dlm: an R package for Bayesian analysis of Dynamic
Linear Models

Giovanni Petris
University of Arkansas, Fayetteville AR

2007-11-14

1 Defining and manipulating Dynamic Linear Mod-
els

Package d1m focuses on Bayesian analyisis of Dynamic Linear Models (DLMs),
also known as linear state space models (see [H, WH]. The package also in-

cludes functions for maximum likelihood estimation of the parameters of a

DLM and for Kalman filtering. The algorithms used for Kalman filtering,

likelihood evaluation, and sampling from the state vectors are based on the

singular value decomposition (SVD) of the relevant variance matrices (see

[ZL]), which improves numerical stability over other algorithms.

1.1 The model
A DLM is specified by the following equations:

yr = Fi0; + vy, v ~ N(0,V))
9,5 = Gtetfl + W, W~ N(07 Wt)

fort =1,...,n, together with a prior distribution for 6y:
90 ~ N(mo, Cg)

Here g is an m-dimensional vector, representing the observation at time ¢,
while 6; is a generally unobservable p-dimensional vector representing the
state of the system at time t. The v;’s are observation errors and the wy’s
evolution errors. The matrices F; and G; have dimension m by p and p by
p, respectively, while V; and W; are variance matrices of the appropriate
dimension.

1.2 Defining DLMs with dlm

One of the simplest DLMSs is the random walk plus noise model, also called
first order polynomial model. It is used to model univariate observations,
the state vector is unidimensional, and it is described by the equations

Y = 0 + vy, v ~N(0,V)
O = 0i—1 +wy, wp ~N(0,W)

The model is constant, i.e., the various matrices defining its dynamics are
time-invariant. Moreover, F; = G; = [1]. The only parameters of the
model are the observation and evolution variances V and W. These are
usually estimated from available data using maximum likelihood or Bayesian
techniques. In package dlm a constant DLM is represented as a list with
components FF, V, GG, W, having class "d1m". A random walk plus noise
model, with V' = 0.8 and W = 0.1, can be defined in R as follows:

> dlm(FF =1, V=0.8, GG =1, W= 0.1, m0O = 0, CO = 100)

Note that the mean and variance of the prior distribution of y must be
specified, as they are an integral part of the model definition. An alternative
way to define the same models is

> dlmModPoly(1, dV = 0.8, dW = 0.1, CO = 100)

This function has default values for m0, CO, dV and dWw (the last two
are used to specify the diagonal of V and W, respectively). In fact it also
has a default value for the order of the polynomial model, so the user must
be aware of these defaults before using them light-heartedly. In particular,
the default value for dV and dw should be more correctly thought as place
holders that are there just to allow a complete specification of the model.

Consider the second-order polynomial model obtained as

> myMod <- dlmModPoly ()

Individual components of the model can be accessed and modified in a
natural way by using the exctractor and replacement functions provided by
the package.

> FF (myMod)

[,11 [,2]
[1,] 10

> W(myMod)

(.11 [,2]
[1,] 0 0
[2,] 0 1
> mO (myMod)
[1] 00

> V(myMod) <- 0.8

In addition to dlmModPoly, d1m provides other functions to create DLMs
of standard types. They are summarized in Table 1. Except for dlmModARMA,

Function Model

d1lmModARMA | ARMA process

dlmModPoly | nth order polynomial DLM
dlmModReg | Linear regression

dlmModSeas | Periodic — Seasonal factors
dlmModTrig | Periodic — Trigonometric form

Table 1: Creator functions for special models.

which handles also the multivariate case, the other creator functions are
limited to the case of univariate observations. More complicated DLMs can
be explicitely defined using the general function dlm.

1.3 Combining models: sums and outer sums

From a few basic models, one can obtain more general models by means of
different forms of “addition”. In general, suppose that one has k independent
DLMs for m-dimensional observations, where the ith one is defined by the
system

(sl =siod o v W

00 = GO0+ wf?, w ~ N0, W)
m(()i) and C’éi) are the mean and variance of the initial state in DLM 4. Note
that the state vectors may have different dimensions p1, ..., pr across differ-
ent DLMs. Each model may represent a simple feature of the observation
process, such as a stochastic trend, a periodic component, and so on, so

that y, = yt(l) + -+ y,gk) is the actual observation at time ¢. This suggests to

combine, or add, the DLMs into a comprehensive one by defining the state
/ /
of the system by 6, = (9§1) Yo 9§k)), together with the matrices

Ft:(F(l) ""‘Ft(k))7 W:i%(i)’
GEI) l'_Vl[/t(l)
G =) Wy =)
G§k) I Wt(k)
oV
my = (m(()l)/, e ,m(()k)/), Co=
_ Cy”

The form just described of model composition can be thought of as a sum
of models. Package dlm provides a method function for the generic + for
objects of class dlm which performs this sum of DLMs.

For example, suppose one wants to model a time series as a sum of a
stochastic linear trend and a quarterly seasonal component, observed with
noise. The model can be set up as follows:

> dlmModPoly() + dlmModSeas (4)

The nonzero entries in the V' and W matrices can be specified to have
more meaningful values in the calls to dlmModPoly and/or dlmModSeas, or
changed after the combined model is set up.

There is another natural way of combining DLMs which resembles an
“outer” sum. Consider again the k£ models (1), but here the dimension of the
observations may be different for each model, say mq,...,mg. An obvious
way of obtaining a multivariate models including all the yfl) is to consider
the models independent and set y; = (yt(l)/, e ,ygk),). Note that each yt(l)
may itself be a random vector. This corresponds to the definition of a new

!/ /
DLM with state vector 0, = (le) ,...,Ht(k)), as in the previous case, and

matrices

_Ft(l) 7 _V;(l)
F =) Vi =)
i Ft(k)_ i Vt(k)
_Ggl) 7 'Wt(l)
G = , W = ,
i ng)_ i Wt(k)
_C’(()l)
my = (m(()l)/, e ,m(()k)l), Co =
_ Cy”

For example, suppose you have two time series, the first following a
stochastic linear trend and the second a random noise plus a quarterly sea-
sonal component, both series being observed with noise. A joint DLM for
the two series, assuming independence, can be set up in R as follow.

> dlmModPoly(dV = 0.2, dW = c(0, 0.5)) }+}
+ (dlmModSeas (4, dV = 0, dW = ¢c(0, 0, 0.35)) +
+ dlmModPoly (1, dV = 0.1, dW = 0.03))

1.4 Time-varying models

In a time-varying DLM at least one of the entries of F}, V;, G, or W;
changes with time. We can think of any such entry as a time series or,
more generally, a numeric vector. All together, the time-varying entries of
the model matrices can be stored as a multivariate time series or a numeric
matrix. This idea forms the basis for the internal representation of a time-
varying DLM. A object m of class d1lm may contain components named JFF,
JV, JGG, JW, and X. The first four are matrices of integers of the same
dimension as FF, V, GG, W, respectively, while X is an m by n matrix,
where n is the number of observations in the data. Entry (i,j) of JFF is
zero if the corresponding entry of FF is time invariant, or k if the vector
of values of Fy(i,j) at different times is stored in X[,k]. In this case the
actual value of FF[i,j] in the model object is not used. Similarly for the
remaining matrices of the DLM. For example, a dynamic linear regression

can be modeled as
Yt = ot + 2t + vt vy ~ N(0,V;)
Q=1+ Wat, Wayr ~ N0, Way)
Br = Bio1+wgy, wgy~N(0,Wgy).
Here the state of the system is 6; = (ay, B¢)’, with 3; being the regression

coefficient at time ¢ and x; being a covariate at time ¢, so that Fy = [1, xy].
Such a DLM can be set up in R as follows,

> u <- rnorm(25)
> myMod <- dlmModReg(u, dV = 14.5)
> myMod$JFF

[,11 [,2]
[1,] 0o 1

> head (myMod$X)

[,1]
[1,] 0.639
[2,]1 0.947
[3,] 3.128
[4,] 2.733
[5,] -0.480
[6,] 0.156

Currently the outer sum of time-varying DLMs is not implemented.

2 Maximum likelihood estimation

It is often the case that one has unknown parameters in the matrices defining
a DLM. While package d1m was primarily developed for Bayesian inference,
it offers the possibility of estimating unknown parameters using maximum
likelihood. The function d1mMLE is essentially a wrapper around a call to
optim. In addition to the data and starting values for the optimization
algorithm, the function requires a function argument that “builds” a DLM
from any specific value of the unknown parameter vector. We illustrate the
usage of d1lmMLE with a couple of simple examples.

Consider the Nile river data set. A reasonable model can be a randm walk
plus noise, with unknown system and observation variances. Parametrizing

variances on a log scale, to ensure positivity, the model can be build using
the function defined below.

> buildFun <- function(x) {
+ dlmModPoly (1, dV = exp(x[1]), dW = exp(x[2]))
+ }

Starting the optimization from the arbitrary (0,0) point, the MLE of the
parameter can be found as follows.

> fit <- dlmMLE(Nile, parm = c(0,0), build = buildFun)
> fit$conv

(11 0

> dlmNile <- buildFun(fit$par)
> V(dlmNile)

[,1]
[1,] 15100

> W(dlmNile)

[,1]
[1,] 1468

For comparison, the estimated variances obtained using StructTS are
> StructTS(Nile, "level")

Call:
StructTS(x = Nile, type = "level")

Variances:
level epsilon
1469 15099

As a less trivial example, suppose one wants to take into account a jump
in the flow of the river following the construction of Ashwan dam in 1898.
This can be done by inflating the system variance in 1899 using a multiplier
bigger than one.

> buildFun <- function(x) {

+ m <- dlmModPoly(1, dV = exp(x[1]))

+ m$JW <- matrix(1)

+ m$X <- matrix(exp(x[2]), nc = 1, nr = length(Nile))
+ j <- which(time(Nile) == 1899)

+ m$X[j,1] <- m$X[j,1] *» (1 + exp(x[3]1))

+ return(m)

+ }

> fit <- dlmMLE(Nile, parm = c(0,0,0), build = buildFun)
> fit$conv

(11 0

> dlmNileJump <- buildFun(fit$par)
> V(d1lmNileJump)

[,1]
[1,] 16300

> dimNileJump$X[c (1, which(time(Nile) == 1899)), 1]
[1] 2.79e-02 6.05e+04

The conclusion is that, after accounting for the 1899 jump, the level of
the series is essentially constant in the periods before and after that year.

3 Filtering, smoothing and forecasting

Thanks to the fact that the joint distribution of states and observations is
Gaussian, when all the parameters of a DLM are known it is fairly easy to
derive conditional distributions of states or future observations conditional
on the observed data. In what follows, for pair of integers (i, j), with i < 7,
we will denote by y;.; the observations from the ith to the jth, inclusive,
ie., y;,...,y;; asimilar notation will be used for states. The filtering distri-
bution at time t is the conditional distribution of ; given yi.;. The smooth-
ing distribution at time ¢ is the conditional distribution of 6y.; given 1.4,
or sometimes, with an innocuous abuse of language, any of its marginals,
e.g., the conditional distribution of 8, given y;., with s < ¢t. Clearly, for
s = t this marginal coincides with the filtering distribution. We speak of
forecast distribution, or predictive distribution, to denote a conditional dis-
tribution of future states and/or observations, given the data up to time

t. Recursive algorithms, based on the celebrated Kalman filter algorithm
or extensions thereof, are available to compute filtering and smoothing dis-
tributions. Predictive distributions can be easily derived recursively from
the model definition, using as “prior” mean and variance — mg and Cy — the
mean and variance of the filtering distribution. This is the usual Bayesian
sequential updating, in which the posterior at time ¢ takes the role of a prior
distribution for what concerns the observations after time ¢. Note that any
marginal or conditional distribution, in particular the filtering, smoothing
and predictive distributions, is Gaussian and, as such, it is identified by its
mean and variance.

3.1 Filtering

Consider again the last model fitted to the Nile river data on page 7. Taking
the estimated parameters as known, we can compute the filtering distribu-
tion using dlmFilter. If n is the number of observations in the data set,
dlmFilter returns the mean and variance of the n+ 1 filtering distributions
that can be computed from the data, i.e., the distribution of 8, given y;.; for
t=0,1,...,n (for t =0, this is by convention the prior distribution of 6).

> nileJumpFilt <- dlmFilter(Nile, dlmNileJump)
> plot(Nile, type = 'o', col = "seagreen")
> lines(dropFirst(nileJumpFilt$m), type = 'o', pch = 20, col =

The variances Cy,...,C, of the filtering distributions are returned in
terms of their singular value decomposition (SVD). The SVD of a symmetric
nonnegative definite matrix ¥ is ¥ = UD?U’, where U is orthogonal and
D is diagonal. In the list returned by dlmFilter, the U and D matrices
corresponding to the SVD of Cy,...,C), can be found as components U.C
and D.C, respectively. While U.C is a list of matrices, since the D part in the
SVD is diagonal, D.C consists in a matrix, storing in each row the diagonal
entries of succesive D matrices. This decomposition is useful for further
calculations one may be interested in, such as smoothing. However, if the
filtering variances are of interest per se, then d1m provides the utility function
dlmSvd2var, which reconstructs the variances from their SVD. Variances
can then be used for example to compute filtering probability intervals, as
illustrated below.

> attach(nileJumpFilt)
> v <- unlist(dlmSvd2var(U.C, D.C))
> pl <- dropFirst(m) + qnorm(0.05, sd = sqrt(v[-1]))

"brown'")

1200 1400
1

1000
Il

Nile

800

600
|

Figure 1: Nile data with filtered level

> pu <- dropFirst(m) + qnorm(0.95, sd = sqrt(v[-1]))
> detach()

> lines(pl, 1ty
> lines(pu, 1ty

2, col = "brown")
2, col "brown")

In addition to filtering means and variances, dlmFilter also returns
means and variances of the distributions of 6; given y1.,—1,t =1,...,n (one-
step-ahead forecast distributions for the states) and means of the distribu-
tions of y; given y1.4—1, t = 1,...,n (one-step-ahead forecast distributions
for the observations). The variances are returned also in this case in terms
of their SVD.

3.2 Smoothing

The function dlmSmooth computes means and variances of the smoothing
distributions. It can be given a data vector or matrix together with a specific
object of class dlm or, alternatively, a “filtered DLM” produced by d1mFil-
ter. The following R code shows how to use the function in the Nile river
example.

> nileJumpSmooth <- dlmSmooth(nileJumpFilt)

> plot(Nile, type = 'o', col = "seagreen")
> attach(nileJumpSmooth)

10

> lines(dropFirst(s), type = 'o', pch = 20, col = "brown")
> v <- unlist(dlmSvd2var(U.S, D.S))

> pl <- dropFirst(s) + gqnorm(0.05, sd
> pu <- dropFirst(s) + qunorm(0.95, sd
>
>
>

sqrt(v[-11))
sqrt(v[-1]))

detach()
lines(pl, 1ty = 2, col
lines(pu, 1ty = 2, col

"brown")
"brown')

Nile
1000 1200 1400
1 1 1

800
Il

600
|

Figure 2: Nile river data with smoothed level

As a second example, consider the UK gas consumption data set. On
a logarithmic scale, this can be reasonably modeled by a DLM containing
a quarterly seasonal component and a local linear trend, in the form of an
integrated random walk. We first estimate the unknown variances by ML.

> 1Gas <- log(UKgas)

> dlmGas <- dlmModPoly() + dlmModSeas (4)

> buildFun <- function(x) {

+ diag(W(dlmGas)) [2:3] <- exp(x[1:2])

+ V(dlmGas) <- exp(x[3])

+ return(dlmGas)

+ }

> (fit <- dImMLE(1Gas, parm = rep(0, 3), build = buildFun))$conv

(1] o

11

> dlmGas <- buildFun(fit$par)
> drop(V(d1mGas))

[1] 0.00182
> diag(W(dlmGas)) [2:3]
[1] 7.90e-06 3.31e-03

Based on the fitted model, we can compute the smoothing estimates of
the states. This can be used to obtain a decomposition of the data into a
smooth trend plus a stochastic seasonal component, subject to measurement
€ITOr.

> gasSmooth <- dlmSmooth(lGas, mod = dlmGas)

> x <- cbind(1Gas, dropFirst(gasSmooth$s[,c(1,3)]))
> colnames(x) <- c("Gas", "Trend", "Seasonal")

> plot(x, type = 'o', main = "UK Gas Consumption")

UK Gas Consumption

Gas

T TR S Y R B

Trend
5.0 55 6.0 6545 50 55 6.0 65 7.0

!

L

05
1

Seasonal
0.0

T T T T T T
1960 1965 1970 1975 1980 1985

Time

Figure 3: Gas consumption with “trend + seasonal” decomposition

3.3 Forecasting

Means and variances of the forecast distributions of states and observations
can be obtained with the function dlmForecast, as illustrated in the code

12

below. Means and variances of future states and observations are returned
in a list as components a, R, f, and Q.

> gasFilt <- dlmFilter(lGas, mod = dlmGas)

> gasFore <- dlmForecast(gasFilt, nAhead = 20)

> sqrtR <- sapply(gasFore$R, function(x) sqrt(x[1,1]))

> pl <- gasFore$al,1] + gnorm(0.05, sd = sqrtR)

> pu <- gasFore$a[,1] + qnorm(0.95, sd = sqrtR)

> x <- ts.union(window(1lGas, start = c(1982, 1)),

+ window(gasSmooth$s[,1], start = c(1982, 1)),

+ gasFore$al,1], pl, pu)

> plot(x, plot.type = "single", type = 'o', pch = c(1, 0, 20, 3, 3),

+ col = c("darkgrey", "darkgrey", "brown", "yellow", "yellow"),

+ ylab = "Log gas consumption")

> legend("bottomright", legend = c("Observed",

+ "Smoothed (deseasonalized)",

+ "Forecasted level", "907, probability limit"),
+ bty = 'n', pch = ¢(1, 0, 20, 3, 3), lty = 1,

+ col

c("darkgrey", "darkgrey", "brown", "yellow", "yellow"))

21 /

Observed
Smoothed (deseasonalized)
n
w —— Forecasted level
90% probability limit
T T T T T T
1982 1984 1986 1988 1990 1992

6.5
Il

Log gas consumption

6.0
Il

Time

Figure 4: Gas consumption forecast

13

4 Bayesian analysis of Dynamic Linear Models

If all the parameters defining a DLM are known, then the functions for
smoothing and forecasting illustrated in the previous section are all is needed
to perform a Bayesian analysis. At least, this is true if one is interested in
posterior estimates of unobservable states and future observations or states.
In almost every real world application a DLM contains in its specification
one or more unknown parameters that need to be estimated. Except for
a few very simple models and special priors, the posterior distribution of
the unknown parameters — or the joint posterior of parameters and states
— does not have a simple form, so the common approach is to use Markov
chain Monte Carlo (MCMC) methods to generate a sample from the poste-
rior!. MCMC is highly model- and prior-dependent, even within the class of
DLMs, and therefore we cannot give a general algorithm or canned function
that works in all cases. However, package dlm provides a few functions to
facilitate posterior simulation via MCMC. In addition, the package provides
a minimal set of tools for analyzing the output of a sampler.

4.1 Forward filtering backward sampling

One way of obtaining a sample from the joint posterior of parameters and
unobservable states is to run a Gibbs sampler, alternating draws from the
full conditional distribution of the states and from the full conditionals of the
parameters. While generating the parameters is model dependent, a draw
from the full conditional distribution of the states can be obtained easily
in a general way using the so-called Forward Filtering Backward Sampling
(FFBS) algorithm, developed independently by [CK, FS, S]. The algorithm
consists essentially in a simulation version of the Kalman smoother. An
alternative algorithm can be found in [DK]. Note that, within a Gibbs
sampler, when generating the states, the model parameters are fixed at their
most recently generated value. The problem therefore reduces to that of
drawing from the conditional distribution of the states given the observations
for a completely specified DLM, which is efficiently done based on the general
structure of a DLM.

In many cases, even if one is not interested in the states but only in
the unknown parameters, keeping also the states in the posterior distribu-
tion simplifies the Gibbs sampler. This typically happens when there are
unknown parameters in the system equation and system variances, since

! An alternative to MCMC is provided by Sequential Monte Carlo methods, which will
not be discussed here.

14

usually conditioning on the states makes those parameters independent of
the data and results in simpler full conditional distributions. In this frame-
work, including the states in the sampler can be seen as a data augmentation
technique.

In package d1m, FFBS is implemented in the function dlmBSample. To be
more precise, this function only performs the backward sampling part of the
algorithm, starting from a filtered model. The only argument of d1lmBSample
is in fact a dlmFiltered object, or a list that can be interpreted as such.

In the code below we generate and plot (Figure 5) ten simulated realiza-
tions from the posterior distribution of the unobservable “true level” of the
Nile river, using the random walk plus noise model (without level jump, see
Section 2). Model parameters are fixed for this example to their MLE.

> plot(Nile, type = 'o', col = "seagreen")

> nileFilt <- dlmFilter(Nile, dlmNile)

> for (i in 1:10) # 10 simulated "true" levels

+ lines(dropFirst(dlmBSample (nileFilt)), col = "brown")

Nile
1000 1200 1400
1]

800
Il

600
|

Figure 5: Nile river with simulated true levels

The figure would look much different had we used the model with a
jump!

15

4.2 Adaptive rejection Metropolis sampling

Gilks and coauthors developed in [GBT] a clever adaptive method, based
on rejection sampling, to generate a random variable from any specified
continuous distribution. Although the algorithm requires the support of
the target distribution to be bounded, if this is not the case one can, for
all practical purposes, restrict the distribution to a very large but bounded
interval. Package d1lm provides a port to the original C code written by Wally
Gilks with the function arms. The arguments of arms are a starting point,
two functions, one returning the log of the target density and the other being
the indicator of its support, and the size of the requested sample. Additional
arguments for the log density and support indicator can be passed via the

argument. The help page contain several examples, most of them
unrelated to DLMs. A nontrivial one is the following, dealing with a mixture
of normals target. Suppose the target is

k
F@) =" pio(w; s, 03),
i=1

where ¢(+; u, o) is the density of a normal random variable with mean p and
variance o2. The following is an R function that returns the log density at
the point x:

> Imixnorm <- function(x, weights, means, sds) {

+ log(crossprod(weights, exp(-0.5 * ((x - means) / sds) 2
+ - log(sds))))
+ }

Note that the weights p;’s, as well as means and standard deviations, are
additional arguments of the function. Since the support of the density is the
entire real line, we use a reasonably large interval as “practical support”.

> y <- arms (0, myldens = lmixnorm,

+ indFunc = function(x,...) (x > (-100)) * (x < 100),
+ n = 5000, weights = c(1, 3, 2),
+ means = c(-10, 0, 10), sds = c(7, 5, 2))

> summary (y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-32.80 -3.27 2.96 2.07 9.25 18.40

16

library (MASS)
truehist(y, prob = TRUE, ylim = c(0, 0.08), bty = 'o')
curve(colSums(c(1, 3, 2) / 6 *
dnorm(matrix(x, 3, length(x), TRUE),
mean = c(-10, 0, 10), sd = c(7, 5, 2))),
add = TRUE)
legend(-25, 0.07, "True density", 1ty = 1, bty = 'n')

vV + + + Vv Vv Vv

0.08
1

—— True density

0.06
Il

0.04
Il

0.02
Il

0.00
|

-30 -20 -10 0 10 20

Figure 6: Mixture of 3 Normals

A useful extension in the function arms is the possibility of generating
samples from multivariate target densities. This is obtained by generating
a random line through the starting, or current, point and applying the uni-
variate ARMS algorithm along the selected line. Several examples of this
type of application are contained in the help page.

4.3 Gibbs sampling: an example

We provide in this section a simple example of a Gibbs sampler for a DLM
with unknown variances. This type of model is rather common in applica-
tions and is sometimes referred to as d-inverse-gamma model.

Consider again the UK gas consumption data modeled as a local linear
trend plus a seasonal component, observed with noise. The model is based

17

on the unobserved state

0r = (1t Br Sﬁl) S?) 8§3))/7

where p; is the current level, G; is the slope of the trend, sgl), s§2) and sg?’)
are the seasonal components during the current quarter, previous quarter,

and two quarters back. The observation at time ¢ is given by
1
ytZMt+S§)+Ut, ve ~ N(0,07).

We assume the following dynamics for the unobservable states:

e = p— + Bi—1,

By = Bi—1 + wf, wtﬁ ~ N(0, U%)
s,gl) = —3751_)1 - 31@1 - 31@1 +wy, wtﬁ ~ N(0,07)
D),
=)

In terms of the DLM representing the model, the above implies

V= [02],
W = diag(0,03,02,0,0).

For details on the model, see [WH]. The unknown parameters are therefore
the three variances 02,0%7 and 2. We assume for their inverse, i.e., for
the three precisions, independent gamma priors with mean a, ag 2, a3 and
variance b, bg 2, b 3, respectively.

Straightforward calculations show that, adding the unobservable states
as latent variables, a Gibbs sampler can be run based on the following full

conditional distributions:

with

SSy = (y— Fiby),
t=1
T
S550,i = Z(et,z‘ - (Gtet—l)z’)Q, 1=2,3.

t=1

The full conditional of the states is normal with some mean and variance
that we don’t need to derive explicitely, since d1mBSample will take care of
generating 6g.,, from the appropriate distribution.

The function dlmGibbsIG, included in the package more for didactical

reasons than anything else, implements a Gibbs sampler based on the full
conditionals described above. A piece of R code that runs the sampler will
look like the following.

>
+
+
+

outGibbs <- dlmGibbsDIG(1lGas, dlmModPoly(2) + dlmModSeas(4),
a=1, b = 1000, alpha = 1, beta = 1000,
n.sample = 1100, ind = c(2, 3),
save.states = FALSE)

After discarding the first 100 values as burn in, plots of simulated values

and running ergodic means can be obtained as follows, see Figure 7.

+ VVVV +V +V +VVYVVYVVYV

burn <- 100

attach(outGibbs)

dv <- dV[-(1:burn)]

dW <- dwW[-(1:burn),]

detach ()

par (mfrow=c(2,3), mar=c(3.1,2.1,2.1,1.1))

plot(dV, type = '1', xlab = "", ylab = "",
main = expression(sigma~2))

plot(dw[, 1], type = '1', xlab = "", ylab = "",
main = expression(sigma[beta]"2))

plot(dw[, 2], type = '1', xlab = "", ylab = "",

main = expression(sigmal[s]~2))
use <- length(dV) - burn
from <- 0.05 * use
at <- pretty(c(0, use), n = 3); at <- at[at >= from]
plot(ergMean(dV, from), type = 'l', xaxt = 'n',
xlab = "", ylab = "")

19

0.002 0.003 0.004 0.005

0.001

0.0012 0.0014 0.0016

0.0010

2
o < Og O
?
)
r~ —
T i 2
< S -
? S
Q
n
: g
i 7 S
(]
i : o
i S
3 =
T T T T T T T T T T T T T T T T T T
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
o
(=)
-
o - —
o <
— o o
S S
o
N 8
-
8 S]
i g =
8 S g |
o 4 o
8 S
- S
T T T T T T
500 1000 500 1000 500 1000

Figure 7: Trace plots (top) and running ergodic means (bottom)

20

xlab = HH, ylab = HH)
axis(1, at = at - from, labels = format(at))

> axis(1, at = at - from, labels = format(at))

> plot(ergMean(dW[, 1], from), type = 'l1', xaxt = 'n’,
+ xlab = "", ylab = "")

> axis(1, at = at - from, labels = format(at))

> plot(ergMean(dW[, 2], from), type = 'l1', xaxt = 'n’,
+

>

Posterior estimates of the three unknown variances, from the Gibbs sam-
pler output, together with their Monte Carlo standard error, can be obtained
using the function mcmcMean.

> mcmcMean (cbind (dV[-(1:burn)], dW[-(1:burn), 1))

W.2 W.3
1.64e-03 1.74e-04 3.61e-03
(1.01e-04) (8.39e-06) (1.04e-04)

5 Concluding remarks

We have described and illustrated the main features of package dlm. Al-
though the package has been developed with Bayesian MCMC-based ap-
plications in mind, it can also be used for maximum likelihood estimation.
The main design objectives had been flexibility and numerical stability of the
filtering, smoothing, and likelihood evaluation algorithms. This two goals
are somewhat related, since naive implementations of the Kalman filter are
known to suffer from numerical instability for general DLMs. Therefore, in
an environment where the user is free to specify virtually any type of DLM,
it was important to try to avoid as much as possible the aforementioned
instability problems. The algorithms used in the package are based on the
sequential evaluation of variance matrices in terms of their SVD. While this
can be seen as a form of square root filter (smoother), it is much more robust
than the standard square root filter based on the propagation of Cholesky
decomposition. In fact, the SVD-based algorithm does not even require the
matrix W to be invertible. (It does, however, require V' to be nonsingular).

As far as Bayesian inference is concerned, the package provides the tools
to easily implement a Gibbs sampler for any univariate or multivariate DLM.
The functions dlmBSample to generate the states and arms, the multivariate
estension of ARMS, can be used alone or in combination in a Gibbs sampler,
allowing the user to carry out Bayesian posterior inference for a wide class
of models and priors.

21

References

[CK] Carter, C.K. and Kohn, R. (1994). On Gibbs sampling for state space
models. Biometrika, 81.

[DK] Durbin, J. and Koopman, S.J. (2001). Time Series analysis by state
space methods. Oxford University Press.

[FS] Fruwirth-Schnatter, S. (1994). Data augmentation and dynamic linear
models. journal of Time Series Analysis, 15.

[GBT] Gilks, W.R., Best, N.G. and Tan, K.K.C. (1995). Adaptive rejection
Metropolis sampling within Gibbs sampling (Corr: 97V46 p541-542 with
Neal, R.M.), Applied Statistics, 44.

[H] Harvey, A.C. (1989). Forecasting, Structural Time Series Models, and
the Kalman Filter. Cambridge University Press.

[S] Shephard, N. (1994). Partial non-Gaussian state space models.
Biometrika, 81.

[WH] West, M. and Harrison, J. (1997). Bayesian forecasting and dynamic
models. (Second edition. First edition: 1989), Springer, N.Y.

[ZL] Zhang, Y. and Li, R. (1996). Fixed-interval smoothing algorithm based
on singular value decomposition. Proceedings of the 1996 IEEFE interna-
tional conference on control applications.

22

