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1 Introduction

Package dlsem implements inference functionalities for distributed-lag linear structural equation
models (DLSEMs: Magrini et al., 2016). A DLSEM is a structural equation model (Pearl, 2000,
Chapter 5) composed of distributed-lag linear regression models (Judge et al., 1985, Chapters
9-10). Endpoint-constrained quadratic, quadratic decreasing and gamma lag shapes are available.
DLSEMs allow to perform dynamic causal inference, that is to assess causal effects at different
time lags. This vignette is structured as follows. In Section 2, theory on distributed-lag linear
structural equation models is presented. In Section 3, instructions for the installation of the dlsem
package are provided. In Section 4, the practical use of dlsem is illustrated through a fictitious
impact assessment problem.

2 Theory

Lagged instances of one or more covariates can be included in the linear regression model to
account for temporal delays in their influence on the response:

yt = β0 +

J∑
j=1

Lj∑
l=0

βj,l xj,t−l + εt εt ∼ N(0, σ2) (1)
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where yt is the value of the response variable at time t and xj,t−l is the value of the j-th covariate
at l time lags before t. The set (βj,0, βj,1, . . . , βj,Lj ) is denoted as the lag shape of the j-th covariate
and represents its regression coefficient at different time lags.

Parameter estimation is inefficient because lagged instances of the same covariate are typically
highly correlated. The Almon’s polynomial lag shape (Almon, 1965) is a well-known solution to
this problem, where coefficients for lagged instances of a covariate are forced to follow a polynomial
of order P :

βj,l =

P∑
p=0

φpl
p (2)

Unfortunately, the Almon’s polynomial lag shape may show multiple modes and coefficients with
different signs, thus entailing problems of interpretation. Constrained lag shapes (Judge et al.,
1985, Chapters 9-10) overcome this deficiency. Package dlsem includes the endpoint-constrained
quadratic lag shape:

βj,l =

{
θj

[
− 4

(bj−aj+2)2 l
2 +

4(aj+bj)
(bj−aj+2)2 l −

4(aj−1)(bj+1)
(bj−aj+2)2

]
aj ≤ l ≤ bj

0 otherwise
(3)

the quadratic decreasing lag shape:

βj,l =

{
θj
l2−2bj l+b

2
j

(bj−aj)2 aj ≤ l ≤ bj
0 otherwise

(4)

and the gamma lag shape:

βj,l = θj(l + 1)
δ

1−δ λlj

( δj
(δj − 1)log(λj)

) δj
1−δj

λ

δj
(δj−1)log(λj)

−1

j

−1

0 < δj < 1 0 < λj < 1

(5)

The endpoint-constrained quadratic lag shape is zero for a lag l ≤ aj − 1 or l ≥ bj + 1, and
symmetric with mode equal to θj at (aj + bj)/2. The quadratic decreasing lag shape decreases
from value θj at lag aj to value 0 at lag bj according to a quadratic function. The gamma lag shape

is positively skewed with mode equal to θj at
δj

(δj−1)log(λj)
. Value aj is denoted as the gestation

lag, value bj as the lead lag, and value bj − aj as the lag width. A static regression coefficient is
obtained if aj = bj = 0. Since it is not expressed as a function of aj and bj , the gamma lag shape
cannot reduce to a static regression coefficent, but values aj and bj can be computed through
numerical approximation.

A linear regression model with constrained lag shapes is linear in parameters β0, θ1, . . . , θJ , pro-
vided that the values of a1, . . . , aJ , b1, . . . , bJ are known. Thus, one can use ordinary least squares
to estimate parameters β0, θ1, . . . , θJ for several models with different values of a1, . . . , aJ , b1, . . . , bJ ,
and then select the one with the lowest Akaike Information Criterion (Akaike, 1974)1.

Structural equation models (SEMs) have a long history starting with the contribution of Wright
(1934) in the genetic field and of Haavelmo (1943) and Koopmans et al. (1950) in the economic
field. SEMs were further elaborated by Pearl (2000) in the context of causal inference. The basic
feature of a SEM is a directed acyclic graph (DAG, see Pearl, 2000, pages 12 and on). In a DAG,
variables are represented by nodes and directed edges may connect pairs of variables without
creating directed cycles (Figure 1). If a variable receives an edge from another variable, the latter

1Neither the response variable nor the covariates must contain a trend in order to obtain unbiased estimates
(Granger and Newbold, 1974). A reasonable procedure is to sequentially apply differentiation to all variables until
the Augmented Dickey-Fuller test (Dickey and Fuller, 1981) rejects the hypothesis of unit root for all of them.
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Figure 1: The directed acyclic graph of a SEM. The regression model applied to variable V1 has no
covariates, the regression models applied to variables V2 and V3 have V1 as covariate, the regression
model applied to variable V4 has V2 and V3 as covariates.

is called parent of the former. A DAG encodes a factorization of the joint probability distribution:

p(V1, . . . , Vm) =

J∏
j=1

p(Vj | Πj) (6)

where Πj is the set of parents of variable Vj . As such, if some pairs of variables are not connected
by an edge, the DAG implies a set of conditional independence statements (Pearl, 2000, pages
16 and on). A SEM is defined by a specification of p(Vj | Πj) for j = 1, . . . , J . In a linear
parametric formulation (linear SEM), p(Vj | Πj) is the linear regression model where Vj is the
response variable and its parents in the DAG are the covariates.

In the Pearl’s framework, the DAG has a causal interpretation, and a causal effect is associated
to each edge, directed path or couple of nodes to represent expected changes induced by an
intervention (Pearl, 2000, Section 5.3; Pearl, 2012). For a linear SEM:

� the causal effect associated to each edge in the DAG is the coefficient of the variable repre-
sented by the node originating the edge in the regression model of the variable represented
by the node receiving the edge;

� the causal effect associated to a directed path is the product of the causal effects associated
to each edge in the path;

� the causal effect of a variable on another is the sum of the causal effects associated to each
directed path connecting the nodes representing the two variables.

In this view, each causal effect in a linear SEM represents the average change in the value of a
variable induced by an intervention provoking a unit variation in the value of another variable. The
causal effect of a variable on another is termed overall causal effect, the causal effect associated
to a directed path made by a single edge is called direct effect, while the causal effects associated
to the other directed paths are denoted as indirect effects.

A distributed-lag linear structural equation model (DLSEM) is a SEM composed of distributed-lag
linear regression models. For a DLSEM, the DAG does not explicitly include time lags, and an
edge connecting two nodes implies that there is at least one time lag where the coefficient of the
variable represented by the parent node in the regression model of the variable represented by the
child node is non-zero. A DLSEM can be exploited to assess the causal effect of any variable to
another at different time lags by extending the rules above:

3



� The causal effect associated to each edge in the DAG at lag k is represented by the coefficient
at lag k of the variable represented by the parent node in the regression model of the variable
represented by the child node.

� The causal effect associated to a directed path at lag k is computed as follows:

1. denote the number of edges in the path as p;

2. enumerate all the possible p-uples of lags, one lag for each of the p edges, such that
their sum is equal to k;

3. for each p-uple of lags:

- for each lag in the p-uple, compute the coefficient associated to the corresponding
edge at that lag;

- compute the product of all these coefficients;

4. sum all these products.

� The causal effect of a variable on another at lag k is represented by the sum of the causal
effects at lag k associated to each directed path connecting the two variables.

A causal effect evaluated at a single lag is denoted as instantaneous causal effect. The cumulative
causal effect at a prespecified lag, say k, is obtained by summing all the instantaneous causal
effects for each lag up to k.

3 Installation

Before installing dlsem, you must have installed Rversion 2.1.0 or higher, which is freely available
at http://www.r-project.org/.

To install the dlsem package, type the following in the Rcommand prompt:

> install.packages("dlsem")

and Rwill automatically install the package to your system from CRAN. In order to keep your
copy of dlsem up to date, use the command:

> update.packages("dlsem")

The latest version of dlsem is 1.9.

4 Illustrative example

The practical use of package dlsem is illustrated through a fictitious impact assessment problem,
aiming at testing whether the influence through time of the number job positions in industry (proxy
of the industrial development) on the amount of greenhouse gas emissions (proxy of pollution) is
direct and/or mediated by the amount of private consumption. The DAG for the proposed problem
is shown in Figure 2. The analysis will be conducted on the dataset industry, containing data
for 10 imaginary regions in the period 1983-2015.

> data(industry)
> summary(industry)

Region Year Population GDP
1 : 32 Min. :1983 Min. : 4771649 Min. : 97119
2 : 32 1st Qu.:1991 1st Qu.: 8310737 1st Qu.: 186783
3 : 32 Median :1998 Median :25381874 Median : 463942
4 : 32 Mean :1998 Mean :32368547 Mean : 727735
5 : 32 3rd Qu.:2006 3rd Qu.:56273337 3rd Qu.:1307044
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Job

Consum

Pollution

Figure 2: The DAG for the industrial development problem. ‘Job’: number of job positions in
industry. ‘Consum’: private consumption index. ‘Pollution’: amount of greenhouse gas emissions.

6 : 32 Max. :2014 Max. :78308254 Max. :1883702
(Other):128

Job Consum Pollution
Min. : 34.77 Min. : 37.35 Min. : 3161
1st Qu.:105.07 1st Qu.: 87.88 1st Qu.: 7536
Median :137.03 Median :108.47 Median : 25320
Mean :127.61 Mean :108.17 Mean : 32202
3rd Qu.:152.68 3rd Qu.:124.85 3rd Qu.: 47109
Max. :200.83 Max. :211.16 Max. :101441

4.1 Specification of the model code

The first step to build a DLSEM with the dlsem package is the definition of the model code,
which includes the formal specification of the regression models. The model code must be a list of
formulas, one for each regression model. In each formula, the response and the covariates must be
quantitative variables2, and operators quec(·), qdec(·) and gamma(·) can be employed to specify,
respectively, an endpoint-constrained quadratic, a quadratic decreasing or a gamma lag shape.
Operators quec(·) and qdec(·) have three arguments: the name of the variable to which the lag
shape is applied, the minimum lag with a non-zero coefficient (aj), and the maximum lag with a
non-zero coefficient (bj). Operator gamma(·) has three arguments: the name of the variable to which
the lag shape is applied, parameter δj and parameter λj . If none of these two operators is applied
to a variable, it is assumed that the coefficient associated to that variable is 0 for time lags greater
than 0 (no lag). The group factor and exogenous variables must not be specified in the model
code (see Subsection 4.3). The regression model for variables with no covariates besides the group
factor and exogenous variables can be omitted from the model code (for example, one could omit
the regression model for the number of job positions). In this problem, an endpoint-constrained
quadratic lag shape between 0 and 15 time lags is assumed for all variables:

> mycode <- list(
+ Job ~ 1,
+ Consum~quec(Job,0,15),
+ Pollution~quec(Job,0,15)+quec(Consum,0,15)
+ )

2Qualitative variables can be included only as exogenous variables, as described in Subsection 4.3.
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4.2 Specification of control options

The second step to build a DLSEM with the dlsem package is the specification of control options.
Control options are distinguished into global (applied to all variables) and local (variable-specific)
options. Global control options must be a named list with one or more of the following components:

� adapt: a logical value indicating if adaptation of lag shapes must be performed (default is
FALSE, that is no adaption);

� max.gestation: the maximum gestation lag for one or more covariates. If not provided, it
is taken as equal to max.lead (see below);

� max.lead: the maximum lead lag. If not provided, it is computed accordingly to the sample
size;

� min.width: the minimum lag width. It cannot be greater than max.lead. If not provided,
it is taken as 0;

� sign: the sign (either ’+’ for non-negative, or ’-’ for non-positive) of the coefficients. If not
provided, adaptation will disregard the sign of coefficients.

Local control options must be a named list with the same components above, with the difference
that each component must be a named list where each component refers to a specific variable and
is a vector where each element refers to a specific covariate in the regression model of that variable.
As an example, the following code specifies local control options on the minimum lag width of
covariate Consum in the regression model of variable Pollution, and on the sign of covariates Job
and Consum in the regression model of variable Consum:

> list(
+ min.width=list(Pollution=c(Consum=5)),
+ sign=list(Pollution=c(Job="+",Consum="+"))
+ )

If some local control options conflicts with global ones, only the former are applied. In this problem,
we want to perform adaptation of lag shapes for all regression models with the following constraints:
(i) maximum gestation lag of 3 years, (ii) maximum lead lag of 15 years, (iii) minimum lag width
of 5 years, (iv) all coefficients with non-negative sign: Control options for these constraints can be
expressed in several ways. The most simple solution is to specify only global control options, as
the constraints hold for all regression models:

> mycon_G <- list(adapt=T,max.gestation=3,max.lead=15,min.width=5,sign="+")
> mycon_L <- list()

In alternative, one may specify only local control options, by repeating them for each variable:

> mycon_G <- list()
> mycon_L <- list(
+ adapt=c(Consum=T,Pollution=T),
+ max.gestation=list(Consum=c(Job=3),Pollution=c(Job=3,Consum=3)),
+ max.lead=list(Consum=c(Job=15),Pollution=c(Job=15,Consum=15)),
+ min.width=list(Consum=c(Job=5),Pollution=c(Job=5,Consum=5)),
+ sign=list(Consum=c(Job="+"),Pollution=c(Job="+",Consum="+"))
+ )

or both local and global control options:

> mycon_G <- list(adapt=T,min.width=5)
> mycon_L <- list(
+ max.gestation=list(Consum=c(Job=3),Pollution=c(Job=3,Consum=3)),
+ max.lead=list(Consum=c(Job=15),Pollution=c(Job=15,Consum=15)),
+ sign=list(Consum=c(Job="+"),Pollution=c(Job="+",Consum="+"))
+ )
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4.3 Estimation

Once the model code and control options are specified, the structural model can be estimated
from data using the command dlsem(·). The user can indicate a group factor to argument group
and one or more exogenous variables to argument exogenous. By indicating the group factor,
one intercept for each level of the group factor will be estimated in each regression model. By
indicating exogenous variables, they will be included as non-lagged covariates in each regression
model, in order to eliminate spurious effects due to differences between the levels of the group
factor. Each exogenous variable can be either qualitative or quantitative and its coefficient in
each regression model is 0 for time lags greater than 0 (no lag). The user can decide to apply the
logarithmic transformation to all strictly positive quantitative variables by setting argument log

to TRUE, in order to interpret each coefficient as an elasticity (percentage increase in the value of
the response variable for 1% increase in the value of a covariate). Before estimation, differentiation
is performed until the hypothesis of unit root is rejected by the Augmented Dickey-Fuller test for
all quantitative variables3, and missing values are imputed using the Expectation-Maximization
algorithm (Dempster et al., 1977). In this problem, the region is indicated as the group factor,
while population and gross domestic product are indicated as exogenous variables. Also, the
logarithmic transformation is requested, and global and local control options are provided to
arguments global.control and local.control,respectively:

> mod0 <- dlsem(mycode,group="Region",exogenous=c("Population","GDP"),
+ data=industry,global.control=mycon_G,local.control=mycon_L,log=T)

Checking stationarity...
Order 1 differentiation performed
Start estimation...
Estimating regression model 1/3 (Job)
Estimating regression model 2/3 (Consum)
Estimating regression model 3/3 (Pollution)
Estimation completed

After the estimation, the user can display the DAG where each edge is coloured according to the
sign of its causal effect (green for non-negative, red for non-positive). The result is shown in Figure
3: the group factor and exogenous variables are omitted from the DAG.

> plot(mod0)

All edges result statistically significant, providing evidence that the influence of industrial devel-
opment on pollution is both direct and mediated by private consumption.

The user can also request the summary of estimation:

> summary(mod0)

$Job

Call:
lm(formula = Job ~ Region + Population + GDP, data = industry)

Residuals:
Min 1Q Median 3Q Max

-0.035183 -0.008863 0.000619 0.008844 0.035491

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Region1 -0.027109 0.002403 -11.281 < 2e-16 ***
Region2 -0.014868 0.002402 -6.191 1.98e-09 ***
Region3 -0.014228 0.002402 -5.924 8.64e-09 ***
Region4 -0.005320 0.002403 -2.214 0.027588 *
Region5 -0.008834 0.002402 -3.678 0.000278 ***

3If a group factor is specified, the panel version of the Augmented Dickey-Fuller test proposed by Levin et al.
(2002) is used insead.
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Job

Consum

Pollution

Figure 3: The DAG where each edge is coloured with respect to the sign of its causal effect. Green:
non-negative causal effect. Red: non-positive causal effect. Grey: not statistically significant
causal effect (no such edges here).

Region6 -0.015623 0.002401 -6.506 3.26e-10 ***
Region7 -0.005154 0.002402 -2.146 0.032669 *
Region8 -0.027052 0.002402 -11.263 < 2e-16 ***
Region9 -0.046951 0.002402 -19.545 < 2e-16 ***
Region10 -0.023440 0.002403 -9.756 < 2e-16 ***
Population -2.015755 0.369195 -5.460 1.00e-07 ***
GDP -1.274005 0.032533 -39.160 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01337 on 298 degrees of freedom
(10 observations deleted due to missingness)

Multiple R-squared: 0.8903, Adjusted R-squared: 0.8859
F-statistic: 201.5 on 12 and 298 DF, p-value: < 2.2e-16

$Consum

Call:
lm(formula = Consum ~ Region + quec(Job, 0, 5) + Population +

GDP, data = industry)

Residuals:
Min 1Q Median 3Q Max

-0.0275870 -0.0066042 -0.0001772 0.0074214 0.0263515

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Region1 0.013228 0.003105 4.260 2.91e-05 ***
Region2 -0.009181 0.002452 -3.744 0.000226 ***
Region3 0.014910 0.002370 6.292 1.41e-09 ***
Region4 0.012262 0.002144 5.720 3.07e-08 ***
Region5 0.012591 0.002189 5.751 2.61e-08 ***
Region6 0.027006 0.002425 11.135 < 2e-16 ***
Region7 0.023947 0.002134 11.222 < 2e-16 ***
Region8 -0.014297 0.003062 -4.669 4.96e-06 ***
Region9 0.019453 0.004455 4.366 1.86e-05 ***
Region10 0.003491 0.002834 1.232 0.219243
Job 0.100639 0.017837 5.642 4.59e-08 ***
Population 0.839726 0.307290 2.733 0.006736 **
GDP -0.816565 0.027103 -30.128 < 2e-16 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01077 on 247 degrees of freedom
(60 observations deleted due to missingness)

Multiple R-squared: 0.8575, Adjusted R-squared: 0.85
F-statistic: 114.4 on 13 and 247 DF, p-value: < 2.2e-16

$Pollution

Call:
lm(formula = Pollution ~ Region + quec(Job, 1, 8) + quec(Consum,

1, 6) + Population + GDP, data = industry)

Residuals:
Min 1Q Median 3Q Max

-0.026978 -0.007834 0.000029 0.006816 0.033939

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Region1 0.018103 0.005672 3.192 0.001624 **
Region2 0.016695 0.002994 5.576 7.29e-08 ***
Region3 0.000871 0.004745 0.184 0.854523
Region4 0.003874 0.003341 1.160 0.247529
Region5 -0.004765 0.003654 -1.304 0.193542
Region6 -0.013855 0.006254 -2.215 0.027790 *
Region7 -0.013390 0.004810 -2.784 0.005848 **
Region8 0.029422 0.004103 7.172 1.16e-11 ***
Region9 0.002974 0.008692 0.342 0.732593
Region10 0.017110 0.004253 4.023 7.95e-05 ***
Job 0.104801 0.030085 3.484 0.000599 ***
Consum 0.232011 0.036608 6.338 1.34e-09 ***
Population -0.533564 0.322472 -1.655 0.099457 .
GDP 0.134247 0.029659 4.526 9.91e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01112 on 216 degrees of freedom
(90 observations deleted due to missingness)

Multiple R-squared: 0.7177, Adjusted R-squared: 0.6994
F-statistic: 39.22 on 14 and 216 DF, p-value: < 2.2e-16

The summary of estimation returns estimates of parameters θj (j = 1, . . . , J). Instead, the com-
mand edgeCoeff(·) can be used to obtain estimates and confidence intervals of coefficients at the
relevant time lags βj,l (j = 1, . . . , J ; l = 0, 1, . . .):

> edgeCoeff(mod0)

$`0`
estimate lower 95% upper 95%

Consum~Job 0.04929275 0.0321693 0.0664162
Pollution~Job 0.00000000 0.0000000 0.0000000
Pollution~Consum 0.00000000 0.0000000 0.0000000

$`1`
estimate lower 95% upper 95%

Consum~Job 0.08215458 0.05361550 0.11069366
Pollution~Job 0.04140270 0.01810801 0.06469739
Pollution~Consum 0.11363780 0.07849493 0.14878066

$`2`
estimate lower 95% upper 95%

Consum~Job 0.09858550 0.06433860 0.1328324
Pollution~Job 0.07245472 0.03168901 0.1132204
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Pollution~Consum 0.18939633 0.13082488 0.2479678

$`3`
estimate lower 95% upper 95%

Consum~Job 0.09858550 0.06433860 0.1328324
Pollution~Job 0.09315607 0.04074302 0.1455691
Pollution~Consum 0.22727559 0.15698986 0.2975613

$`4`
estimate lower 95% upper 95%

Consum~Job 0.08215458 0.05361550 0.1106937
Pollution~Job 0.10350674 0.04527002 0.1617435
Pollution~Consum 0.22727559 0.15698986 0.2975613

$`5`
estimate lower 95% upper 95%

Consum~Job 0.04929275 0.03216930 0.0664162
Pollution~Job 0.10350674 0.04527002 0.1617435
Pollution~Consum 0.18939633 0.13082488 0.2479678

$`6`
estimate lower 95% upper 95%

Consum~Job 0.00000000 0.00000000 0.0000000
Pollution~Job 0.09315607 0.04074302 0.1455691
Pollution~Consum 0.11363780 0.07849493 0.1487807

$`7`
estimate lower 95% upper 95%

Consum~Job 0.00000000 0.00000000 0.0000000
Pollution~Job 0.07245472 0.03168901 0.1132204
Pollution~Consum 0.00000000 0.00000000 0.0000000

$`8`
estimate lower 95% upper 95%

Consum~Job 0.0000000 0.00000000 0.00000000
Pollution~Job 0.0414027 0.01810801 0.06469739
Pollution~Consum 0.0000000 0.00000000 0.00000000

4.4 Assessment of causal effects

Causal effects can be computed using the command causalEff(·). The user must specify one
or more starting variables (argument from) and the ending variable (argument to). Optionally,
specific time lags at which causal effects must be computed can be provided to argument lag,
otherwise all the relevant ones are considered. Also, the user can choose whether instantaneous
(argument cumul set to FALSE, the default) or cumulative (argument cumul set to TRUE) causal
effects must be returned. Here, the cumulative causal effect of the number of job positions on the
amount of greenhouse gas emissions is requested at time lags 0, 5, 10, 15 and 20:

> causalEff(mod0,from="Job",to="Pollution",lag=seq(0,20,by=5),cumul=T)

$`Job*Consum*Pollution`
estimate lower 95% upper 95%

0 0.0000000 0.0000000 0.0000000
5 0.2004099 0.1494260 0.2513939
10 0.4823530 0.3645648 0.6001413
15 0.4879546 0.3675431 0.6083661
20 0.4879546 0.3675431 0.6083661

$`Job*Pollution`
estimate lower 95% upper 95%

0 0.0000000 0.0000000 0.0000000
5 0.4140270 0.1810801 0.6469739
10 0.6210405 0.2716201 0.9704608
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15 0.6210405 0.2716201 0.9704608
20 0.6210405 0.2716201 0.9704608

$overall
estimate lower 95% upper 95%

0 0.0000000 0.0000000 0.0000000
5 0.6144369 0.3305060 0.8983677
10 1.1033935 0.6361849 1.5706021
15 1.1089950 0.6391632 1.5788269
20 1.1089950 0.6391632 1.5788269

The output of command causalEff(·) is a list of matrices, each containing estimates and confidence
intervals of the causal effect associated to each path connecting the starting variables to the ending
variable at the requested time lags. Also, estimates and confidence intervals of the overall causal
effect is shown in the component named overall.

Since the logarithmic trasformation was applied to all quantitative variables, causal effects above
are interpreted as elasticities, that is, for a 1% of job positions more, greenhouse gas emissions
are expected to grow by 1.31% after 20 years. Actually, the effect ends before 15 years, as the
cumulative causal effects after 15 and 20 years are equal. The time lag up to which the effect is
non-zero can be found by running command causalEff(·) without providing a value to argument
lag:

> causalEff(mod0,from="Job",to="Pollution",cumul=T)$overall

estimate lower 95% upper 95%
0 0.00000000 0.00000000 0.00000000
1 0.04700422 0.02108627 0.07292217
2 0.13813067 0.06526392 0.21099741
3 0.26925259 0.13357327 0.40493191
4 0.43250887 0.22417152 0.64084623
5 0.61443689 0.33050605 0.89836772
6 0.79472770 0.43994019 1.14951521
7 0.94560369 0.53269372 1.35851366
8 1.04675592 0.59612995 1.49738190
9 1.08472178 0.62369628 1.54574727
10 1.10339351 0.63618492 1.57060209
11 1.10899503 0.63916318 1.57882687
12 1.10899503 0.63916318 1.57882687

The estimated lag shape associated to a path or to an overall causal effect can be displayed using
the command lagPlot(·). For instance, we can display the lag shape associated to each path
connecting the number of job positions to the amount of greenhouse gas emissions:

> lagPlot(mod0,path="Job*Pollution")
> lagPlot(mod0,path="Job*Consum*Pollution")

or the lag shape associated to the overall causal effect of the number of job positions on the amount
of greenhouse gas emissions:

> lagPlot(mod0,from="Job",to="Pollution")

The resulting graphics are shown in Figure 4.
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