive
effect.
We can see how the alpha changes with more points:

t (sapply(opt, function(o) summary(o)$coefs["job.alpha",]))

value se t Pr(>|tl)
iter6 0.15461959 0.06653970 2.3237194 0.0201640929
iterb -0.02101247 0.04948837 -0.4245940 0.6711434319
iterd -0.02428244 0.04688692 -0.5178936 0.6045460542
iter3 -0.13523891 0.04077778 -3.3164856 0.0009154114
iter2 -0.11946379 0.03658254 -3.2655963 0.0010966822
iteril -0.07797898 0.02361968 -3.3014414 0.0009658768
nullmodel 0.00000000 NA NA NA

4. MORE OPTIONS

4.1. Interval timing. The example above had exactly recorded time. For some
applications we do have that, while in other applications we only have a time interval
when the transition is known to have taken place. The data above is actually a
prime example, perhaps we only have labour data on a monthly basis. When a
transition takes place, it is only registered at the end of the month, and there is
no record of the day. In this case, the duration would be 1 for every observation,
and one should use the timing="interval" argument in mphcrm. The observation
likelihood is replaced by,

(5) A (1) exp(—ti, H (1)) 1= eXp(_t’“H(“».

H(p)

It is the fractional part which distinguishes it from the exact model.

If the hazards are small and we use unit intervals, the difference between the
interval and exact model is quite small, so one may opt for using the exact model
instead.

4.2. No timing. In some applications there isn’t any time. A transition occurs,
or not. In this case the specification timing="none" can be used. It will use a logit
model for the transition probabilities.

4.3. Factors. mphcrm treats factors specially. There is, I think, nothing special to
see, but internally mphcrm does not create a large model matrix filled with dummy
variables. This means that factors with many levels is quite fast to estimate.

5. CONTROL PARAMETERS

There are many control parameters. Here are some you may want to tinker with.

e threads. An integer. The number of parallel threads used by mphcrm.

The default is taken from getOption("durmod.threads"), which is ini-

tialized from the environment variable DURMOD_THREADS, OMP_NUM_THREADS,
OMP_THREAD_LIMIT, NUMBER_OF PROCESSORS, or else from parallel: :detectCores().

It is not always true that the estimation runs twice as fast on twice

as many cpus. This depends on the cpu- and memory architecture of your

computer, as well as on the implementation of OpenMP in the compiler used

to compile the C++ parts of durmod. Besides, not all parts of durmod run

6 SIMEN GAURE

in parallel, so by Amdahl’s law you may not expect linear speedup when
the number of cpus tends to infinity.

Also, if you intend to use your computer for something else while mphcrm
runs, you should not give it all your cpus, but save one or two for your
other work. If one of the 16 threads in mphcrm shares a cpu with your mail
program trying to sort your inbox, the speed may be halved.

e iters. An integer. The number of iterations to perform. The estimation
may stop earlier, if neither the log likelihood mor the entropy improves.
The default is 15.

e 11l.improve. A numeric. The amount the log-likelihood must increase
with to be considered an improvement. The default is 0.001.

e c.improve A numeric. The amount the entropy of the hazard distribution
must increase with to be considered an improvement. The default is 0.001.

e callback. A function. If the one-line diagnostic from mphcrm is insuffi-
cient, it is possible to write your own. It will replace the default callback
(which you can call from your function). In this way you can e.g. get diag-
nostics on particular coefficients, save intermediate results to file, or other
partakings. See mphcrm.callback.

e jobname. A character string. The initial portion of the one-line diagnostic.
Useful if you e.g. use parallel::mclapply to run several estimations in
parallel. They can have individual names so you can see the progress. The
default is "mphcrm".

e method. A character string. Either "BFGS" (the default), or "L-BFGS-B".
The latter saves some memory, if that is a problem with estimations with
a very large number of coefficients.

e trap.interrupt. A logical. If you decide to interrupt an interactive esti-
mation before it has terminated, either because you don’t want to wait, or
because it seems to have run astray, the default behaviour for mphcrm is to
catch the interrupt, and return gracefully with the result of the estimation
so far. This behaviour can be switched off with trap.interrupt=FALSE.

e cluster. Cluster specification from package parallel or snow. In addi-
tion to utilizing all the cores/cpus on a computer, mphcrm may also spread
across several computers. It supports running on a cluster from package
parallel or snow. The dataset will be split among the cluster nodes, with
approximately equally many observations on each. The nodes will then do
their share of the likelihood computations. If using a cluster, the threads
parameter will be the number of cpus used on each cluster node. In gen-
eral, when using parallelization, one should make sure that the cpus are
not overbooked and that the nodes you are running on are approximately
equally fast.

REFERENCES

1. Simen Gaure, Knut Rged, and Tao Zhang, Time and causality: A monte carlo assessment of
the timing-of-events approach, Journal of Econometrics 141 (2007), no. 2, 1159 — 1195.

RAGNAR FRISCH CENTRE FOR ECONOMIC RESEARCH, OSLO, NORWAY

