
Introduction to the doRedis Package

Bryan W. Lewis
blewis@illposed.net

June 2, 2011

1 Introduction

The doRedis package provides a parallel back end for foreach using Redis and the corresponding
rredis package. It lets users easily run parallel jobs across multiple R sessions.

Steve Weston’s foreach package is a remarkable parallel computing framework for the R lan-
guage. Similarly to lapply-like functions, foreach maps functions to data and aggregates results.
Even better, foreach lets you do this in parallel across multiple CPU cores and computers. And
even better yet, foreach abstracts the parallel computing details away into modular back end code.
Code written using foreach works sequentially in the absence of a parallel back end, and works
uniformly across different back ends, allowing programmers to write code largely independent of
specific parallel implementations. The foreach package has many other wonderful features outlined
in its package documentation.

Redis is a fast, persistent, networked database with many innovative features, among them a
blocking stack-like data structure (Redis “lists”). This feature makes Redis useful as a lightweight
back end for parallel computing. The rredis package provides a native R interface to Redis used
by doRedis.

1.1 Why doRedis?

Why write a doRedis package? After all, the foreach package already has available many parallel
back end packages, including doMC, doSNOW and doMPI.

The doRedis package allows for dynamic pools of workers. New workers may be added at
any time, even in the middle of running computations. This feature is relevant, for example, to
modern cloud computing environments. Users can make an economic decision to “turn on” more
computing resources at any time in order to accelerate running computations. Similarly, modern

The doRedis Package

cluster resource allocation systems can dynamically schedule R workers as cluster resources become
available.

Computations are fault tolerant. Failure of back-end worker R processes (for example, due to a
machine crash), are automatically detected and the affected tasks are re-submitted.

The doRedis package makes it particularly easy to run parallel jobs across different operating
systems. It works equally well on GNU/Linux, Mac OS X, and Windows systems, and should work
well on most POSIX systems. Back end parallel R worker processes are effectively anonymous–they
may run anywhere as long as all the R package dependencies required by the task at hand are
available.

Intermediate results may be aggregated incrementally, significantly reducing required memory
overhead for problems that return large data (unlike many other parallel back ends).

2 Obtaining and Installing the Redis server

Redis is an open source project available from http://redis.io, with development versions and source
code available from Github at http://github.com/antirez/redis/tarball/1.3.6 and
http://github.com/antirez/redis. A Windows version of Redis is available from:
http://github.com/dmajkic/redis.

It is not necessary to “install” Redis to use it. One may download the code, compile it, and run
it in place. We include an example command-line procedure applicable to most POSIX operating
systems for completeness.

wget http://github.com/antirez/redis/tarball/1.3.6

tar xf antirez-redis-1.3.6*.tar.gz

cd antirez-redis-<<version>>

make

<<Some output from your C compiler>>

At this point, unless an error occurred, you have a working copy of Redis. The Redis server is
completely configured by the file redis.conf. In order to run the Redis server as a background
process, edit this file and change the lines:

daemonize no
timeout 300

to:

daemonize yes
timeout 0

You may wish to peruse the rest of the configuration file and experiment with the other server
settings as well. Finally, start up the Redis server with

2

http://redis.io
http://github.com/antirez/redis/tarball/1.3.6
http://github.com/antirez/redis
http://github.com/dmajkic/redis

The doRedis Package

./redis-server ./redis.conf

2.1 Supported Platforms

The Redis server is written in ANSI C and supported on most POSIX systems including GNU/Linux,
Solaris, *BSD, and Mac OS X. A MinGW version is available for Windows systems.

The doRedis package for R is available for all R platforms.

3 doRedis Examples

We explore operation of many doRedis features through a few examples. Unless otherwise noted,
we assume that Redis is installed and running on the local machine (“localhost”) as outlined in
Section 2 above.

3.1 A Simple Example

The simple example below is one version of a Monte Carlo approximation of π. Variations on this
example are often used to illustrate parallel programming ideas.

Listing˜1: Monte Carlo Example

> library('doRedis')

> registerDoRedis('jobs')

> startLocalWorkers(n=2, queue='jobs')

> foreach(icount(10),.combine=sum,.multicombine=TRUE,.inorder=FALSE) %dopar%

4*sum((runif(1000000)^2 + runif(1000000)^2)<1)/10000000

[1] 3.144212

> removeQueue('jobs')

3

The doRedis Package

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y
●

●

●

●
●

● ●
●

●

● ●●

● ●

●

●

●

●

●
●

●

●

The figure illustrates how the method works. We randomly choose points in the unit square. The
ratio of points that lie inside the arc of the unit circle (green) to the total number of points provides
an approximation of the area of 1/4 the area of the unit circle–that is, an approximation of π/4.
Each one of the 10 iterations of the loop computes a scaled approximation using 1,000,000 such
points. We then sum up each of the 10 results to get an approximation of π using all 10,000,000
points.

The doRedis package uses the idea of a “work queue” to dole out jobs to available resources. A
set of jobs are placed in the queue which are then consumed by workers. The line

registerDoRedis('jobs')

registers the doRedis back end with foreach using the user-specified work queue name “jobs” (you
are free to use any name you wish for the work queue).

The next line:

startLocalWorkers(n=2, queue='jobs')

starts up two worker R sessions on the local machine, both listening for work on the queue “jobs.”
The worker sessions don’t display any output by default. The startLocalWorkers function can
instruct the workers to log messages to output files or stdout if desired.

You can verify that workers are in fact waiting for work from the “jobs” queue with:

getDoParWorkers()

4

The doRedis Package

which should return 2, for the two workers we just started. Note that the number of workers
may change over time (unlike most other parallel back ends for foreach). The getDoParWorkers

function returns the current number of workers in the pool. Note that the number returned should
only be considered to be an estimate of the actual number of available workers.

The next lines actually run the Monte Carlo code:

foreach(icount(10),.combine=sum,.multicombine=TRUE,.inorder=FALSE) %dopar%

4*sum((runif(1000000)^2 + runif(1000000)^2)<1)/10000000

This parallel loop consists of 10 iterations (tasks) using the icount iterator function. (It’s also
possible to use more traditional loop variables in foreach loops.) We specify that the results from
each task should be passed to the sum function with .combine=sum. Setting the .multicombine

option to TRUE tells foreach that the .combine function accepts an arbitrary number of function
arguments (some aggregation functions only work on two arguments). The .inorder=FALSE option
tells foreach that results may be passed to the .combine function as they arrive, in any order. The
%dopar% operator instructs foreach to use the doRedis back end that we previously registered to
place each task in the work queue. Finally, each iteration runs the scaled estimation of π using
1,000,000 points.

3.2 Fault tolerance

Parallel computations managed by doRedis tolerate failures among the back end worker R processes.
Examples of failures include crashed back end R sessions, operating system failure or lock-up, and
power outages. When a failure is detected, affected tasks are automatically re-submitted to the
work queue. The option ftinterval controls how frequently doRedis checks for failure. The
default value is 30 seconds, and the minimum allowed value is one second. (Very frequent checks
for failure increase overhead and will slow computations down–the default value is reasonable.)

Listing 2 presents a contrived, but entirely self-contained example of fault tolerance. Verbose
logging output is enabled to help document the inner workings of the example.

The example starts up four local worker processes and submits two tasks to the work queue
“jobs.” The parallel code block in the foreach loop instructs worker processes to quit if less than 5
seconds have elapsed since the start of the program. This will affect the first two workers that get
tasks, resulting in their immediate exit, simulating crasheded R sessions.

Meanwhile, the master process has a fault check period set to 5 seconds (the ftinterval=5

parameter), and after that interval will detect the fault and re-submit the failed tasks.

The remaining two back end worker processes will pick up the re-submitted tasks, and since the
time interval will be sufficiently past the start, they will finish the tasks and return their results.

The fault detection method is a very simple one. When a worker process receives a task, it creates
two Redis keys that indicate the task is in process. The first key remains until it is deleted. The

5

The doRedis Package

Listing˜2: Fault Tolerance Example

require('doRedis')

registerDoRedis('jobs')

startLocalWorkers(n=4,queue='jobs',timeout=1)

cat("Workers started.\n")

start=Sys.time()

x=foreach(j=1:4, .combine=sum, .verbose=TRUE,

.options.redis=list(ftinterval=5, chunkSize=2)) %dopar%

{

if(difftime(Sys.time(),start) < 5) quit(save="no")

j

}

print(x)

removeQueue('jobs')

second key is ephemeral, and is set to expire after a short interval. The worker process starts up a
simple refresh function whose only job is to keep the ephemeral key active. If the worker process
fails for some reason, the ephemeral key will expire, allowing the master R process to detect the
imbalance among active task keys. Whenever such an imbalance is detected, the affected tasks are
re-submitted.

3.3 Dynamic Worker Pools and Heterogeneous Workers

It’s pretty simple to run parallel jobs across computers with doRedis, even if the computers have
heterogeneous operating systems (as long as one of them is running a Redis server). It’s also very
straightforward to add more parallel workers during a running computation. We do both in this
section.

We’ll use the simple bootstrapping example from the foreach documentation to illustrate the
ideas of this section. The results presented here were run on the following systems:

� A GNU/Linux dual-core Opteron workstation, host name master.

� A Windows Server 2003 quad-core Opteron system.

We installed R version 2.11.0 (2010-04-22) and the doRedis package on each system. The Redis
server ran on the master GNU/Linux machine, as did our master R session.

The example bootstrapping code is shown in Listing 3 below. We use the Redis “count” key and
the redisIncrBy function to track the total number of jobs run so far, as described below. We set

6

The doRedis Package

Listing˜3: Simple Bootstrapping Example

library('doRedis')

registerDoRedis('jobs')

redisDelete('count')

Set up some data

data(iris)

x <- iris[which(iris[,5] != 'setosa'), c(1,5)]

trials <- 100000

chunkSize <- 100

Start some local workers

startLocalWorkers(n=2, queue='jobs')

setChunkSize(chunkSize)

Run the example

r <- foreach(icount(trials), .combine=cbind, .inorder=FALSE) %dopar% {

redisIncrBy('count',chunkSize)

ind <- sample(100, 100, replace=TRUE)

estimate <- glm(x[ind,2]~x[ind,1], family=binomial(logit))

coefficients(estimate)

}

removeQueue('jobs')

the number of bootstrap trials to a very large number in order to get a long-running example for
the purposes of illustration.

We use a new function called setChunkSize in the above example to instruct the workers to
pull chunkSize tasks at a time from their work queue. Setting this value can significantly improve
performance, especially for short-running tasks. Setting the chunk size too large will adversely affect
load balancing across the workers, however. The chunk size value may alternatively be set using the
.options.redis options list directly in the foreach function as described in the documentation.

Once the above example is running, the workers update the total number of tasks taken in a
Redis value called “count” at the start of each loop iteration. We can use another R process to
visualize a moving average of computational rate. We ran the performance visualization R code in
Listing 4 on the “master” workstation after starting the bootstrapping example (it requires the xts

time-series package).

It is straightforward to add new workers to the work queue at any time. The following example R
code illustrates adding four workers to the “jobs” work queue available on the host system “master”:

7

The doRedis Package

Listing˜4: Performance Visualization

library('xts')

library('rredis')

redisConnect()

l <- 50

t1 <- Sys.time()

redisIncrBy('count',0)

x0 <- as.numeric(redisGet('count'))

r <- as.xts(0,order.by=t1)

while(TRUE)

{

Sys.sleep(2)

x <- as.numeric(redisGet('count'))

t2 <- Sys.time()

d <- (x-x0)/(difftime(t2,t1,units="secs")[[1]])

r <- rbind(r, as.xts(d, order.by=t2))

t1 <- t2

x0 <- x

if(nrow(r)>l) r <- r[(nrow(r)-l):nrow(r),]

plot(as.zoo(r),type='l',lwd=2,col=4, ylab='Tasks/second', xlab='Time')

}

Listing˜5: Adding Additional Workers

library('doRedis')

startLocalWorkers(n=4, queue='jobs', host='master')

We started the example bootstrap code running on the “master” system and the logged in to
the much more powerful Windows Server system and added four additional workers using code in
Listing 5. The performance plot clearly illustrates the dramatic increase in computational rate when
the new workers were added:

8

The doRedis Package

50
00

10
00

0
15

00
0

20
00

0
25

00
0

Time

Ta
ks

/s
ec

on
d

50:00 50:30 51:00 51:30

3.4 A Parallel boot Function

Listing 6 presents a parallel capable variation of the boot function from the boot package. The
bootForEach function uses foreach to distributed bootstrap processing to available workers. It has
two more arguments than the standard boot function: chunks and verbose. Set verbose=TRUE to
enabled back end worker process debugging. The bootstrap resampling replicates will be divided
into chunks tasks for processing by foreach.

The example also illustrates the use of a custom combine function in the foreach loop.

4 A Few Technical Details

4.1 Random Number Generator Seeds

The initialization of pseudorandom number generators is an important consideration, especially
when running simulations in parallel. Each foreach loop iteration (task) is assigned a number in
order from the sequence 1, 2, By default, doRedis workers initialize the seed of their random
number generator with a multiple of the first task number they receive. The multiple is chosen to
very widely separate seed initialization values. This simple scheme is sufficient for many problems,
and comparable to the initialization scheme used by many other parallel back ends.

The doRedis package includes a mechanism to define an arbitrary random seed initialization
function. Such a function could be used, for example, with the SPRNG library.

9

The doRedis Package

The user-defined random seed initialization function must be called set.seed.worker, take one
argument and must be exported to the workers explicitly in the foreach loop. The example shown
in Listing 7 illustrates a simple user-defined seed function.

4.2 Redis Keys Used

The “job queue” name specified in the registerDoRedis and redisWorker functions is used as the
root name for a family of Redis keys. The keys are defined by <queue name>.*–thus, every Redis
key beginning with the queue name followed by period should be considered reserved. The keys
have various uses, for example the <queue>.count key keeps an estimate of the number of active
worker processes registered to take work from the queue.

Back end worker processes run a worker loop that blocks on work from one or more job queues.
Periodically, the worker process checks for existence of a <queue>.live key. If the worker finds
this key missing, it terminates the worker loop and deletes all Redis variables associated with the
queue. A master R process may terminate workers and force the key cleanup using the removeQueue
command.

4.3 Miscellaneous Details

If CTRL+C is pressed while a foreach loop is running, connection to the Redis server may be lost
or enter an undefined state. An R session can reset connection to a Redis server at any time by
issuing redisClose() followed by re-registering the doRedis back end.

10

The doRedis Package

Listing˜6: Parallel boot Function

`bootForEach` <- function (data, statistic, R, sim = "ordinary", stype = "i",

strata = rep(1, n), L = NULL, m = 0, weights = NULL,

ran.gen = function(d, p) d, mle = NULL, simple=FALSE,

chunks = 1, verbose=FALSE, ...)

{

thisCall <- match.call()

n <- if (length(dim(data)) == 2) nrow(data)

else length(data)

if(R<2) stop("R must be greater than 1")

Rm1 <- R - 1

RB <- floor(Rm1/chunks)

combo <- function(...)

{

al <- list(...)

out <- al[[1]]

t <- lapply(al, "[[", "t")

out$t <- do.call("rbind", t)

out$R <- R

out$call <- thisCall

class(out) <- "boot"

out

}

We define an initial bootstrap replicate locally. We use this

to set up all the components of the bootstrap output object

that don't vary from run to run. This is more efficient for

large data sets than letting the workers retun this information.

binit <- boot(data, statistic, 1, sim = sim, stype = stype,

strata = strata, L = L, m = m, weights = weights,

ran.gen = ran.gen, mle=mle, ...)

foreach(j=icount(chunks), .inorder=FALSE, .combine=combo, .init=binit,

.packages=c("boot","foreach"), .multicombine=TRUE, .verbose=verbose)

%dopar%

{

if(j==chunks) RB <- RB + Rm1 %% chunks

res <- boot(data, statistic, RB, sim = sim, stype = stype,

strata = strata, L = L, m = m, weights = weights,

ran.gen = ran.gen, mle=mle, ...)

list(t=res$t)

}

} 11

The doRedis Package

Listing˜7: User-defined RNG initialization

First, use the default initialization:

> startLocalWorkers(n=5,queue='jobs')

> registerDoRedis('jobs')

> foreach(j=1:5,.combine='c') %dopar% runif(1)

[1] 0.27572951 0.62581389 0.90845008 0.49669130 0.06106442

Now, let's make all the workers use the same random seed initialization:

> set.seed.worker <- function(n) set.seed(55)

> foreach(j=1:5,.combine='c',.export='set.seed.worker') %dopar% runif(1)

[1] 0.5478135 0.5478135 0.5478135 0.5478135 0.5478135

12

	Introduction
	Why doRedis?

	Obtaining and Installing the Redis server
	Supported Platforms

	doRedis Examples
	A Simple Example
	Fault tolerance
	Dynamic Worker Pools and Heterogeneous Workers
	A Parallel boot Function

	A Few Technical Details
	Random Number Generator Seeds
	Redis Keys Used
	Miscellaneous Details

