
AMPLITUDE DOMAIN-FEQUENCY

REGRESSION

Francisco Parra

November 12, 2014

Introduction
The time series can be seen from an aplitude-time domain or an amplitude-

frequency domain. The amplitude-frecuency domain are used to analyze proper-
ties of filters used to decompose a time series into a trend, seasonal and irregular
component investigating the gain function to examine the effect of a filter at a
given frequency on the amplitude of a cycle for a particular time series. The
ability to decompose data series into different frequencies for separate analysis
and later recomposition is the first fundamental concept in the use of spectral
techniques in forecasting, such as regression espectrum band, have had little
development in econometric work. The low diffusion of this technique has been
associated with the computing difficulties caused the need to work with complex
numbers, and inverse Fourier transform in order to convert everything back into
real terms. But the problems from the use of the complex Fourier transform
may be circumvented by carrying out the Fourier transform of the data in real
terms, pre-multiplied the time series by the orthogonal matrix Z whose elements
are defined in Harvey (1978).

The spectral analysis commences with the assumption that any series can be
transformed into a set of sine and cosine waves, and can be used to both iden-
tify and quantify apparently nonperiodic short and long cycle processes (first
section). In Band spectrum regression (second section) , is a brief summary of
the regression of the frequency domain (Engle, 1974) The application of spec-
tral analysis to data containing both seasonal (high frequency) and non-seasonal
(low frequency) components may produce adventages, since these different fre-
quencies can be modelled separately and then may be re-combined to produce
fitted values. Durbin (1967 and 1969) desing a technique for studying the gen-
eral nature of the serial dependence in a satacionary time series, that can be use
to statistic contraste in This type of exercises (third section). The time-varying
regression, or the regression whit the vector of parameters time.varying can be
understood in this context (four section).

Spectral analysis
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Nerlove (1964) and Granger (1969) were the two foremost researchers on the
application of spectral techniques to economic time series.

The use of spectral analysis requires a change of focus from an amplitude-
time domain to an amplitude-frequency domain. Thus spectral analysis com-
mences with the assumption that any series, Xt, can be transformed into a set
of sine and cosine waves such as:

Xt = η +

N∑
j=1

[aj cos(2π
ft

n
) + bj sin(2π

ft

n
)] (1)

where η is the mean of the series, aj and bj are the amplitude, f is the
frequency over a span of n observations, t is a time index ranging from 1 to N
where N is the number of periods for which we have observations, the fraction
(ft/n) for different values of t converts the discrete time scale of time series
into a proportion of 2 and j ranges from 1 to n where n= N/2. The highest
observable frequency in the series is n/N (i.e., 0.5 cycles per time interval).
High frequency dynamics (large f) are akin to short cycle processes while low
frequency dynamics (small f) may be likened to long cycle processes. If we let
ft
n = w then equation (1) can be re-written more compactly as:

Xt = η +

N∑
j=1

[aj cos(ωj) + bj sin(ωj)] (2)

Spectral analysis can be used to both identify and quantify apparently non-
periodic short and long cycle processes. A given series Xt may contain many
cycles of different frequencies and amplitudes and such combinations of frequen-
cies and amplitudes may yield cyclical patterns which appear non-periodic with
irregular amplitude. In fact, in such a time series it is clear from equation (2)
that each observation can be broken down into component parts of different
length cycles which, when added together (along with an error term), comprise
the observation (Wilson and Perry, 2004).

The overall effect of the Fourier analysis of N observation to a time date
is to partition the variability of the series into components at frequencies 2π

N ,
4π
N ,...,π.The component at frequency ωp = 2πp

N if called the pth harmonic. For

p 6= N
2 , the equivalent form to write the pth harmonic are:

apcosωpt+ bpsinωpt = Rpcos(ωpt+ φp)

.
where Rp =

√
ap + bp and φp = tan−1(

−bp
ap

)

The plot of I(ω) =
NR2

p

4π against ω is called the periodogram of time data.
Trend will produce a peak at zero frequency, while seasonal variations produces
peaks at the seasonal frquency and at integer multiples of the sesaonal frequency.
Then, when a periodogram has a large peak at some frequency ω then related
peaks may occurr at 2ω, 3ω,....(Chaftiel, C,2004)

Band spectrum regression
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Hannan (1963) first proposed regression analysis in the frequency domain,later
examining the use of this technique in estimating distributed lag models (Han-
nan, 1965, 1967). Engle (1974) demonstrated that regression in the frequency
domain has certain advantages over regression in the time domain. Consider
the linear regression model

y = Xβ + u (3)

where X is an n x k matrix of fixed observations on the independent variables,
β is a k x I vector of parameters, y is an n x 1 vector of observations on the
dependent variable, and u is an n x I vector of disturbance terms each with zero
mean and constant variance, σ2.

The model may be expressed in terms of frequencies by applying a finite
Fourier transform to the dependent and independent variables.For Harvey (1978)
there are a number of reasons for doing this. One is to permit the application of
the technique known as ’band spectrum regression’, in which regression is carried
out in the frequency domain with certain wavelengths omitted. Another reason
for interest in spectral regression is that if the disturbances in (3) are serially
correlated, being generated by any stationary stochastic process, then regression
in the frequency domain will yield an asymptotically efficient estimator of β.

Engle (1974) compute the full spectrum regression with he complex finite
Fourier transform based on the n x n matrix W , in which element (t, s) is given
by

wts = 1√
n
eiλts , s = 0, 1, ..., n− 1

where λt = 2π tn , t=0,1,...,n-1, and i =
√
−1.

Pre-multiplying the observations in observations in (3) by W yields

ẏ = Ẋβ + u̇ (4)

where ẏ = Wy,Ẋ = WX, and u̇ = Wu.
If the disturbance vector in (4) obeys the classical assumptions, viz. E[u] = 0

and E[uu′] = σ2In. then the transformed disturbance vector, u̇, will have
identical properties. This follows because the matrix W is unitary, i.e., WWT =
I, where WT is the transpose of the complex conjugate of W. Furthermore the
observations in (4) contain precisely the same amount of information as the
untransformed observations in (3).

Application of OLS to (4) yields, in view of the properties of u̇, the best
linear unbiased estimator (BLUE) of β. This estimator is identical to the OLS
estimator in (3), a result which follows directly on taking account of the unitary
property of W . When the relationship implied by (4) is only assumed to hold
for certain frequencies, band spectrum regression is appropriate, and this may
be carried out by omitting the observations in (4) corresponding to the remain-
ing frequencies. Since the variables in (4) are complex, however, Engle (1974)
suggests an inverse Fourier transform in order to convert everything back into
real terms (Harvey,1974).

The problems which arise from the use of the complex Fourier transform may
be circumvented by carrying out the Fourier transform of the data in real terms.
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In order to do this the observations in (3) are pre-multiplied by the orthogonal
matrix Z whose elements are defined as follows (Harvey,1978):

zts =



(
1
n

)−1
2 t = 1(

2
n

) 1
2 cos

[
πt(s−1)

n

]
t = 2, 4, 6, ..(n− 2) or (n− 1)(

2
n

) 1
2 sin

[
π(t−1)(s−1)

T

]
t = 3, 5, 7, .., (n− 1) or n

(n)
−1
2 (−1)s+1 t = n if n is even , s = 1, ...n,

The resulting frequency domain regression model is:

y∗∗ = X∗∗β + v (5)

where y∗∗ = Zy,X∗∗ = ZX and v = Zu.
In view of the orthogonality of Z, E[vv′] = σ2In when E[uu′] = σ2In and

the application of OLS to (5) gives the BLUE of β.
Since all the elements of y** and X** are real, model may be treated by a

standard regression package. If band spectrum regression is to be carried out,
the number of rows in y** and X** is reduced accordingly, and so no problems
arise from the use of an inappropriate number of degrees of freedom.

Amplitude domain-frequency regression
Consider now the linear regression model

yt = βtxt + ut (6)

where xt is an n x 1 vector of fixed observations on the independent variable,
βt is a n x 1 vector of parameters,y is an n x 1 vector of observations on the
dependent variable, and ut is an n x 1 vector de errores distribuidos con media
cero y varianza constante.

Whit the assumption that any series, yt,xt,βt and ut, can be transformed
into a set of sine and cosine waves such as:

yt = ηy +
N∑
j=1

[ayj cos(ωj) + byj sin(ωj)

xt = ηx +

N∑
j=1

[ayj cos(ωj) + byj sin(ωj)]

βt = ηβ +

N∑
j=1

[aβj cos(ωj) + bβj sin(ωj)]

Pre-multiplying (6) by Z:

ẏ = ẋβ̇ + u̇

(7)
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where ẏ = Zy,ẋ = Zx, β̇ = Zβ y u̇ = Zu
The system (7) can be rewritten as (see appendix):

ẏ = ZxtInZ
T β̇ + ZInZ

T u̇

(8)
If we call ė = ZInZ

T u̇, It can be found the β̇ that minimize the sum of
squared errors ET = ZT ė.

Once you have found the solution to this optimization, the series would be
transformed into the time domain.

Seasonal Decomposition by the Fourier Coefficients
The amplitude domain-frequency regression method could be use to decom-

pose a time series into seasonal, trend and irregular components of a time serie
yt of frequency b or number of times in each unit time interval. For example, one
could use a value of 7 for frequency when the data are sampled daily, and the
natural time period is a week, or 4 and 12 when the data are sampled quarterly
and monthly and the natural time period is a year.

If the observation are teken at equal interval of length, 4t, then the angular
frequency is ω = fracπ4t. The equivalent frequency expressed in cycles per
unit time is f = ω

2π = 1
2 4 t. Whit only one observation per year, ω = π

radians per year or f = 1
2 cycle per year (1 cicle per two years), variation whit

a wavelength of one year has fequency ω = 2π radians per year or f = 1 cicle
per year.

For example, in a monthly time serie of N = 100 observation, the seasonal
cycles or the wavelenghth of one year has frequency f = 100

12 = 8, 33 cycles for
100 dates. If the time serie are 8 full year, the less seasonal frequency are 1 cycle
for year, or 8 cycle for 96 observation. The integer multiplies are 2N12 ,3N12 ....,

and wavelenghth low of one year has frequency are f < N
12 .

We can use (8) to estimate the fourier coefficient in time serie yt:

ẏ = ZtInZ
T β̇ + ZInZ

T u̇

(9)
being t = (1, 1, ....1)N or t = (1, 2, 3, ..., N)N .
If t = (1, 1, 1, ....1)N ,

A = ZtInZ
T =



1 0 0 0 0 . 0 0
0 1 0 0 0 . 0 0
0 0 1 0 0 . 0 0
0 0 0 1 0 . 0 0
0 0 0 0 1 . 0 0
. . . . . . . .
0 0 0 0 0 . 0 1


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Then

A =



1 0 0 0 0 . 0 0
0 1 0 0 0 . 0 0
0 0 1 0 0 . 0 0
0 0 0 1 0 . 0 0
0 0 0 0 0 . 0 0
. . . . . . . .
0 0 0 0 0 . 0 0


are use in (9) to make the regression band spectrum with the first four

coefficient of fourier of the serie ẏ.
The first2N12−1 rows the A matrix are used to estimate the fourier coefficients

corresponding to cycles of low frequency, trend cycles, and rows 2N12 and 2N12 +1
are used to estimate the fourier coefficients of 1 cicle for year. The integer
multiplies re the rows 6N12 , 6N12 + 1, 8N12 ...should be used to obtain the seasonal
frequency.

Example:descomponse by amplitude domain-frequency regression.
IPI base 2009 in Cantabria

The Industrial Price Index of Cantabria is presented in the table below
The time serie by trend an seasonal is named TDST . TD is calculate by

band spectrum regresion of the serie yt and the temporal index t, in which
regression is carried out in low amplitude- frequency. The seasonal serie ST
result to take away TD to TDST , and the irregular serie IR result to take
away TDST to yt (figure 8). The temporal index t used in the exemple are the
OLS regression into IPI and the trend index t = (1, 2, 3, ....N)N . The new data
fitted are 6 months.

> library(descomponer)

> data(ipi)

> descomponer(ipi,12,1,6)

$data

y TDST TD ST IR

1 90.2 98.10295 97.30978 0.79317267 -7.9029508

2 98.8 98.26294 97.35310 0.90984094 0.5370632

3 92.1 100.89796 97.44418 3.45377641 -8.7979604

4 102.7 90.39611 97.57019 -7.17408525 12.3038921

5 107.0 104.21293 97.71583 6.49709735 2.7870737

6 98.3 104.65220 97.86446 6.78773986 -6.3522003

7 100.9 99.70290 97.99941 1.70349678 1.1970962

8 66.3 71.66980 98.10530 -26.43550367 -5.3698002

9 101.4 97.02477 98.16943 -1.14465893 4.3752275

10 111.8 104.26155 98.18289 6.07865327 7.5384530

11 111.4 109.39049 98.14154 11.24895370 2.0095070

12 85.2 96.75562 98.04653 -1.29091634 -11.5556186

13 94.4 97.40501 97.90453 -0.49952276 -3.0050068

14 96.2 96.91526 97.72738 -0.81211509 -0.7152635
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15 106.5 100.96644 97.53143 3.43500627 5.5335588

16 101.1 90.05066 97.33645 -7.28579348 11.0493435

17 103.5 104.44937 97.16416 7.28521289 -0.9493748

18 99.9 105.44282 97.03668 8.40614645 -5.5428228

19 101.4 99.46136 96.97477 2.48659184 1.9386396

20 58.6 71.70803 96.99624 -25.28820679 -13.1080327

21 99.8 96.04984 97.11446 -1.06462527 3.7501609

22 112.7 102.19482 97.33725 4.85756643 10.5051797

23 103.8 107.12555 97.66613 9.45941951 -3.3255473

24 89.0 94.00170 98.09607 -4.09436928 -5.0016988

25 91.2 97.46393 98.61578 -1.15184687 -6.2639323

26 97.3 99.24689 99.20844 0.03844827 -1.9468916

27 110.2 105.04756 99.85292 5.19463878 5.1524447

28 105.7 98.51657 100.52527 -2.00870413 7.1834300

29 109.9 108.02818 101.20059 6.82759571 1.8718190

30 109.1 107.85836 101.85477 6.00358335 1.2416422

31 104.3 102.81035 102.46642 0.34393236 1.4896472

32 71.9 76.08922 103.01835 -26.92912976 -4.1892175

33 107.1 103.52228 103.49888 0.02340336 3.5777210

34 108.5 110.84951 103.90263 6.94687412 -2.3495083

35 116.6 114.83069 104.23086 10.59982501 1.7693132

36 96.5 99.39304 104.49118 -5.09813349 -2.8930440

37 94.1 103.06947 104.69684 -1.62736211 -8.9694749

38 102.4 104.34413 104.86554 -0.52140933 -1.9441286

39 109.4 110.07981 105.01787 5.06193809 -0.6798122

40 109.0 101.84233 105.17557 -3.33323918 7.1576705

41 113.3 112.03970 105.35963 6.68006277 1.2603027

42 116.5 112.15094 105.58862 6.56232285 4.3490613

43 107.9 107.41395 105.87706 1.53689274 0.4860483

44 76.7 81.77292 106.23434 -24.46141633 -5.0729241

45 111.0 107.63378 106.66395 0.96983306 3.3662191

46 109.3 113.92829 107.16327 6.76501511 -4.6282890

47 119.5 116.32513 107.72393 8.60120036 3.1748653

48 95.1 99.40556 108.33258 -8.92701559 -4.3055647

49 109.6 106.21963 108.97213 -2.75250158 3.3803734

50 109.0 109.16600 109.62330 -0.45729990 -0.1659954

51 125.2 117.08243 110.26630 6.81612951 8.1175682

52 104.8 112.79991 110.88259 1.91731829 -7.9999060

53 123.7 118.04147 111.45638 6.58509579 5.6585264

54 119.7 117.07511 111.97597 5.09914608 2.6248879

55 105.4 112.10797 112.43458 -0.32661704 -6.7079678

56 84.1 87.35960 112.83078 -25.47118373 -3.2595972

57 112.1 114.54919 113.16826 1.38092862 -2.4491852

58 121.6 120.88790 113.45518 7.43271681 0.7121027

59 120.0 122.99230 113.70302 9.28927264 -2.9922964

60 98.6 104.20938 113.92502 -9.71563544 -5.6093825
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61 117.6 111.79284 114.13437 -2.34153092 5.8071607

62 117.7 114.72132 114.34239 0.37892915 2.9786770

63 129.7 121.36551 114.55673 6.80877853 8.3344947

64 111.8 114.54055 114.77981 -0.23925106 -2.7405544

65 125.2 120.56175 115.00775 5.55400369 4.6382491

66 121.2 119.68861 115.22976 4.45884810 1.5113907

67 116.8 116.38219 115.42817 0.95402144 0.4178087

68 88.2 93.24652 115.57907 -22.33254875 -5.0465220

69 113.7 118.67409 115.65362 3.02047750 -4.9740947

70 129.0 123.97751 115.61985 8.35766771 5.0224866

71 121.7 122.91386 115.44493 7.46893371 -1.2138609

72 94.4 101.36048 115.09768 -13.73720788 -6.9604758

73 110.3 110.75427 114.55118 -3.79691526 -0.4542684

74 115.3 113.32361 113.78522 -0.46161162 1.9763926

75 112.9 120.91764 112.78847 8.12917310 -8.0176401

76 122.4 115.72389 111.56016 4.16372273 6.6761142

77 116.9 115.85997 110.11114 5.74883452 1.0400257

78 111.2 112.54723 108.46413 4.08309514 -1.3472283

79 115.0 106.38179 106.65331 -0.27151871 8.6182073

80 77.1 82.48854 104.72303 -22.23449808 -5.3885367

81 106.3 105.53320 102.72591 2.80728628 0.7667995

82 115.9 108.27784 100.72029 7.55755537 7.6221576

83 106.7 106.24824 98.76727 7.48097123 0.4517578

84 83.0 82.33012 96.92759 -14.59747024 0.6698806

85 92.2 92.63852 95.25838 -2.61986214 -0.4385154

86 94.3 95.49209 93.81018 1.68191786 -1.1920930

87 96.7 101.06955 92.62431 8.44524186 -4.3695534

88 87.2 93.40126 91.73084 1.67042059 -6.2012597

89 91.0 95.23110 91.14715 4.08395364 -4.2311041

90 91.0 93.29495 90.87735 2.41759705 -2.2949496

91 95.3 91.72655 90.91242 0.81412180 3.5734547

92 70.2 72.07206 91.23112 -19.15905997 -1.8720608

93 98.3 96.61414 91.80156 4.81258031 1.6858600

94 106.9 101.96131 92.58334 9.37796982 4.9386941

95 103.4 99.69841 93.53004 6.16837876 3.7015860

96 86.8 76.60694 94.59195 -17.98501055 10.1930618

97 90.5 91.58205 95.71881 -4.13675936 -1.0820531

98 91.4 96.96138 96.86239 0.09899271 -5.5613815

99 107.7 106.99817 97.97873 9.01943438 0.7018309

100 100.6 103.57335 99.03003 4.54332522 -2.9733542

101 101.9 104.37547 99.98587 4.38960428 -2.4754737

102 105.8 103.81416 100.82400 2.99016015 1.9858428

103 101.5 101.98200 101.53045 0.45155513 -0.4820018

104 75.4 84.47356 102.09916 -17.62560394 -9.0735609

105 101.4 106.70060 102.53117 4.16943068 -5.3006046

106 109.1 110.21571 102.83339 7.38232542 -1.1157133
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107 115.8 108.43199 103.01720 5.41478792 7.3680103

108 98.9 83.96262 103.09698 -19.13435982 14.9373752

109 97.6 100.61337 103.08860 -2.47523096 -3.0133704

110 102.7 106.15524 103.00807 3.14716486 -3.4552370

111 113.2 112.60908 102.87046 9.73861680 0.5909240

112 104.3 104.86051 102.68904 2.17147273 -0.5605105

113 107.6 104.94073 102.47478 2.46594897 2.6592679

114 103.5 102.97034 102.23617 0.73417598 0.5296567

115 97.9 103.13771 101.97924 1.15847160 -5.2377101

116 86.3 86.43621 101.70793 -15.27171205 -0.1362149

117 108.4 107.54872 101.42451 6.12421069 0.8512800

118 103.5 110.78491 101.13015 9.65475735 -7.2849120

119 103.5 105.63306 100.82547 4.80758534 -2.1330585

120 89.0 79.26858 100.51100 -21.24242208 9.7314196

121 94.5 96.46301 100.18757 -3.72456119 -1.9630133

122 97.7 101.07087 99.85653 1.21434090 -3.3708709

123 112.9 108.95707 99.51977 9.43730023 3.9429308

124 97.6 102.29885 99.17964 3.11920139 -4.6988451

125 111.6 101.49461 98.83873 2.65588053 10.1053939

126 103.8 100.38433 98.49949 1.88483843 3.4156730

127 97.3 99.86119 98.16396 1.69722583 -2.5611893

128 86.6 85.59797 97.83342 -12.23544906 1.0020291

129 94.7 102.83054 97.50813 5.32241116 -8.1305408

130 100.3 104.16297 97.18725 6.97572081 -3.8629726

131 95.4 100.23458 96.86887 3.36570557 -4.8345776

132 85.4 73.81507 96.55020 -22.73512912 11.5849294

133 96.3 94.28154 96.22792 -1.94637911 2.0184633

134 94.5 100.44664 95.89864 4.54799625 -5.9466357

135 98.1 106.05061 95.55947 10.49114763 -7.9506146

136 105.0 96.38455 95.20852 1.17602640 8.6154493

137 101.0 95.73162 94.84547 0.88615421 5.2683754

138 98.8 94.09821 94.47189 -0.37367330 4.7017869

139 91.5 96.06831 94.09150 1.97681574 -4.5683142

140 80.5 82.65898 93.71019 -11.05121750 -2.1589750

141 94.6 100.14628 93.33580 6.81048107 -5.5462812

142 100.6 102.10782 92.97766 9.13016622 -1.5078238

143 91.8 96.13222 92.64596 3.48625204 -4.3322152

144 82.1 69.11409 92.35098 -23.23689059 12.9859105

145 91.8 89.46843 92.10215 -2.63372390 2.3315733

146 92.6 94.67246 91.90720 2.76525664 -2.0724572

147 100.1 101.14934 91.77132 9.37802112 -1.0493402

148 95.4 91.86183 91.69650 0.16533569 3.5381669

$fitted

TDST_fitted TD_fitted ST_fitted

1 92.42839 91.68110 0.7472933
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2 92.54072 91.68386 0.8568575

3 94.98286 91.73156 3.2513002

4 85.06135 91.81205 -6.7507037

5 98.02203 91.91090 6.1111293

6 98.39431 92.01245 6.3818529
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Appendix
The multiplication of two harmonic series of diferent frequency:

[aj cos(ωj) + bj sin(ωj)]x[ai cos(ωi) + bi sin(ωi)]

gives the following sum:

ajai cos(ωj) cos( omegai) + ajbi cos(ωj) sin(ωi)

+aibj sin(ωj) cos(ωi)bi sin(ωi) + bjbi sin(ωj) sin(ωi)

that using the identity of the products of sines and cosines gives the following
results:

ajai + bjbi
2

cos(ωj − ωi) +
bjai − bjai

2
sin(ωj − ωi)

+
ajai − bjbi

2
cos(ωj + ωi) + +

bjai + bjai
2

sin(ωj + ωi)

The circularity of ω determines that the product of two harmonics series
resulting in a new series in which the Fourier coefficients it’s a linear combination
of the Fourier coefficients of the two harmonics series.

In the following two series:

yt = ηy+ay0 cos(ω0)+by0 sin(ω0)+ay1 cos(ω1)+by1 sin(ω1)+ay2 cos(ω2)+by2 sin(ω2)+ay3 cos(ω3)

xt = ηx+ax0 cos(ω0)+bx0 sin(ω0)+ax1 cos(ω1)+bx1 sin(ω1)+ax2 cos(ω2)+bx2 sin(ω2)+ax3 cos(ω3)

given a matrix Θẋẋ of size 8x8 :

Θẋẋ = ηxI8+
1

2



0 ax0 bx0 ax1 bx1 ax2 bx2 2ax3
2ax0 ax1 bx1 ax0 + ax2 bx0 + bx2 ax1 + 2ax3 bx1 2ax2
2bx0 bx1 −ax1 −bx0 + bx2 ax0 − ax2 −bx1 ax1 − ax3 −2bx2
2ax1 ax0 + ax2 −bx0 + bx2 2ax3 0 ax0 + ax2 bx0 − bx2 2ax1
2bx1 ax0 + bx2 −bx0 − ax2 0 −2ax3 −bx0 + bx2 ax0 − ax2 −2bx1
2ax2 ax1 + 2ax3 −bx1 ax0 + ax2 −bx0 − bx2 ax1 −bx1 2ax0
2bx2 bx1 ax1 − 2ax3 bx0 − bx2 ax0 − ax2 −bx1 −ax1 −2bx0
2ax3 ax2 −bx2 ax1 −bx1 ax0 −bx0 0


Demonstrates that:

ż = Θẋẋẏ

where ẏ = Wy,ẋ = Wx, and ż = Wz.
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zt = xtyt = WT ẋWT ẏ = WTWxtW
T ẏ = xtInW

T ẏ

WT ż = xtInW
T ẏ

ż = WTxtInWẏ

It is true that;

xtIn = WTΘẋẋW

and

Θẋẋ = WTxtInW
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