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1 Introduction

This manual has been written as a more generic, user-friendly guide to using
diveRsity in the R environment than the help PDF distributed with the
package on CRAN. It will outline briefly how to get the latest version of R,
how to install the diveRsity package as well as how to install suggested
packages. Fully reproducible Worked examples for functions will be provide
as a guide to how the package should be implemented. Effort has been made
to keep R jargon to a minimum to ensure accessibility for R beginners.

1.1 About R

R is an extremely powerful and popular software for statistical programming.
It is very well supported by a dedicated group of people known as the R
core development team [1], as well as an active community of developers and
useRs. More information about R can be found at http://www.r-project.
org/about.html.

1.2 About diveRsity

diveRsity is a package containing five functions written in the statistical
programming environment R. It allows the calculation of both genetic di-
versity partition statistics (e.g. GST & FST ), genetic differentiation statistics
(e.g. G′

ST and DJost), and locus informativeness for ancestry assignment (e.g.
In), as well as basic population parameters such as allele frequencies. di-

veRsity provides useRs with various option to calculate bootstrapped 95%
ci’s both across loci and for pairwise population comparisons. All of these
results are returned in convenient formats and can be plotted interactively.
The calculation of diversity statistics such as GST , G′

ST and Dest is carried
out using the function div.part, locus informativeness for ancestry infer-
ence (i.e. In) is calculated using in.calc and basic population statistics are
calculated using readGenepop.user. Full descriptions and explanation of
functions are provided below.
diveRsity was written to ensure that even R beginners can carry out genetic
analyses in R without major difficulties. By automatically writing analysis
results to file, useRs do not need to understand how to access variables in
the R environment, let alone know what a variable is. However, for more
experienced useRs, all analysis functions return results variables to the R

environment, details of which are provided in the Function usage section
below.
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1.2.1 What’s new?

Versions 1.2.0 and up introduce a complete rewrite of diveRsity v1.0. All
subsequent versions have been vectorized in all but the least computationally
intensive pieces of code, resulting in much faster execution speed.

Parallel computations are also now available when using the in.calc and
div.part functions. These two major changes mostly affect the speed at
which the program executes. An additional results object, (i.e. pairwise) is
now also returned from the function div.part. This additional functionality
now allows useRs to calculate pairwise statistics without having to run the
computationally intensive bootstrap algorithm, thus saving time.

As of version 1.2.3, Weir and Cockerham’s (1984) F-statistics are also calcu-
lated for global estimates, locus estimates and pairwise population estimates
as well as 95% confidence intervals in the function div.part.

The calculation of Weir and Cockerham’s F-statistics increases analysis time
by around 0.3 seconds per bootstrap replicate, thus leading to significant
increases in overall exacution time if a large number of bootstrap iterations
are used. For this reason, the calculation of F-statistics has been included as
an optional extra through the new argument WC_Fst.

Versions 1.3.0 an up includes additional plotting functions to aid in data vi-
sualisation. These new functions are;

corPlot - provides useRs with the ability to plot locus GST , θ, G′
ST and DJost

against the number of alleles at each locus. This method may be useful to
assess whether particular loci might be suitable for the inference of demo-
graphic processes (i.e. they are not unduly affected by mutation).

difPlot - is a function intended to be used as a data exploration tool. This
function plots pairwise estimated statistics, allowing useRs to easily visualise
pairwise comparisons of interest (e.g. highly differentiated population pairs).

Version 1.3.2 provides a more flexibility in reading genepop files. It also re-
turns more informative error when genepop files are in the wrong format.
This version also fixes a bug in writing results to disk. If outfile is set to
NULL in the functions div.part or in.calc, no directories will be created.

4



As of version 1.3.6, a web app verison of diveRsity is packaged with the
CRAN version. This application can be launched simply by typing:

divOnline()

This web app allows users to carry out most of the analyses provided bu the
div.part function, with additional plotting options.
Version 1.3.6 also contains a new function allowing the calculation of genetic
heterogeniety, using X2 tests. This new function is named chiCalc. See
?chiCalc for details.
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2 Setup

2.1 Installing R

To use diveRsity you will need to download and install R.
It is available at:
http://cran.r-project.org/

Simply download the R distribution appropriate for your operating system
and install as normal.

2.2 Installing diveRsity

diveRsity is currently available on CRAN (The Comprehensive R Archive
Network), thus installation is simple. Launch R, and in the console (you
will see the ’>’ symbol when R is ready for you to type), use the following
command:

install.packages("diveRsity")

The package will be updated regularly, both with added functionality and
to fix bugs. The most up to date notes and versions of the package can be
found at:
http://diversityinlife.weebly.com/software.html.
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2.3 Installing optional enhancer packages

The dependency plotrix [2] will download automatically if you install diveRsity
from CRAN. Suggested/optional packages must be installed manually (exclud-
ing parallel, which is distributed with R.
Optional packages are:
xlsx — writes results to .xlsx. [3]
sendplot — Plots results to .html files with tool-tip information. [4]
doSNOW — Used in parallel computations (Linux). [5]
doParallel — Used in parallel computations (Windows). [6]
snow — Used in parallel computations (Linux). [7]
parallel — Used in parallel computations (Linux & Windows). [8]
foreach — Used in parallel computations (Linux & Windows). [9]
iterators — Used in parallel computations (Linux & Windows). [10]
Each of these packages can be installed using the below command;

install.packages("package_name")

Just replace ‘package_name’ with the name of the package you want to install.
See ?install.packages for details.

2.4 Loading diveRsity

To load diveRsity in the current R session, type the following into the R
console:

library("diveRsity")

You will not need to load any of the other dependencies or optional packages
as diveRsity will do this as and when it uses additional packages. After
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loading diveRsity into your current R session all of its functions are avail-
able for you to use.

For convenient access to usage information on each function type:

? div.part

? in.calc

? readGenepop.user

? corPlot

? difPlot

?chiCalc

?divOnline

Each of these commands will provide information on function usage. The
help pages associated with each function describe in detail how each argument
should be passed to the function.
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3 Function details

3.1 div.part()

div.part (diversity partition), allows for the calculation of three main di-
versity partition statistics and their respective estimators. The function can
be used to mainly explore locus values to identify ’outliers’ and also to visu-
alise pairwise differentiation between populations. Bootstrapped confidence
intervals are calculated also. Results can be optionally plotted for data ex-
ploration purposes. The statistics and their basic formulae are as follows:

3.1.1 Standard formulae

GST [11, 12]

GST =
DST

HT

(1)

Where DST = HT −HS , HT is the total heterozygosity and HS is intra-population het-

erozygosity.

G′
ST [13]

G′
ST =

GST

GST (max)

(2)
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Where GST is as above, GST (max) =
HT (max)−HS

HT (max)
and HT (max) calculated as HT (max) =

(k−1+HS)
k and is the maximum possible HT value given the observed within sample het-

erozygosity.

DJost [14]

DJost =

[
(HT −HS)

(1−HS)

] [
n

(n− 1)

]
(3)

Where HT and HS are as defined above, and n is the number of population samples.
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3.1.2 Estimator formulae

The estimators of both GST and G′
ST were calculated by simply substituting

the HS and HT components of each statistic with their estimators calcu-
lated using equations 4 and 5 respectively. DestChao was calculated using the
method described in [15] (eqn 6 below). The formulae are as follows:

ĤS [12]

ĤS = HS

[
2N̄

(2N̄ − 1)

]
(4)

Where HS is the inter-population heterozygosity and N̄ is the harmonic mean of sample

size across all samples.

ĤT [12]

ĤT = HT +

[
ĤS

(2N̄n)

]
(5)

Where HT is the total heterozygosity, ĤS is as defined in equation (4), N̄ is the harmonic
mean of sample sizes and n is the number of population samples.
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Dest(Chao) [15, 14]

Dest(Chao) =
1

[( 1
A

) + var(D)( 1
A

)3]
(6)

Where A is the arithmetic mean of DJost across loci, and var(D) is the variance of DJost

across loci.

FST (i.e. θ̂) [16, 17]

θ̂ =
σ̂2
P

σ̂2
P + σ̂2

I + σ̂2
G

(7)

Where σ̂2
P is the sum of variance components for populations, σ̂2

I is the sum of variance

components for individuals within populations and σ̂2
G is the sum of variance components

for alleles within individuals.

3.1.3 Bootstrapping

The variance each statistic can be assessed using the bootstrapping method
implemented in diveRsity. 95% confidence intervals are calculated using
the method described in [18].
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3.2 in.calc()

in.calc allows the calculation of locus informativeness for the inference of
ancestry both across all population samples and pairwise comparisons. These
parameters can be bootstrapped using the same procedure as above to obtain
95% confidence intervals. The basic equations for both the allele specific and
locus specific calculation of In are as follows:

In(alleles) [19]

In(Q; J = j) = −pjlogepj +
K∑
i=1

pij
K
logepij (8)

Where pj is the parametric mean frequency of the jth allele across populations, loge is the

natural logarithm, pij is the frequency of the jth allele in the ith population, and K is the

number of populations.

In(locus) [19]

In(Q; J) =
N∑
j=1

In(Q; J = j) (9)

Where N is the number of allele at the locus of interest and In(Q; J = j) is as in equation

7.
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3.3 readGenepop.user()

Although the readGenepop.user function is used extensively in both div.part

and in.calc, its complexity is well hidden from general useRs. However, it
has been included in diveRsity as a usable function for more experienced
useRs, who may find it useful for data exploration and the development of
analysis methods. As of version 1.3.0, this function is also implemented for
use with the function corPlot. The function readGenepop.user returns up
to 18 distinct variables (described in detail below), some of which have
particularly complex structures. Although this manual provides basic sum-
maries of each returned variable, for the function to be useful, useRs are
advised to explore the individual objects. This can be done using functions
such as str, names and typeof.

3.4 corPlot()

New to v1.3.0
This function allows useRs to graphically visualise the relationship between
locus polymorphism (i.e. Number of alleles) and corresponding GST , θ, G′

ST

and DJost values per locus. This information is plotted along with the re-
spective Pearson’s product-moment correlation coefficients for each compar-
ison. This information is intended to help useRs to decide whether it would
be appropriate to use their particular loci for the inference of demographic
processes (i.e.effective number of migrants per generation). Typically this
is done following the relationship between FST and Nm arising under the
finite-island model from the following formula:

FST ≈
1

4Nm+ 1
(10)

Where FST is the standardised measure of genetic variance among populations (i.e. GST

or θ in this package), N is the effective number of breeding individuals and m is the mi-
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gration rate among populations.

The requirement to validate the use of certain marker types to infer demog-
raphy is particularly important given that such information is often used to
inform conservation and management strategies. It has been shown exten-
sively in the literature that the relationship between FST and Nm in equation
10 breaks down if other evolutionary forces are strong (e.g. [20]). For exam-
ple if migration rate (m) is not� than mutation rate (µ), then FST 6= 1

4Nm+1
,

and the quantity Nm cannot be accurately derived.
For marker loci to be useful in the inference of demography, the the effects of
such demographic processes must be detectable independently of the affects
of processes such as mutation. As demographic processes are expected to
have similar effects at all neutral loci, it is reasonable to expect that where
mutation/selection/range constraints are having negligible effects on diver-
gence at a particular set of loci, FST should be more or less equal across
these loci. corPlot allows useRs to visualise if this is in fact the case. In gen-
eral, the function will allow useRs to determine if mutation (assumed to be a
major factor contributing to the the number of allele per locus), is having a
noticeable effect on FST thus rendering them unsuitable for the inference of
demography. As corPlot returns correlation plots of GST , θ, G′

ST and DJost

against the number of alleles per locus, useRs have the additional benefit of
assessing the effect of mutation on the differentiation statistics (e.g. DJost),
which are more sensitive to the effects of mutation.
There is both theoretical and empirical evidence for this approach to assess-
ing of the effects of processes other than migration and drift on divergence
at neutral loci. O’Reilly et al (2004) [21], demonstrated from empirical data
that FST (i.e. θ, specifically) had an inverse relationship with allelic rich-
ness in walleye pollock. Although the authors of this study attributed this
observation to homoplasious mutations, the general affect is the same (i.e.
mutational processes obscure divergence due to demographic processes). The
results from this study can also be interpreted in light of the fact that FST

has a theoretical maximum value defined as:

Fst(max) =
HT (max) −HS

HT (max)

(11)
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Where HT (max) is the maximum possible total heterozygosity given the observed subpop-
ulation heterozygosity, HS .

Thus, because of the negative dependence of FST on heterozygosity, and the
positive dependence of heterozygosity on number of alleles, we can predict a
negative relationship between FST and number of alleles. The thrust of this
argument is depicted in the figure below, where we can see the response of
both GST and DJost to the number of unique alleles at a locus (Following
Jost 2008 [14]).

The relationship between the number of unique alleles
per subpopulation and GST and DJost
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From this figure, it is clear that where the number of alleles at a locus is
high (thus heterozygosity is high), GST is expected to be low. It is important
to note that the negative relationship for GST and positive relationship for
DJost, are complex, with multiple contributing factors. Thus this method
should not be seen as definitive, but rather as a method to assess whether
caution must be exercised when applying a particular marker set to address
specific questions in populations of interest.

3.5 difPlot()

New to v1.3.0
difPlot is yet another plotting function introduced to help useRs easily vi-
sualise trends in their analysis results. Modern population genetic studies
typically involve large numbers of population samples. It is often useful
to know the pairwise relationships between each of these population sam-
ples. Due to the relationship between the number of sampled populations
and the maximum number of possible pairwise comparisons, shown below,
pin-pointing comparisons of interest can be very difficult.

17



The number of possible pairwise comparisons as a
function of the number of sampled populations

To overcome this problem, difPlot plots the pairwise values calculated by
the function div.part using a diagonal matrix coupled with a colour gradient
used to indicate the magnitude of a particular pairwise value. The function
plots the estimated pairwise values for GST , θ, G′

ST and DJost.
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3.6 chiCalc

New to v1.3.6
chiCalc allows the calculation of X2 statistics for population genetic het-
erogeneity. The function contains a unique feature which allows users to
exclude particular alleles if they are not observed frequently enough to be
considered reliably. This feature allows a more conservative assessment of
population genetic structure, but may results in a loss of power to detect
actual differences.

3.7 divOnline

New to v1.3.6
divOnline is a simple function which allows users to launch a web app version
of the div.part function. This function provides a less flexible but much
more user friendly interface for the use of the diveRsity package. The web
app was built using the shiny package from RStudio and Inc [22].
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4 Function Usage

In this section the arguments and returned values for each function are ex-
plained.

4.1 div.part()

The general usage of this function is as follows:

div.part(infile, outfile = NULL, gp = 3, WC_Fst = FALSE,

bs_locus = FALSE, bs_pairwise = FALSE,

bootstraps = 0, Plot = FALSE, parallel = FALSE)

4.1.1 Arguments

infile Specifies the name of the ‘genepop’ [23] file from which the
statistics are to be calculated This file can be in either the
3 digit of 2 digit format. The name must be a character
string.

outfile Allows useRs to specify a prefix for an output folder. Name
must a character string enclosed in either “” or ‘’.

gp Specifies the digit format of the infile. Either 3 (default)
or 2.

WC_Fst A logical indication as to whether Weir and Cockerham’s,
1984 F-statistics should be calculated. This option will in-
crease analysis time.

bs_locus Gives useRs the option to bootstrap locus statistics. Results
will be written to .xlsx workbook by default if the package
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xlsx is installed, and to a .html file if Plot=TRUE. If xlsx

is not installed, results will be written to .txt files.

bs_pairwise Gives useRs the option to bootstrap statistics across all loci
for each pairwise population comparison. Results will be
written to a .xlsx file by default if the package xlsx is in-
stalled, and to a .html file if Plot=TRUE. If xlsx is not in-
stalled, results will be written to .txt files.
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Arguments cont.

bootstraps Determines the number of bootstrap iterations to be carried
out. The default value is bootstraps = 0, this is only valid
when all bootstrap options are false. There is no upper limit
on the number of bootstrap iterations, however very large
numbers of bootstrap iterations for pairwise calculations (>
1000) may take a long time to run for large data sets and may
also lead to excessive RAM consumption. As an example,
a test data set containing over 4000 individuals across 97
population samples typed for 15 microsatellite loci, took 1.5
days to complete on a Windows 7 ultimate 64bit machine
with an Intel Core i5-2435M CPU @ 2.40GHz x 4.

Plot Optional interactive .html image files of the plotted boot-
strap results for loci if bs_locus = TRUE and pairwise popu-
lation comparisons if bs_pairwise = TRUE and the package
sendplot is installed. The default option is Plot = FALSE.

parallel A logical argument specifying if computations should be
run in parallel on all available CPU cores. If parallel

= TRUE, batches of jobs will be distributed to all cores re-
sulting in faster completion. In Windows, the packages
doParallel, iterators, parallel (distributed with R) and
foreach must be installed to use parallel computation. In
Linux the packages doSNOW, parallel, snow, iterators and
foreach should be installed.
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4.1.2 Returned values

Results returned by div.part vary depending on the argument options cho-
sen. If the packages xlsx and sendplot are installed, results will be written
to a single .xlsx workbook and .png/.html files providing Plot = TRUE.
Alternatively, if these packages are unavailable the plot option is no longer
available. Results will be written to multiple .txt files, the number of which
varies between three and five depending on the argument options chosen.
An example screenshot of the .xlsx output file is shown below:
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Returned values cont.

Examples of the interactive plots written, if xlsx is available, are given be-
low. Error bars represent bootstrapped 95% confidence intervals, and the red
dotted lines represent the global statistic values.

Example of bootstrapped
locus results plot

Example of bootstrapped
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pairwise results plot
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Returned values cont.

For useRs wishing to carry out post analysis manipulations, all results from
div.part are returned to the R environment. Depending on the bootstrap
options chosen these results include between three to five of the variables

below:

$standard A matrix containing identical data to the Standard stats
worksheet in the .xlsx workbook or the Standard-stats[div.part].txt
text file. The last row in this matrix represents statistics cal-
culate across all population samples and loci.

H_st D_st G_st G_hed_st D_jost

Locus1 0.0659 0.0224 0.0328 0.1093 0.0791

Locus2 0.0058 0.0029 0.0058 0.0127 0.0070

Locus3 0.3887 0.0647 0.0721 0.5049 0.4664

Locus4 0.0882 0.0290 0.0415 0.1429 0.1058

Locus5 0.2683 0.0266 0.0287 0.3414 0.3219

Locus6 0.1536 0.0306 0.0368 0.2143 0.1843

Locus7 0.0533 0.0202 0.0315 0.0935 0.0640

Locus8 0.0255 0.0192 0.0724 0.1008 0.0306

Locus9 0.3616 0.0244 0.0255 0.4484 0.4340

Locus10 0.3585 0.0522 0.0576 0.4630 0.4302

Global NA NA 0.0493 0.2163 0.1757

loci
A list of locus names
H st
Between subpopulation heterozygsity per locus
D st
Absolute differentiation per locus [11]
G st
F st analogue for multiple alleles per locus [11]
G hed st
Hedrick’s standardized “differention” per locus [13]
D jost
Jost’s true allelic differentiation per locus [14]
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Returned values cont.

$estimate A matrix containing identical data to the Estimated stats
worksheet in the .xlsx workbook or the Estimated-stats[div.part].txt
text file. The last row in this matrix represents statistics cal-
culate across all population samples and loci.

Harmonic_N H_st_est D_st_est G_st_est G_hed_st_est D_Jost_est Fis_WC

Locus1 43.1218 0.6841 0.0160 0.0234 0.0799 0.0578 0.0363

Locus2 43.5209 0.5035 -0.0019 -0.0038 -0.0084 -0.0046 -0.0474

Locus3 43.6403 0.8998 0.0566 0.0629 0.4688 0.4332 0.0266

Locus4 43.4476 0.7012 0.0225 0.0321 0.1134 0.0840 0.0205

Locus5 42.7674 0.9291 0.0177 0.0191 0.2542 0.2397 0.0539

Locus6 43.4476 0.8329 0.0228 0.0274 0.1675 0.1441 0.2010

Locus7 43.4476 0.6429 0.0142 0.0221 0.0670 0.0459 0.0173

Locus8 43.2566 0.2657 0.0168 0.0632 0.0884 0.0268 0.1976

Locus9 43.0673 0.9587 0.0153 0.0160 0.3352 0.3244 0.0407

Locus10 43.2469 0.9083 0.0439 0.0483 0.4181 0.3885 0.0448

Global NA NA NA 0.0397 0.1806 0.1462 0.0655

Fst_WC Fit_WC

Locus1 0.0257 0.0610

Locus2 -0.0042 -0.0518

Locus3 0.0745 0.0991

Locus4 0.0357 0.0555

Locus5 0.0222 0.0749

Locus6 0.0300 0.2250

Locus7 0.0258 0.0427

Locus8 0.0689 0.2529

Locus9 0.0189 0.0588

Locus10 0.0564 0.0986

Global 0.0456 0.1081

loci
A list of locus names
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Harmonic N
Harmonic mean number of individuals typed per locus
H st est
Estimator of between subpopulation heterozygosity [12]
D st est
Estimator of absolute differentiation [12]
G st est
Nearly unbiased estimator of G st [12]
G hed st est
Estimator of Hedrick’s G’ st [13]
D Jost est
Estimator of Jost’s D [14]
Fis WC
Weir and Cockerham’s inbreeding coefficient estimator [16]
Fst WC
Weir and Cockerham’s fixation index estimator [16]
Fit WC
Weir and Cockerham’s overall fixation index estimator [16]
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Returned values cont.

$pairwise A list of six (WC_Fst = FALSE) nine (WC_Fst = TRUE) ma-
trices containing pairwise diversity statistics without boot-
strapped confidence intervals.

[1] Gst

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0077 NA NA NA

pop3, 0.0401 0.0351 NA NA

pop4, 0.0349 0.0307 0.009 NA

[1] G_hed_st

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0486 NA NA NA

pop3, 0.2562 0.2293 NA NA

pop4, 0.2271 0.2041 0.0606 NA

[1] D_Jost

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0409 NA NA NA

pop3, 0.2254 0.2011 NA NA

pop4, 0.1989 0.1790 0.0519 NA

[1] Gst_est
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pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0019 NA NA NA

pop3, 0.0341 0.0287 NA NA

pop4, 0.0296 0.0251 0.0032 NA

[1] G_hed_st_est

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0124 NA NA NA

pop3, 0.2264 0.1954 NA NA

pop4, 0.1992 0.1732 0.0224 NA

[1] D_Jost_est

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0027 NA NA NA

pop3, 0.1803 0.1579 NA NA

pop4, 0.1484 0.1325 0.0102 NA

[1] Fis_WC

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0908 NA NA NA

pop3, 0.0723 0.0832 NA NA

pop4, 0.0711 0.0806 0.0635 NA

[1] Fst_WC

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA
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pop2, 0.0027 NA NA NA

pop3, 0.0647 0.0543 NA NA

pop4, 0.0563 0.0478 0.0057 NA

[1] Fit_WC

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0933 NA NA NA

pop3, 0.1323 0.1331 NA NA

pop4, 0.1233 0.1245 0.0689 NA
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Returned values cont.

$bs_locus A list containing six (WC_Fst = FALSE) - nine (WC_Fst =

TRUE) matrices of locus values for each estimated statistic,
along with their respective 95% confidence interval.

[1] Gst

Actual Lower_CI Upper_CI

Locus1 0.0328 0.0009 0.0647

Locus2 0.0058 -0.0171 0.0287

Locus3 0.0721 0.0586 0.0856

global 0.0493 0.0446 0.0540

[1] G_hed_st

Actual Lower_CI Upper_CI

Locus1 0.1093 0.0207 0.1979

Locus2 0.0127 -0.0359 0.0613

Locus3 0.5049 0.4374 0.5724

global 0.2163 0.1993 0.2333

[1] D_Jost

Actual Lower_CI Upper_CI

Locus1 0.0791 0.0141 0.1441

Locus2 0.0070 -0.0198 0.0338

Locus3 0.4664 0.3999 0.5329

global 0.1757 0.1614 0.1900

[1] Gst_est
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Actual Lower_CI Upper_CI

Locus1 0.0234 -0.0087 0.0555

Locus2 -0.0038 -0.0268 0.0192

Locus3 0.0629 0.0493 0.0765

global 0.0397 0.0350 0.0444

[1] G_hed_st_est

Actual Lower_CI Upper_CI

Locus1 0.0799 -0.0131 0.1729

Locus2 -0.0084 -0.0582 0.0414

Locus3 0.4688 0.3957 0.5419

global 0.1806 0.1628 0.1984

[1] D_Jost_est

Actual Lower_CI Upper_CI

Locus1 0.0578 -0.0103 0.1259

Locus2 -0.0046 -0.0320 0.0228

Locus3 0.4332 0.3618 0.5046

global 0.1462 0.1300 0.1624

[1] Fis_WC

Actual Lower_CI Upper_CI

Locus1 0.0363 -0.0419 0.1145

Locus2 -0.0474 -0.1438 0.0490

Locus3 0.0266 -0.0111 0.0643

global 0.0655 0.0558 0.0752

[1] Fst_WC

Actual Lower_CI Upper_CI

Locus1 0.0257 -0.0114 0.0628
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Locus2 -0.0042 -0.0304 0.0220

Locus3 0.0745 0.0583 0.0907

global 0.0456 0.0406 0.0506

[1] Fit_WC

Actual Lower_CI Upper_CI

Locus1 0.0610 -0.0166 0.1386

Locus2 -0.0518 -0.1424 0.0388

Locus3 0.0991 0.0597 0.1385

global 0.1081 0.0963 0.1199
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Returned values cont.

$bs_pairwise A list containing six (WC_Fst = FALSE) - nine (WC_Fst =

TRUE) matrices of pairwise values for each estimated statis-
tic, along with their respective 95% confidence interval.

[1] Gst

Actual Lower_CI Upper_CI

pop1, vs. pop2, 0.0077 0.0034 0.0120

pop1, vs. pop3, 0.0401 0.0332 0.0470

pop1, vs. pop4, 0.0349 0.0293 0.0405

pop5, vs. pop6, 0.0281 0.0218 0.0344

[1] G_hed_st

Actual Lower_CI Upper_CI

pop1, vs. pop2, 0.0486 0.0274 0.0698

pop1, vs. pop3, 0.2562 0.2208 0.2916

pop1, vs. pop4, 0.2271 0.1941 0.2601

pop5, vs. pop6, 0.1943 0.1583 0.2303

[1] D_Jost

Actual Lower_CI Upper_CI

pop1, vs. pop2, 0.0409 0.0233 0.0585

pop1, vs. pop3, 0.2254 0.1934 0.2574

pop1, vs. pop4, 0.1989 0.1688 0.2290

pop5, vs. pop6, 0.1710 0.1388 0.2032

[1] Gst_est
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Actual Lower_CI Upper_CI

pop1, vs. pop2, 0.0019 -0.0023 0.0061

pop1, vs. pop3, 0.0341 0.0273 0.0409

pop1, vs. pop4, 0.0296 0.0240 0.0352

pop5, vs. pop6, 0.0217 0.0154 0.0280

[1] G_hed_st_est

Actual Lower_CI Upper_CI

pop1, vs. pop2, 0.0124 -0.0107 0.0355

pop1, vs. pop3, 0.2264 0.1894 0.2634

pop1, vs. pop4, 0.1992 0.1647 0.2337

pop5, vs. pop6, 0.1568 0.1186 0.1950

[1] D_Jost_est

Actual Lower_CI Upper_CI

pop1, vs. pop2, 0.0027 -0.0191 0.0245

pop1, vs. pop3, 0.1803 0.1468 0.2138

pop1, vs. pop4, 0.1484 0.1120 0.1848

pop5, vs. pop6, 0.1199 0.0759 0.1639

[1] Fis_WC

Actual Lower_CI Upper_CI

pop1, vs. pop2, 0.0908 0.0772 0.1044

pop1, vs. pop3, 0.0723 0.0500 0.0946

pop1, vs. pop4, 0.0711 0.0540 0.0882

pop5, vs. pop6, 0.0420 0.0247 0.0593

[1] Fst_WC

Actual Lower_CI Upper_CI

pop1, vs. pop2, 0.0027 -0.0056 0.0110
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pop1, vs. pop3, 0.0647 0.0521 0.0773

pop1, vs. pop4, 0.0563 0.0459 0.0667

pop5, vs. pop6, 0.0417 0.0300 0.0534

[1] Fit_WC

Actual Lower_CI Upper_CI

pop1, vs. pop2, 0.0933 0.0818 0.1048

pop1, vs. pop3, 0.1323 0.1146 0.1500

pop1, vs. pop4, 0.1233 0.1064 0.1402

pop5, vs. pop6, 0.0820 0.0627 0.1013
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4.2 in.calc()

The general usage of this function is as follows:

in.calc(infile, outfile = NULL, gp = 3, bs_locus = FALSE,

bs_pairwise = FALSE, bootstraps = 0, Plot = FALSE

parallel = FALSE)

4.2.1 Arguments

infile Specifying the name of the ‘genepop’ [23] file from which
the statistics are to be calculated This file can be in either
the 3 digit of 2 digit format. The name must be a character
string.

outfile Allows useRs to specify a suffix for output folder and files.
Name must a character string enclosed in either “” or ‘’.

gp Specifies the digit format of the infile. Either 3 (default)
or 2.

bs_locus Gives useRs the option to bootstrap locus statistics. Results
will be written to .xlsx file by default if the package xlsx

is installed, and to a .png file if Plot=TRUE. If xlsx is not
installed, results will be written to .txt files.

bs_pairwise Gives useRs the option to bootstrap statistics across all loci
for each pairwise population comparison. Results will be
written to a .xlsx file by default if the package xlsx is in-
stalled. If xlsx is not installed, results will be written to
.txt files.
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Arguments cont.

bootstraps Determines the number of bootstrap iterations to be carried
out. The default value is bootstraps = 0, this is only valid
when all bootstrap options are false. There is no upper limit
on the number of bootstrap iterations, however very large
numbers of bootstrap iterations for pairwise calculations (>
1000) may take a long time to run for large data sets.

Plot Optional .png image file of the plotted bootstrap results for
locus In if bs_locus = TRUE. The default option is Plot =

FALSE.

parallel A logical argument specifying if computations should be
run in parallel on all available CPU cores. If parallel

= TRUE, batches of jobs will be distributed to all cores re-
sulting in faster completion. In Windows, the packages
doParallel, iterators, parallel and foreach must be
installed to use parallel computation. In Linux the packages
doSNOW, parallel, snow, iterators and foreach should
be installed.

39



4.2.2 Returned values

Values returned from in.calc are a single .xlsx workbook (if the package
xlsx is installed), containing between one to three worksheets, (In_allele_stats
by default or separate .txt files (if xlsx is unavailable). If Plot = TRUE an
additional .png plot file will be written. An example of a .xlsx workbook and
a .png plot are given below:

Example of bootstrapped locus In results
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Example of bootstrapped locus In results plot

41



Returned values cont.

For useRs wishing to carry out post analysis manipulations, all results from
in.calc are returned to the R environment. Depending on the bootstrap
options chosen these results include between one to three of the variables

below:

Allele_In A character matrix of allelic In values per locus along with
locus sums.

Allele.1 Allele.2 Allele.3 Allele.4 Allele.5 Sum

Locus1 0.0036 0.0036 0.0144 0.004 0.0178 0.0581

Locus2 0.0095 0.0015 0.0013 0.0123

Locus3 0.0473 0.004 0.0098 0.0234 0.027 0.4482

Locus4 0.0032 0.0029 0.0053 0.0135 0.0109 0.08

Locus5 0.0111 0.0029 0.0042 0.0045 0.0044 0.3983

Locus6 0.0394 0.0379 0.0181 0.005 0.0352 0.2839

Locus7 0.0077 0.0131 0.0046 0.0087 0.0166 0.1068

Locus8 0.0157 0.0469 0.0054 0.0048 0.0728

Locus9 0.0107 0.0075 0.0069 0.0054 0.0081 0.4571

Locus10 0.0038 0.0232 0.0091 0.0326 0.0295 0.4799

Each row of this results matrix represents each locus in the infile. Each
column represents the allele specific In per locus except the last column,
which contains the sum of allele In for each locus.
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Returned values cont.

l_bootstrap A character matrix of locus In values as well as 95% con-
fidence intervals, calculated from bootstraps (Manly, 1997).
Returned when bs_locus = TRUE.

In Lower_95CI Upper_95CI

Locus1 0.0581 0.0340 0.0822

Locus2 0.0123 -0.0056 0.0302

Locus3 0.4482 0.4147 0.4817

Locus4 0.0800 0.0587 0.1013

Locus5 0.3983 0.3410 0.4556

Locus6 0.2839 0.2136 0.3542

Locus7 0.1068 0.0698 0.1438

Locus8 0.0728 0.0437 0.1019

Locus9 0.4571 0.4016 0.5126

Locus10 0.4799 0.3873 0.5725

Each row in this matrix represents each locus. The first column is the locus
sum In as in the final column in Allele_In. The second and third columns
represent the lower and upper confidence intervals per locus respectively.
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PW_bootstrap A list of matrices for each pairwise population comparison
of bootstrapped pairwise locus In values.

[1] pop1, vs. pop2,

In Lower_95CI Upper_95CI

Locus1 0.0234 -0.0121 0.0589

Locus2 0.0131 -0.0001 0.0263

Locus3 0.0794 0.0193 0.1395

Locus4 0.0205 -0.0184 0.0594

Locus5 0.0578 0.0050 0.1106

[1] pop1, vs. pop3,

In Lower_95CI Upper_95CI

Locus1 0.0167 -0.0328 0.0662

Locus2 0.0115 -0.0027 0.0257

Locus3 0.3157 0.2526 0.3788

Locus4 0.0982 0.0502 0.1462

Locus5 0.2427 0.1650 0.3204

[1] pop1, vs. pop4,

In Lower_95CI Upper_95CI

Locus1 0.0233 -0.0347 0.0813

Locus2 0.0112 0.0006 0.0218

Locus3 0.3395 0.2569 0.4221

Locus4 0.0419 0.0142 0.0696

Locus5 0.2794 0.2036 0.3552

[1] pop1, vs. pop5,
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In Lower_95CI Upper_95CI

Locus1 0.0619 0.0038 0.1200

Locus2 0.0118 -0.0035 0.0271

Locus3 0.3690 0.3333 0.4047

Locus4 0.0630 0.0139 0.1121

Locus5 0.2615 0.2176 0.3054

[1] pop1, vs. pop6,

In Lower_95CI Upper_95CI

Locus1 0.0264 -0.0111 0.0639

Locus2 0.0123 0.0041 0.0205

Locus3 0.2815 0.1994 0.3636

Locus4 0.0297 -0.0093 0.0687

Locus5 0.2187 0.1468 0.2906
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4.3 readGenepop.user()

The general usage of readGenepop.user is:

readGenepop.user(infile = NULL, gp = 3, bootstrap = FALSE)

4.3.1 Arguments

infile Specifying the name of the ‘genepop’ [23] file from which
the statistics are to be calculated This file can be in either
the 3 digit of 2 digit format. The name must be a character
string.

gp Specifies the digit format of the infile. Either 3 (default)
or 2.

bootstrap A logical argument indicating whether the infile should
be sampled with replacement and all returned parameters
calculated from this bootstrapped data.

4.3.2 Returned values

npops The number of population samples in infile.

nloci The number of loci in infile.

pop_alleles A list of two matrices per population. Each matrix per pop-
ulation contains haploid allele designations.

pop_list A list of matrices (n = npops) containing the diploid geno-
types of individuals per locus.

loci_names A character vector containing the names of loci from infile.
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pop_pos A numeric vector or the row index locations of the first in-
dividual per population in infile.

pop_sizes A numeric vector of length npops containing the number of
individuals per population sample in infile.

allele_names A list of npops lists containing nloci character vectors of
alleles names per locus. Useful for identifying unique alleles.

all_alleles A list of nloci character vectors of all alleles observed across
all population samples in infile.

allele_freq A list containing nloci matrices containing allele frequen-
cies per alleles per population sample.

raw_data An unaltered data frame of infile.

loci_harm_N A numeric vector of length nloci, containing the harmonic
mean number of individuals genotyped per locus.

n_harmonic A numeric value representing the harmonic mean of npops.

pop_names A character vector containing a six character population
sample name for each population in infile (the first six
characters of the first individual).

indtyp A list of length nloci containing character vectors of length
npops, indicating the number of individuals per population
sample typed at each locus.

nalleles A vector of the total number of alleles observed at each locus.

bs_file A dataframe/genpop object of bootstrapped data. Returned
if bootstrap = TRUE.

obs_all... A list of matrices of the observed number of allele occur-
rences per population.
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4.4 corPlot()

The general usage of corPlot is:

corPlot(x,y)

4.4.1 Arguments

x The object returned by the function readGenepop.user.

y The object returned by the function div.part.

4.4.2 Returned values

plot A console plot is automatically created using this functions.
As the plot is intended for exploratory purposes, it is not
written to file. UseRs can save the lot manually if required.
below is an example of the returned plot.
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Returned plot from the function corPlot

The plot depicts the relationship between the estimated statistics calculated
by div.part and the number of alleles per locus. Lines represents the line of
best fit. Pearson’s product-moment correlation coefficient is also provided.
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4.5 difPlot()

The general usage of difPlot is:

difPlot(x,y)

4.5.1 Arguments

x The object returned by the function div.part.

outfile A folder name or directory indicating where interactive plots
should be written. It is advisable, though not essential that
this argument be set to the same outfile argument as for
div.part. This argument is only valid when interactive =

TRUE. If no argument is given for outfile, while interactive
= TRUE, plot files will be written to the working directory.
Folder name should be given as a character string.

interactive A logical argument indicating whether useRs would like to
plot their results to interactive .html files produced by sendplot.
TRUE indicates that results should be written to file, whereas
FALSE indicates that results should be plotted to the R
graphics device.

4.5.2 Returned values

Plot Depending on the argument given for interactive, either a
single plot will be passed to the R graphic device (i.e. when
interactive = FALSE) or 3-4 .html files will be written to
a user defined location.

50



Returned plot from the function difPlot when
interactive =FALSE
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One of the returned plots from the function difPlot

when interactive =TRUE

As can be seen, the plots produced when interactive = TRUE are much
more useful than when interactive = FALSE, due to useRs ability to identify
population comparisons of interest. These plots contain tool-tip information,
courtesy of the sendplot package.
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4.6 chiCalc

The general usage of chiCalc is:

chiCalc(infile = NULL, outfile = NULL, gp = 3, minFreq = NULL)

4.6.1 Arguments

infile Specifying the name of the ‘genepop’ [23] file from which
the statistics are to be calculated This file can be in either
the 3 digit of 2 digit format. The name must be a character
string.

outfile A character string specifiying the name given to an output
file, containing analysis results. If this argument is passed
as NULL, no file will be written.

gp Specifies the digit format of the infile. Either 3 (default)
or 2.

minFreq A threshold minimum value or vector of values, below which
alleles are not included in the analyis.

4.6.2 Returned values

chi table A character matrix containing locus chi-square values, de-
grees of freedom, p.values and significance indicators, as well
as overall values.
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5 Examples

In this section worked examples of each of the three functions documented
above are given. The examples will employ the test data set distributed with
diveRsity, Test_data. Care has been take to ensure that examples can
be used independently, thus some processes are repeated for each function
examples, such as loading Test_data into the R session.
N.B. All examples assume that you have already downloaded, installed and
loaded diveRsity.

5.1 div.part

This example is specific to the function div.part. It has been written to
demonstrate way in the which the function may be used. It has not been
written as an exhaustive demonstration.

5.1.1 Setting your working directory

In any R session it is sensible to have a folder on your system where any output
files etc. are to be written. When using diveRsity, it is recommended that
you set your working directory to the location of your input file.
To set your working directory, use:

setwd("mypath")

Simply replace ‘mypath’ with your actual file path. Make sure to use ‘/’
or ‘\\’ to separate directory levels (e.g. c:/Users/Kevin/etc., or c:\\Users
\\Kevin \\etc.). R does not recognise the ‘\’ symbol for pathways.
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5.1.2 Loading Test_data

Test_data is only required for these examples. UseRs should replace the argu-
ment ‘infile = Test_data’ with ‘infile = "myfilename"’ when wishing
to analyse their own data set.

> data(Test_data, package = "diveRsity")

This command loads Test_data into the current R session.
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5.1.3 Running div.part

To run div.part, where locus bootstrap and pairwise bootstrap results are
returned without plotting, use the following:

> div_results <- div.part(infile = Test_data, outfile = "Test",

+ gp = 3, WC_Fst = TRUE, bs_locus = TRUE,

+ bs_pairwise = TRUE, bootstraps = 3,

+ Plot = FALSE, parallel = TRUE)

[NOTE]

Cores successfully registered for parallel computations...

N.B. in this example bootstraps = 100 to reduce the time taken to run the
example.
When the analysis has finished a folder named Test-[diveRsity] should be
written to your working directory. This folder will contain either a single
.xlsx workbook named ‘[div.part].xlsx ’ (if xlsx is installed), or four .txt files
named, ‘Standard-stats[div.part].txt ’, ‘Estimated-stats[div.part].txt ’, ‘Locus-
bootstrap[div.part].txt ’ and ‘Pairwise-bootstrap[div.part].txt ’ if it is not.

5.1.4 Accessing your results within the R session

All of the results written to file are also assigned to the variable test_results.
To access these results it is useful to understand the structure of the objects
test_results contains. Although the objects have been described in the
Returned values section for div.part, a further visual description will be
provided here.
Using the following will show you the names of all objects within test_results:
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> names(div_results)

[1] "standard" "estimate" "pairwise"

[4] "meanPairwise" "bs_locus" "bs_pairwise"

To access an object within test_results you can use the extract operator
‘$’. For example, if you want to know what type of object bs_locus is, use:

> typeof(div_results$bs_locus)

[1] "list"

From the Returned values section for div.part, it is known that bs_locus
is indeed a list containing six matrices. This object can be explored further
using:

> names(div_results$bs_locus)

[1] "Gst" "G_hed_st" "D_Jost"

[4] "Gst_est" "G_hed_st_est" "D_Jost_est"

[7] "Fis_WC" "Fst_WC" "Fit_WC"

Each of the named objects within test_results$bs_locus are known to be
matrices from above. This means that we can use matrix indexing to access
any of the information within any of the matrices. In R, to access a specific
value within a matrix, we only need to know the row and column that the
value is in. If we wanted to access a value that lies in the 5th row and the 1st

column the following command could be used:
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mymatrix[5, 1]

The first digit within the ‘[ ]’ (i.e. before the ‘,’) in R always refers to the
row location of a value and the second to the column location.
It is possible to access more than one value in a matrix using indexing. If
we wanted to look at the first 10 rows of test_results$bs_locus$Gst, we
would use the following code.

> div_results$bs_locus$Gst[1:10, ]

Actual Lower_CI Upper_CI

Locus1 0.0328 -0.0046 0.0702

Locus2 0.0058 -0.0028 0.0144

Locus3 0.0721 0.0548 0.0894

Locus4 0.0415 0.0164 0.0666

Locus5 0.0287 0.0151 0.0423

Locus6 0.0368 0.0207 0.0529

Locus7 0.0315 0.0292 0.0338

Locus8 0.0724 0.0307 0.1141

Locus9 0.0255 0.0233 0.0277

Locus10 0.0576 0.0428 0.0724

By leaving the column index blank (i.e. no numbers after the ‘,’), all columns
are returned. Similarly, if we wanted to view all values in the first column of
test_results$bs_locus$Gst, we would use:

div_results$bs_locus$Gst[ ,1]

The other values returned by div.part can be accessed in a similar fashion.
When you understand how to access the results within R, many post-analysis
processes can be used such as correlations, regressions and plotting.
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5.2 in.calc

This example is specific to the function in.calc. It has been written to
demonstrate way in the which the function may be used. It has not been
written as an exhaustive demonstration.

5.2.1 Setting your working directory

In any R session it is sensible to have a folder on your system where any output
files etc. are to be written. When using diveRsity, it is recommended that
you set your working directory to the location of your input file.
To set your working directory, use:

setwd("mypath")

Simply replace ‘mypath’ with your actual file path. Make sure to use ‘/’ or
‘\\’ to separate directory levels (e.g. c:/Users/Kevin/etc., or c:\\Users\\Kevin
\\etc.). R does not recognise the ‘\’ symbol for pathways.

5.2.2 Loading Test_data

Test_data is only required for these examples. UseRs should replace the argu-
ment ‘infile = Test_data’ with ‘infile = "myfilename"’ when wishing
to analyse their own data set.

> data(Test_data, package = "diveRsity")
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This command loads Test_data into the current R session.

5.2.3 Running in.calc

To run in.calc, where locus bootstrap and pairwise bootstrap results are
returned without plotting, use the following:

> in_results <- in.calc (infile = Test_data, outfile = "Test",

+ gp = 3, bs_locus = TRUE,

+ bs_pairwise = TRUE, bootstraps = 3,

+ Plot = FALSE, parallel = TRUE)

N.B. in this example bootstraps = 100 to reduce the time taken to run the
example.
When the analysis has finished a folder named Test-[diveRsity] should
be written to your working directory. This folder will contain either a sin-
gle .xlsx workbook named ‘[].xlsx ’ (if xlsx is installed), or three .txt files
named, ‘Allele-In[in.calc].txt ’, ‘Overall-bootstrap[in.calc].txt ’ and ‘Pairwise-
bootstrap[in.calc].txt ’ if it is not.

5.2.4 Accessing your results within the R session

All of the results written to file are also assigned to the variable test_results.
To access these results it is useful to understand the structure of the objects
test_results contains. Although the objects have been described in the
Returned values section for in.calc, a further visual description will be
provided here.

Using the following will show you the names of all objects within
test_results:
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> names(in_results)

[1] "Allele_In" "l_bootstrap" "PW_bootstrap"

To access an object within test_results you can use the extract operator
‘$’. For example, if you want to know what type of object PW_bootstrap is,
use:

> typeof(in_results$PW_bootstrap)

[1] "list"

From the Returned values section for in.calc, it is known that PW_bootstrap
is indeed a list of matrices of bootstrapped locus results for each pairwise
comparison. To find the names of the matrices within PW_bootstraps, use:

> names(in_results$PW_bootstrap)

[1] "pop1, vs. pop2," "pop1, vs. pop3," "pop1, vs. pop4,"

[4] "pop1, vs. pop5," "pop1, vs. pop6," "pop2, vs. pop3,"

[7] "pop2, vs. pop4," "pop2, vs. pop5," "pop2, vs. pop6,"

[10] "pop3, vs. pop4," "pop3, vs. pop5," "pop3, vs. pop6,"

[13] "pop4, vs. pop5," "pop4, vs. pop6," "pop5, vs. pop6,"

From this we see that PW_bootstrap contains 15 matrices for each of the 15
possible pairwise comparisons from the six population samples in Test_data.
We can explore any of these matrices using matrix indexing. In R, to access
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a specific value within a matrix, we only need to know the row and column
that the value is in (i.e. its index). If we wanted to access a value that lies
in the 5th row and the 1st column the following command could be used:

mymatrix[5, 1]

The first digit within the ‘[ ]’ (i.e. before the ‘,’) in R always refers to the
row location of a value and the second to the column location.
To look at the first 3 rows of the comparison between pop1 and pop2 in
PW_bootstrap, we would use the following code.

> in_results$PW_bootstrap[["pop1, vs. pop2,"]][1:3, ]

In Lower_95CI Upper_95CI

Locus1 0.0234 -0.0105 0.0573

Locus2 0.0131 -0.0117 0.0379

Locus3 0.0794 0.0298 0.1290

By leaving the column index blank (i.e. no numbers after the ‘,’), all columns
are returned. Similarly, if we wanted to view all values in the first column of
test_results$PW_bootstrap[["pop1, vs. pop2,"]], we would use:

in_results$PW_bootstrap[["pop1, vs. pop2,"]][ ,1]

The other values returned by in.calc can be accessed in a similar fashion.
When you understand how to access the results within R, many post-analysis
processes can be used such as correlations, regressions and plotting.
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5.3 readGenepop.user

This example is specific to the function readGenepop.user. It has been
written to demonstrate way in the which the function may be used. It has
not been written as an exhaustive demonstration.

5.3.1 Setting your working directory

In any R session it is sensible to have a folder on your system where any output
files etc. are to be written. When using diveRsity, it is recommended that
you set your working directory to the location of your input file.
To set your working directory, use:

setwd("mypath")

Simply replace ‘mypath’ with your actual file path. Make sure to use ‘/’ or
‘\\’ to separate directory levels (e.g. c:/Users/Kevin/etc., or c:\\Users\\Kevin
\\etc.). R does not recognise the ‘\’ symbol for pathways.

5.3.2 Loading Test_data

Test_data is only required for these examples. UseRs should replace the argu-
ment ‘infile = Test_data’ with ‘infile = "myfilename"’ when wishing
to analyse their own data set.

> data(Test_data, package = "diveRsity")
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This command loads Test_data into the current R session.

5.3.3 Running readGenepop.user

To run readGenepop.user without producing a bootstrap file, use:

> gp_res <- readGenepop.user(infile = Test_data, gp = 3,

+ bootstrap = FALSE)

5.3.4 Accessing your results within the R session

The readGenepop.user function does not write anything to file. Instead
results are only returned to the R environment.
To explore what these results are, use:

> names(gp_res)

[1] "npops" "nloci" "pop_alleles"

[4] "pop_list" "loci_names" "pop_pos"

[7] "pop_sizes" "allele_names" "all_alleles"

[10] "allele_freq" "raw_data" "loci_harm_N"

[13] "n_harmonic" "pop_names" "indtyp"

[16] "nalleles" "obs_allele_num"

For a description of each of these objects see section 4.3.2.
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5.3.5 Applications for readGenepop.user

readGenepop.user is not like the other two function in that the results re-
turned have no particularly informative format. Instead the results are the
building blocks to developing other analysis methods for useRs who may not
have the necessary programming skills to extract such information from ge-
netic data. In this section two examples of applications of readGenepop.user
are provided. UseRs are encouraged to use the function to develop their own
methods.

‘Ad hoc’ investigation of locus mutation model

Understanding the likely mutation model a particular microsatellite locus
follows is important for a range of analyses which make explicit assumptions.
One way to ensure your data does not violate these assumption is to visualise
the allele distribution at loci and assess whether the pattern fits the expec-
tation of a given model.
readGenepop.user returns an object pop_alleles which contains npops x
2 matrices. Each matrix contains a haploid genotype per individual per lo-
cus, and every two matrices correspond to a single population sample. For
example matrices 1 and 2 correspond to population sample 1, matrices 3
and 4 correspond to population sample 2 and so on. Using this object, it is
possible to plot the allele size distribution to assess it allele fragments fit say
the single step mutation model (SSM).

> locus18_pop1 <- c(gp_res$pop_alleles[[1]][[1]][,18],

+ gp_res$pop_alleles[[2]][[1]][,18])

> # sort alleles by size

> allele_sort <- order(locus18_pop1, decreasing = FALSE)

> #plot

> plot(locus18_pop1[allele_sort], ylab = "allele size", col="blue",

+ pch = 16)
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From this figure we could conclude that locus 18 in population 1 is likely to
follow SSM given that allele size increases in a generally regular fashion. Any
gaps are also a multiple of the repeat motif length.
Although this example is basic and does not have a rigorous statistical ba-
sis, the value of such data exploration is clear. Indeed, useRs with suitable
knowhow could likely easily develop statistically valid model tests for this
particular example.

5.3.6 A hypothetical example

This example is for illustrative purposes.
Say for some reason, we were interested in assessing the sampling properties
of the number of alleles at a particular locus, readGenepop.user is ideal to do
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this. We will use Test_data for this example and the number of bootstrap
iterations will be 1000. We know that Test_data contains 37 loci so we
will have to be able to count the number of alleles for each of these in each
bootstrap iteration.

The code

> # Define a results matrix with 37 columns (loci) and

> # 1000 rows (bootstraps)to record allele number per locus

>

> num_all <- matrix(rep(0,(37*10)), ncol = 37)

> # Now using readGenepop.user we can fill the matrix

> bs<-10

> for(i in 1:bs){

+ # first produce a bootstrap file

+

+ x <- readGenepop.user(infile = Test_data, gp = 3,

+ bootstrap = TRUE)

+

+ # Now record the number of alleles at each locus

+

+ num_all[i, ] <- x$nalleles

+ }

> # Now we can use this data to calculate the mean

> # number of alleles per locus as well at their

> # 95% confidence intervals

>

> mean_num <- colMeans(num_all)

> lower<-vector()

> upper<-vector()

> for(i in 1:ncol(num_all)){

+ lower[i] <- mean_num[i] - (1.96 * sd(num_all[,i]))

+ upper[i] <- mean_num[i] + (1.96 * sd(num_all[,i]))

+ }

> # Now we can create a data frame of these results

>

> bs_res <- data.frame(mean_num, lower, upper)
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> bs_res[1:10,]

mean_num lower upper

1 6.3 4.686386 7.913614

2 3.0 3.000000 3.000000

3 17.8 16.973591 18.626409

4 7.3 5.223674 9.376326

5 34.7 32.246736 37.153264

6 13.8 12.973591 14.626409

7 8.5 7.466989 9.533011

8 4.0 4.000000 4.000000

9 41.4 38.307862 44.492138

10 32.3 30.440581 34.159419

This is perhaps not the most efficient way to do this kind of analysis but it
does make it more accessible to non-programmers.
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