Visual R reference card (Draft)

11 juin 2011

Sylvain Loiseau <sylvain.loiseau@unicaen.fr>
Laboratoire Modyco (CNRS/Université Paris Ouest Nanterre La Défense)
Université de Caen—Basse Normandie

Table des matiéres

1 Graphical conventions

2 vector
2.1 Anatomy of a vector L. e
2.2 Creating a vector L e
2.3 Extraction L e
2.4 0Operator. e
2.5 Vectorization e e e e
2.6 Recycling e
2.7 Some numeric functions e
2.8 Some string functions Lo
2.9 Sorting
2.10 Type conversion o it e e e e e e e e e e e
2.11 Index . . . o e e e e

3 Operator precedence

4 Matrix
4.1 Creation e
4.2 Extraction with a matrix e e
4.3 Properties e e
4.4 Summing a matrix oL e
4.5 Changing
5 list
5.1 Creation, anatomy L e e e
5.2 Basic functions L e e
5.3 Extraction L e
5.4 List and vector e e e e
5.5 List for expressing complex data structure
6 Factor

7 Data Frame

7.1 Converting o

7.2 Extraction L e e

7.3 Subseting e

T4 Merging
8 Functions for contingency table

8.1 Counting, contingency table L L e

8.2 Functions useful for contingency table o L

W w NN (M)

e~

~N O O Ut Ot Ut

oo

11
11
12
12
13
13

13

14
15
16
18
18

9 Regexp 19

9.1 Split strings : strplit() 19
9.2 Extract sub strings : substr() 20
9.3 Searching elements of a character vector with regexp : grep() 20
9.4 Substitution :sub(). L 20
9.5 Searching substring in elements of character vector : regular expression 20

1 Graphical conventions

In this document, evaluations of R expressions are represented graphically. For instance, the expression "c¢(7, 5)
+ 3", which create a vector and add 3 to its elements, is represented as follow :

c ([7].[5]) + 8]
[7]5] + [3]
1018

The first line represent the expression you typed in, the last line give the object eventually created, and each
intermediary line is a step in the evaluation of the expression.

2 vector

2.1 Anatomy of a vector

All elements of a vector have a common mode, one of character, logical, and numeric.

"["gli"["los"] | TRUE |FALSE | TRUE | [10]0.322]

["les

All elements of a vector have an index. They may have a name.

S %
1 2 3
"les"|"gli"|"los"

All vectors have two important properties : their mode and their length.

mode (|"les"]|"gli"["los"|) length (["les"|"gli"|"los"])

mode () length ()

mode (|[TRUE|FALSE|TRUE|) length ([TRUE|FALSE|TRUE])

"logical”

Functions are precisly defined in terms of mode, number and length of vectors they may take as argument, and
mode and length of vector they create.

1. length() take one vector of any mode and length and return a vector of numeric vector of length 1.

2. mode() take one vector of any mode and length and return a character vector of length 1.

2.2 Creating a vector

c ([1], . [3]) c (|[TRUE|, [FALSE] , [TRUE])

| TRUE |FALSE | TRUE|

¢ ([, o], o))

["yes"["b"|"no"|

5] : [8] seq ([1], [4])
5|6[7]8] 1]2[3]4)

rep (' seq ([1],[4]) . [2])
rep (['yes'] . [4]) rep ([1]2[3]4] . [2])

|"yes"|"yes"|"yes"|"yes"| 11]2]3]4[1[2]3]4]

The function c¢() take any number of vectors of any length and any mode, but all vectors must have the same
mode (see below, "Conversion"). It returns a vector of the same mode as the arguments and whose length is the
sum of the length of its arguments.

2.3 Extraction

A vector can be created by extracting some elements of a vector.
Elements to be extracted can be addressed using their index.

(@1 FesTarTios] [73]
es'Tos'|

Index are 1-based. If an index is greater than the number of element in the vector, you get "NA". If the vector
has names, their are preserved.

10[7]2] [[1[3]]
|ITRUE|FALSE|TRUE]| [[1]4]] ’f ‘2’

10[2

You can also extract with character or logical vector inside the square brackets of the extraction operator.
Elements of a character vector are interpreted as the names of the elements to be extracted (elements must have
names!).

> QO
123

10[7]2] [["b"]]

2

Logical vectors must have the same length as the vector to be extracted. Elements are extracted if there is a
"TRUE" value at the same position in the logical vector. (If the logical vector is shorter, it is recycled : right (see
below for recycling))

110]7[2| [[TRUE|FALSE|TRUE]] I"a"["b"["c"|"d"| [|TRUE|FALSE]]

"a""c"!
When extracting, nothing prevent you from reordering elements or extracting several times the same element :

FTTeTd (e (@ 1. @, @ 1)
FaToTea] [(Taal2]1)]
[d b [ar]

2.4 Operator

Some numeric operators.

[5] + [6] 5] -] [s]~[e]

/ [6] < [g] >= 6]
[0.833333333333333]

Some logical operators.

[5] == [6] 5] == [5]

ITRUE| == |FALSE| ["oui"] == ["non"

2.5 Vectorization

Operators — as well as many functions — may operate on vector of any length : the operation is performed on
pair of elements of equal index.

[4]3]8] + [32]3]2] ==

36/6[10 |FALSE | TRUE |FALSE]

2.6 Recycling

In a context where vectorization is allowed, you may provide vectors of unequal length. The shorter is duplicated
until its length reach the length of the longer. This is called recycling a vector.

c ([, [2].[3]. [4]) +[1] (5] : [8] > [6]
[1]2][3]4] + [1] 5]6]7]8] > [6]

|FALSE|FALSE | TRUE|TRUE]|

There is no need to express a loop in order to add 1 to all elements of a vector.
Be careful :

. yes [jatsit] == ["ja"]"yes"]
|FALSE | TRUE| TRUE |FALSE]|

2.7 Some numeric functions

Some functions for numeric vectors.

sum () mean ()
[10] [2.5]

var () sd ()

|1.66666666666667 | [1.29099444873581 |

max ([2[1]3[4]) min ([2[1[3]4])
[4] [a]

range ()

cumsum () cumprod ()
2[3[6]10 2]2[6]24]

2.8 Some string functions

nchar() count the number of characters in all strings of a character vector.

nchar (["les"["i"|"los"]|)

Recycling and vectorization are useful with paste(), which concatenates characters string at same index in several
characters vectors :

paste (|"oui"| , ["non"]|) paste ([oui"] , ['non"] , sep= ["])

["oui non”] ["ouinon”]

paste (["oui"["non"| , ["si"["no"]|) paste (|"les"]"i"|"los"| , |"oui"])

|"oui si"["non no"| |"les oui"|"i oui"|"los oui"|

You can paste more than two vectors of characters :

4 4
1 2 3 1 2 3
paste (['("] , names (["les"["gli"["los"]) , ["] . ["les']"gli"["los"] , sep= ["])
R 74
1 2 3
paste (['(] , [Fr[it]es] ., [17] . [fles’T'gi"["los”] , sep= ["])

["(fr) les"|"(it) gli"|"(es) los"|

2.9 Sorting

Numeric and character vectors can be sorted. Names are preserved.

sort ([2]1]3]4]) sort (, decreasing = [TRUE])
1]2]3]4] 4[3]2]1]

4
1 2 3
sort (["les"|"gli"|"los"]|)

: 2
sort ([esTg]) 8 ¢

m IlleSII Ilg|i|||lllesll|lllosll
Flipping a vector :

rev ([2]1]3]4])
4]3[1]2]

2.10 Type conversion

¢() coerce its arguments to a common mode — all elements of a vector always have a common mode.
The character mode always wins. Logical always looses.

c ([1]:[3], [FALSE] , [TRUE]) ¢ ([ou] , [1] : [3] , [FALSE])

c ([1]2]3], |FALSE]| , [TRUE]) c (["oui"|, [1]2]3], |[FALSE])

1[2[3o[1] Four T2 "3 "FALSE"

Many functions silently convert their arguments to the requiered mode. For instance, the function nchar() give
the number of characters of the elements of a character vector. It makes sense only for characters string : numbers
don’t have a "number of characters" themselves, but inside a convention of representation as characters strings. If
the function nchar() receive a vector of another mode (numerical, logical), the vector is silently converted into a
characters vector using as.character() (left). The result is identical to explicitly converting into characters, using

as.character() (right).

nchar (as.character ())
nchar () nchar (["3"["102"["14"])
1]3]2] 1[3]2]

2.11 Index

Some useful functions give index rather than the actual values.
which ([TRUE|FALSE |FALSE|TRUE |FALSE|TRUE])

[1]4]6]

s Y &
1 2 3

order () order (["les"["gli"["los"])

which.min () which.max ()

This is particularly usefull in very common situations where two or more vectors are "aligned", or "synchronized".

Suppose two vectors : a character vector giving forms in a corpus (left), and a numeric vector giving the total
frequency for each form (right) :

[eTde’Tun "] [60]100]40]30]

Using max(), you may retrieve the maximum frequency from the second vector, but you can’t figure out which
form have this frequency. Using which.max(), you're still able to extract the corresponding value in the first vector :

["le"|"de"["un"["a"| [which.max ({60[100[40[30])]
FeTaeTurTar [2)

Again, suppose you want to sort the row of a matrix according to the value in a column. You cannot use sort,
since it give the actual values sorted, not the index of the row sorted. Order is commonly used for reordering data
structure :

4135 435
129 129
3[1[8] [order ([3[1[8][.[1]1) .1
435
1]2]9
3[1[8] [order ([4]1]3]) ,]
435
1[2]9
3[1[8] [[2[3]1] , 1
1]2]9
318
435

3 Operator precedence

Operators have precedence (see ?Syntax).
"seq" takes precedence over "+", "seq" takes precedence over logical operators...

7

: + : [8] > [6]
[1]2]3]4[5]6[7]8]9]10] + 56]7]8] > [6]

[3]4]5]6]7]8|9]10]11]12] |FALSE|FALSE | TRUE|TRUE]|

The order in which the operators are written in the code does not matter!
[6] < [5]:
6] < [5]6]7]8]

|FALSE|FALSE|TRUE|TRUE]|

4 Matrix

4.1 Creation

Matrix are created with the matrix() function. It takes three main arguments : a vector (any mode and any
length) gives the content, two vectors (numeric and length 1) give the numbers of rows and columns. If only one
dimension is given, the second one is deduced from the length of the vector. If both dimensions are given and the
vector length do not match the number of cells, the vector is recycled to fill the matrix. The matrix is filled by
column ; this behavior may be changed with the option byrow.

matrix(:@,nrowz) matrix(:@,)

matrix ([1[2[3]4]5]6] , nrow= [3]) matrix ([1[2]3]4]5]6] , [3])
1]4 1[4
215 215
306 306

matrix (; @ : , byrow =)
matrix ([1]2]3]4[5]6] , [3] , byrow =) matrix ([1] : [6] , ncol= [3])

B matrix ([1[2[3]4][5]6] , ncol= [3])
3[4 1|3|5
5(6 21416

matrix (, nrow = , hcol =)

TRUE | TRUE | TRUE
TRUE | TRUE|TRUE

4.2 Extraction with a matrix

Matrices have two dimensions and you must provide extractors for each of them. You first extract the rows,
then the columns.

113[5
2lale| [[1] : [2] . [2] : [3] 1
113]5
13]5 2[al6] [[1]2] , [2]3]]

N

AW

o
(]
[eo]

3|5

6] 4]6

1[3[5 \iqié”
2[al6] [[2] , [2] : [3]] 7 3
1]3[5 A1[1][3]5
2[4l6] [[2] . [2]3]] B1[2[4]6] [[1] , [deux’]]
46 3]
SIRPY
068\50
123
A1[1][3]5
B1[2]/4|6] [[TRUE|FALSE] , |"deux"]]

If you leave blank the column slot, all columns are selected (left) ; if you leave blank the row slot, all rows are
selected (right).

1[3[5 1[3[5
2[al6] [[2] .] 2[al6] [. [2]]
2]4]6] 314

How does extraction in a matrix preserve names ? No name is preserved if you extract a single element ; longuest
dimension’s names are preserved if you extract a vector of more than one element, both dimensions are preserved
if you extract a sub-matrix :

NP

NN

S g

98 123

123 A1[1[3]5

$39 A1[1]3]5 B1[2[4]6] [[1]2] , [1]2]]

S B1[2]al6] [[1] . [1]2]] 3
123 &
A1[1]3]5 @r 12
B1[2[4l6] [[2] . [2]] 19 A1[1]3
[1]3] B1[2[4

4.3 Properties

o
[ERN
a1
|
w
ol

N
AW
(o2}

3
nrow ([2](4]6]) ncol () dm ((2|4

(@)
(@)
~—

123 123

A1|1]|3|5 Al1/1]|3|5
rownames (B1(2|4|6]|) colnames (B1|2|4|6])
|

A" ["B"] ["un"|"deux"|"trois"

1 1[3|5
length (|2) mode ([2[4]6])

(6]

A matrix is very similar to a vector : it has a mode and a length. It has also two dimensions and, then, it has
two vector of names and it takes two index vectors inside extraction operator. But you can often see a matrix as a
vector. For instance, if you use only one index vector inside the extraction operator, it extracts from the underlying,
column-filled vector :

1{3|5

2[4l6] [[3]]

a1

AW
o

4.4 Summing a matrix

1(3
sum (|2]4

a1

(o3}
~

1 1
rowSums (|2) colSums (|2

9]12]

a1
)]

3
4

W
»

4.5 Changing

1/3[5
1]3]5 2]4]6] +
as.vector (|2]4]6]) NRE
[1]2]3]4]5]6]| 5/7]9

10

INIRZ NI Z
NN INIEZ) 123 123
N N
O O A1[1[3[5] 1[1]3]5
123 123 roind (B1[2[4]6] , B1[2]4]6])
A1[1[3[5] RA1[1][3]5 S3o
cbind (B1[2]4]6] , B1[2[4]6]) G
SFo8 &9 123
N NN
SEL VGE A1[1]3]5
123456 B1[2[4]6
A1[1[3][5]1[3]5 A1[1[3]5
B1[2[4]6]2]4]6 B1[2[4]6
1[3[5
t ([2]4]6])
1[2
3|4
56
5 list

5.1 Creation, anatomy

Creating a list by enumerating its components.
A list of length 4 : contains 4 vectors, each of length 1 (left); a list of length 1 : contains 1 vector of length 2

(right).
list (¢ ([1].[2]))
ist ([1], (2], [3]. [4]) list ([1]2])

—————————————————

nfallels]

|
|
- - = - —l- - - L - - - -

List can contain objects of different mode (left) ; it can contain objects of different dimensions (right).

Iist(:,matrix(:,),)
list ([1] : [3] , marix ([1]2[3[4] . [2]) . [2])
1(3

list ([1] : [3] , [TRUE]) list ([12[3] , [2[4] . [2])

list ([1]2]3], [TRUE]) REEEEET —

| 3
'[4]2][3] [TRUE], '[1]2]3] 1 [2]4

A list can be recursive : a component may be a list.

11

list ([1],[2],[3],[4], tist ([]:[4]) ,[a]:[4])
nst(,,,E,lisu),:)

e U e o e - - - - -

& $ $
& S &S
9
1 2 3

|1|2|3| |TRUE| |"jOUI’"|

names (

length (' |1|2|3| |TRUE| |"jour"|
mode (' |1|2|3| |TRUE| |"Jour"|

5.3 Extraction

Extracting in a list. The next two figures show the difference beween [and [[operator on list : the first create a
sublist (it extracts elements, exactly as it extracts elements from a vector), while the second is completely different :
it give the content of one (and only one) element of a list.

ist ([1] : (3], [TRUE]) [[1]] |
Iist(|1|2|3| [TRUE]) [[1]) (2] (3], [TRUE]) 11 (2]

____________ list (|1|2|3| ITRUEI) 0[] 1]

[17213]!
"

You can use vector of any length within the single-square bracket, while you can address only one element within
the double-square-bracket operator, and then use only vector of length 1.

Since a list is a recursive data structure (may contain list), you can use several successive bracket operators in
order to go down to the element you’re interested in.

With the single-square-bracket operator you cannot walk down though the data structure.

12

2203 i
A P N AR AR D

———— - = =

E[I]

Be sure to understand the difference between "lengt(1[1])" and length(1[[1]])"

----------------- length (' [12[3]; ITRUEI Clour']s 1 [1

———— - = =

_"Ie_n_gth"(_-") engen (23]

length (

5.4 List and vector

as.list (;)

anlist (' [1]2[3]" | [TRUE]. |"Jour"||) aslist (1[2[3]4]

|"1"|"2"|"3"|"TRUE"|"jour"| [1]: 2] . .

.___L__L _____

5.5 List for expressing complex data structure

List are useful for expressing complex data structure.
- Grouping elements of a vector using a the level of a factors (see Factor below and the function split())
- Splitting strings (See strsplit() below).

6 Factor

A factor represent a nominal random variable. It looks like a character vector, and may be created using a
character vector (left). In this document, factors are represented without quotes around the values. The different
values in the factor (the different modality in the random variable) may be retrieved using levels() (right).

factor (|"bleu"|"rouge"|"bleu”|"vert"|"rouge"|) levels (|bleu|rouge|bleu|vert|rouge]|)

|bleu|rouge | bleu|vert|rouge]| ["bleu"["rouge”|"vert"|

A factor is usefull for grouping elements. Suppose two vectors, one giving forms, and the other giving part of
speech. You want to group the forms according to part of speech.

|"pratique” |"représentation” |"linguistique" | "sociale" | "Guyane"| "nc"|"nc"|"adj"|"adj" | "npr"|

The function split() groups elements, given two arguments : a vector (the elements to be grouped), and a factor
(giving the group of each element). split() create a list, each element of the list corresponding to a group, the name
of the list element corresponding to the group name.

13

split (|"pratique”|"représentation”|"linguistique"|"sociale"|"Guyane"| , ["nc"|"nc"|"adj"|"adj"|"npi

> (@) S
1 2 3

| "linguistique" |"sociale” | | "oratique" | "représentation” | | "Guyane"

You may give vector of any mode as second argument to split() : split() will call as.factor() on this argument.
tapply() do the same grouping, and then apply a function (it’s third argument) to each group :

tapply ([10]8]13|20][5] , ["nc"|"nc"|"adj"|"ad]"["npr"| , mean)
& &8
1 2 3

MEI

- - - - =L -1

rowsum() performs a colSums on each group of rows given by the second argument.

6
7
8
9
10| , [2]1]2]1[3])

16
14
10

QR IWIN|F-

rowsum (

(20 E N}

There are numerous other functions using factor (or converting vector into factor) allowing for grouping (see
table() below, by(), aggregate(), etc.)

7 Data Frame

A data frame is a data structure for representing statistical information about a group of individuals. For each
individual, you may have numerical random variable, categorial random variable, ie. different modes (numeric,
character, factor).

In a data frame, each row represent an individual, and each column represent a random variable. This is like a
matrix, except that the columns may have different mode. This is like a list, since it may mix vectors of different
modes, but all vectors must have the same length.

From an internal representation, a data frame is a list of vectors. Thus, data frame may be created with the
function data.frame() by enumerating its column-vectors. It is represented here with dotted lines, like a list, and
solid lines around vector-column :

data.frame (coll = , col2 = ["un"|"deux"|"deux"| , col3= [1001[1002[1003]|)

1 2 3

111]) uni1001];
2 2/[2]'|deux|'[1002]:
3 3/|3]:[deux|[1003]

Like a matrix and unlike a list, a data frame may have rownames. In fact, a data frame has always row and
column names (while matrix may have no row or column names). You can see from the previous exemple that
automatic default row names have been added : a character representation of the index number of the row. Default

14

colum names are created as well for unnamed column. rownames() and colnames() may be used with data frame as
with matrix.
7.1 Converting

You can also create a data frame from a matrix, or create a matrix from a data frame (when you convert data
frame into matrix, a mode compatible with all column is used : the character mode below) :

Yy 9
e & &
1 2 3
11/[1][un][1001]! 11315
29 | deux|'l1002] as.data.frame (|2]4]|6])
as.matrix (33|[3]'deux|:[1003|) NN
"1"["un"["1001" 123

"2"["deux"|"1002" 11 :::
"3"["deux"]"1003" 22|12]:[4)(6];

as.data.frame create default row and column names : data frame cannot be without row and column names.
Row and column names are lost with as.matrix. Column names are kept with as.list() :

N Q% %)
S & &
1 2 3
111 un|1001];
2 2/[2|'|deux|'|1002]:
aslist (33|(3)|deux)[1003]
N QW D
S $ $
1 2 3
' [1[2]3] ' ["un"["deux"["deux"] | [1001]1002[1003]
L - - - - L o o o e e - - - - - - =~ L o e e o o e - - - - - -~

You may create a data frame from a list only if all list component have the same length :

as.data.frame (list ([1] : [3], :))

as.data.frame (list ([1]2]3], [11]12]13]))

as.data.frame (,

1
111
22[2][12
331313

|
— 1 -4

Many functions expecting a matrix will accept a data frame, silently converting it into a matrix. Similarly, many
functions expecting a data frame will accept a matrix and silently convert it into a data frame.

15

7.2 Extraction

1/ with simple square bracket operator, a data frame is seen as matrix : two dimensions must be provided inside
the square brackets

1 2 3
111 un]1001|:
2 2|12]'|deux|'|1002]!
33(3):(deux| (1003} [[1] : 2] , [1] : [2]]
1 2 3
111 un]1001|:
2 2|12]|deux|'|1002]!
33|(8]ildeux}[1008]: [[1]2] , [1]2]]
12
11][1] un]
22'deux:

However, note that row-extraction (left) and column-extraction (right) do not give the same data structure. It
is a data frame (left) or a vector (right). Furthermore, in column extraction, the row name are lost (right) :

N\ Y
S & &
1 2 3
11/[1]'[un|1001] N
2 2|[2]'[deux|/[1002] g &
33 J'deux :_1003:[’] 1 2 3
B S A 111 un|l1001]:
NN N
& & 2 2([2|/deux|(1002]
12 3 33|(3):(deux]:[1003): [, [1]]

11

2/ with double square bracket operator, a data.frame behave like a list :

one dimension must be provided.

The "$" operator may be used like in a list

16

1 2 3 1 2 3
11(1}]_un}1001}; 11(1}]_un}1001};
2 2|12]'|deux|'|1002]! 2 2|12]'|deux||1002]!
g3|3)deux 1003 (1]) 33|[3}deux];[1003}: |1 [rcoin]

NN
&S & &
1 2 3
11/1]) un|l1001];
2 2|12]'|deux|'|1002]!
3 313]i[deux 11003]" $ col1
Compare extraction with "[[" (just above) and extraction with "[" :
NN
&S & &
1 2 3
11 E un E 10015
2 2[2|'|deux|!|1002]!
331[3]:[deux]:[1003]! [[1]]
&
1
111}
222|
33|3];

In the first case, you access the content of the first column (slot) of the data frame; in the second case, you
extract the first column of the data frame (the result is still a data frame, containing only this column).

7.3 Subseting
To be done

7.4 Merging

Merge() use the columns with same name for combining two matrices or data frame :

2.2 &
NI NGRS
0800\\'0 g
123 1 2 3
Al1l/1|3|5 A15/13|15
merge (B2|2|4|6|, B2|6|14]|16])
98X O &
SRS
S 0o S
&S
123 4 5
11[5][L]3][13][15)
22|[6]:[2]:(4][14] [16]:

The result is always a data frame. Columns to be used for combining may be given explicitly

17

8 Functions for contingency table

8.1 Counting, contingency table

table() create count of the modalities of a factor.
Given one argument (a factor; a vector will be silently converted into factor), table() give the number of
occurrences of each modality. Suppose a factor representing the part of speech of each words of a corpus :

table (|det|adj|nc|vb|adv|con|pro|adj|vb])
PSS EES
1 2 3 4 5 6

7
[2): [} [[0 [0 (1) 2!

Given two arguments of same length (two factors, vectors are converted), table() create a contingency table :
a matrix containing counts. Suppose a second factor giving the number ("s" : singular, "p" : plural, "-") of each

words of the same corpus :

table (|det|adj|nc|vb|adv|con|proladj|vb]| , [s]s||s|-|-|p|plp]|)

T

1234

adj 1[0[o[1[1

adv2|0(1|0]|0

con3|0(1(0|0

det4/0(0(0]|1

nc 5/1{0(0|0

pro6[00[1]0

vb 7(0|0|1(1

8.2 Functions useful for contingency table

prop.table() compute proportion, given a matrix of counts. Proportion are computed either for the whole table
(top), by row (middle) or by column (bottom) :

1(3|5
prop.table (|2|4[6])

0.0476190476190476|0.142857142857143|0.238095238095238
0.0952380952380952| 0.19047619047619|0.285714285714286

1(3|5
prop.table (|[2|4]|6]| , margin =)

0.111111111111111)0.333333333333333|0.555555555555556
0.166666666666667|0.333333333333333 0.5

1[3|5
prop.table (|2|4[6| , margin=)

0.333333333333333|0.428571428571429|0.454545454545455
0.666666666666667|0.571428571428571|0.545454545454545

margin.table() compute margin sum, given a matrix of counts. Margin are computed either for the whole table
(left), for row (right) or for column (bottom).
18

1(3(5
margin.table (|{2]|4|6])
1(3|5
1]3]5 margin.table ([2[4|6] , margin =)
margin.table ([2[4][6] , margin= [1]) 3
9 7
12 11
9 Regexp
9.1 Split strings : strplit()
strsplit (¢ (["un"| , ["deux"| , ["trois"|) , ["[aeio]"|)
strsplit (["un"|"deux"|"trois"| , |"[aeio]"])
|un| S T G S
strsplit (¢ (["un"| , ["deux"| , ["trois"|) , ¢ (["u"], ["e"], ["r"]))
strsplit (|"un"|"deux"|"trois"| |u|e|r|)

—————————————————————

9.2 Extract sub strings : substr()

substr (["trois"] , [2] , [3])

substr (¢ (|"trois"| , ["quatre"]) , ,)

substr (|"trois"|"quatre”| , ,)

substr (¢ (["trois"] , ["quatre”]) , ¢ ([2], [1])

substr (|"trois"|"quatre”]| ,

[2]1] . [3]4])

19

e ([3].[4))

9.3 Searching elements of a character vector with regexp : grep()

grep (["[di]"] . ["un"["deux"|"trois"])

grepl (["[d{"] , ["un"|"deux"|"trois"]|)
|FALSE | TRUE|TRUE |

9.4 Substitution : sub()

sub (["[ueaio]"] , ["v"]| , ["un"["deux"|"trois"])

["vn"|"dvux"|"trvis"|

gsub (["[ueaio]"] , ["v"] , ["un"]["deux"|"trois"|)

["vn"["dvvx"|"trvvs"|

9.5 Searching substring in elements of character vector : regular expression
TODO

20

