
depmix: An R-package for fitting mixture models on mixed

multivariate data with Markov dependencies

Version: 0.9.1
Ingmar Visser1

Developmental Processes Research Group
Department of Psychology, University of Amsterdam

i.visser@uva.nl

July 12, 2006

1Correspondence concerning this manual should be adressed to: Ingmar Visser, Department of
Psychology, University of Amsterdam, Roetersstraat 15, 1018 WB, Amsterdam, The Netherlands

Abstract

depmix implements a general class of mixture models with Markovian dependencies between
them in the R programming language (R Development Core Team, 2006). This includes stan-
dard Markov models, latent/hidden Markov models, and latent class and finite mixture dis-
tribution models. The models can be fitted on mixed multivariate data from a number of
distributions including the binomial, multinomial, gaussian, lognormal and Weibull distribu-
tions. Parameters can be estimated subject to general linear constraints, and with optional
inclusion of regression on (time-dependent) covariates. Parameter estimation is done through a
direct optimization approach with gradients using the nlm optimization routine. Optional sup-
port for using the NPSOL optimization routines is provided as well. A number of illustrative
examples are included.

Contents

1 Introduction 2

2 Dependent mixture models 3
2.1 Likelihood . 5
2.2 Gradients . 6
2.3 Parameter estimation . 7

3 Using depmix 9
3.1 Creating data sets . 9

markovdata . 10
3.2 Data set speed . 12

speed . 13
3.3 Defining models . 13

dmm . 15
3.3.1 Generating data . 19
generate . 19

3.4 Fitting models . 22
fitdmm . 24

4 Extending and constraining models 30
4.1 Fixing and constraining parameters . 30
4.2 Multi group/case analysis . 32

mgdmm . 35
4.3 Models with time-dependent covariates . 37

5 Special topics 39
5.1 Starting values . 39
5.2 Finite mixtures and latent class models . 39
5.3 Mixtures of latent Markov models . 39

mixdmm . 40
discrimination . 41

5.4 Known issues and future plans . 42

1

Chapter 1

Introduction

Markov and latent Markov models are frequently used in the social sciences, in different areas
and applications. In psychology, they are used for modelling learning processes, see Wickens
(1982), for an overview, and Schmittmann et al. (2005) for a recent application. In economics,
latent Markov models are commonly used as regime switching models, see e.g. Kim (1994) and
Ghysels (1994). Further applications include speech recognition (Rabiner, 1989), EEG analysis
(Rainer and Miller, 2000), and genetics (Krogh, 1998). In those latter areas of application,
latent Markov models are usually referred to as hidden Markov models.

The depmix package was motivated by the fact that Markov models are used commonly in
the social sciences, but no comprehensive package was available for fitting such models. Common
programs for Markovian models include Panmark (Van de Pol et al., 1996), and for latent class
models Latent Gold (Vermunt and Magidson, 2003). Those programs are lacking a number
of important features, besides not being freely available. In particular, depmix: 1) handles
multiple case, or multiple group, analysis; 2) handles arbitrarily long time series; 3) estimates
models with general linear constraints between parameters; 4) analyzes mixed distributions, i.e.,
combinations of categorical and continuous observed variables; 5) fits mixtures of latent Markov
models to deal with population heterogeneity; 6) can fit models with covariates. Although
depmix is specifically meant for dealing with longitudinal or time series data, for say T > 100,
it can also handle the limit case with T = 1. In those cases, there are no time dependencies
between observed data, and the model reduces to a finite mixture model, or a latent class model.
In the next chapter, an outline is provided of the model and the likelihood equations. In the
chapters after that a number of examples are presented.

Acknowledgements

Development of this pacakge was supported by European Commission grant 51652 (NEST) and
by a VENI grant from the Dutch Organization for Scientific Research (NWO) to Ingmar Visser.

I am indebted to many people for providing help in writing this package. First and foremost
Maartje Raijmakers and Verena Schmittmann tested countless earlier versions, spotted bugs
and suggested many features. Moreover, Maartje Raijmakers provided the discrimination data
set. Han van der Maas provided the speed-accuracy data and thereby neccessitated implement-
ing models with time-dependent covariates. Conor Dolan and Raoul Grasman both provided
valuable advice on statistics in general and optimization in particular.

2

Chapter 2

Dependent mixture models

The data considered here, has the general form O1
1 , . . . , O

m
1 , O1

2 , . . . , O
m
2 , . . . , O1

T , . . . , O
m
T for an

m-variate time series of length T . As an example, consider a time series of responses generated
by a single subject in a reaction time experiment. The data consists of three variables, reaction
time, accuracy and a covariate which is a pay-off factor which determines the reward for speed
and accuracy. These variables are measured at 168, 134 and 137 occasions respectively. Below,
a summary is provided for these data, as well as a plot of the first timeseries, which is selected
by nind=1.

> data(speed)

name=speed: file= .../speed.rda:: found

> summary(speed)

Data set: speed
nr of items: 3
item type(s): continuous categorical covariate
nr of covariates: 1
item name(s): rt corr Pacc
length(s) of series: 168 134 137
nr of independent series: 3
data: 6.45677 5.602119 6.253829 5.451038 5.872118 6.003887 ...

The latent Markov model is commonly associated with data of this type, albeit usually only
multinomial variables are considered. However, common estimation procedures, such as those
implemented in Van de Pol et al. (1996) are not suitable for long time series due to underflow
problems. In contrast, the hidden Markov model is typically only used for ‘long’ univariate
time series. In the next section, the likelihood and estimation procedure for the hidden Markov
model is described, given data of the above form.

The dependent mixture model is defined by the following elements:

1. a set S of latent classes or states Si, i = 1, . . . , n,

2. a matrix A of transition probabilities aij for the transition from state Si to state Sj ,

3. a set B of observation functions bj(·) that provide the conditional probabilities associated
with latent state Sj ,

3

> plot(speed, nind = 1)

1

5.
0

5.
5

6.
0

6.
5

7.
0

rt

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

co
rr

0.
0

0.
2

0.
4

0.
6

0.
8

0 50 100 150

P
ac

c

Time

speed

Figure 2.1: Reaction times, accuracy and pay-off values for the first series of responses in dataset
speed.

4

4. a vector πππ of latent state initial probabilities πi

When transitions are added to the latent class model, it is more appropriate to refer to the
classes as states. The word class is rather more associated with a stable trait-like attribute
whereas a state can change over time.

2.1 Likelihood

The loglikelihood of hidden Markov models is usually computed by the so-called forward-
backward algorithm (Baum and Petrie, 1966; Rabiner, 1989), or rather by the forward part
of this algorithm. Lystig and Hughes (2002) changed the forward algorithm in such a way as to
allow computing the gradients of the loglikelihood at the same time. They start by rewriting the
likelihood as follows (for ease of exposition the dependence on the model parameters is dropped
here):

LT = Pr(O1, . . . ,OT) =
T∏

t=1

Pr(Ot|O1, . . . ,Ot−1), (2.1)

where Pr(O1|O0) := Pr(O1). Note that for a simple, i.e. observed, Markov chain these prob-
abilities reduce to Pr(Ot|O1, . . . ,Ot−1) = Pr(Ot|Ot−1). The log-likelihood can now be ex-
pressed as:

lT =
T∑

t=1

log[Pr(Ot|O1, . . . ,Ot−1)]. (2.2)

To compute the log-likelihood, Lystig and Hughes (2002) define the following (forward)
recursion:

φ1(j) := Pr(O1, S1 = j) = πjbj(O1) (2.3)

φt(j) := Pr(Ot, St = j|O1, . . . ,Ot−1)

=
N∑

i=1

[φt−1(i)aijbj(Ot)] × (Φt−1)−1,
(2.4)

where Φt =
∑N

i=1 φt(i). Combining Φt = Pr(Ot|O1, . . . ,Ot−1), and equation (2.2) gives the
following expression for the log-likelihood:

lT =
T∑

t=1

log Φt. (2.5)

The above forward recursion can readily be generalized to mixture models, in which it is
assumed that the data are realizations of a number of different LMMs and the goal is to as-
sign posterior probabilities to sequences of observations. This situation occurs, for example, in
learning data where different learning strategies may lead to different answer patterns. From
an observed sequence of responses, it may not be immediately clear from which learning pro-
cess they stem. Hence, it is interesting to consider a mixture of latent Markov models which
incorporate restrictions that are consistent with each of the learning strategies.

To compute the likelihood of a mixture of K models, define the forward recursion variables
as follows (these variables now have an extra index k indicating that observation and transition

5

probabilities are from latent model k):

φ1(jk) = Pr(O1, S1 = jk) = pkπjk
bjk

(O1). (2.6)

φt(jk) = Pr(Ot, St = jk|O1, . . . ,Ot−1)

=

[
K∑

k=1

nk∑
i=1

φt−1(ik)aijk
bjk

(Ot)

]
× (Φt−1)−1,

(2.7)

where Φt =
∑K

k=1

∑nk

i=1 φt(jk). Note that the double sum over k and nk is simply an enumera-
tion of all the states of the model. Now, because aijk

= 0 whenever Si is not part of component
k, the sum over k can be dropped and hence equation 2.7 reduces to:

φt(jk) =

[
nk∑
i=1

φt−1(ik)aijk
bjk

(Ot)

]
× (Φt−1)−1 (2.8)

The loglikelihood is computed by applying equation 2.5 on these terms. For multiple cases, the
log-likelihood is simply the sum over the individual log-likelihoods.

Computational considerations From equations (2.3–2.4), it can be seen that computing
the forward variables, and hence the log-likelihood, takes O(Tn2) computations, for an n-state
model and a time series of length T . Consider a mixture of two components, one with two states
and the other with three states. Using equations (2.3–2.4) to compute the log-likelihood of this
model one needs O(Tn2) = O(T × 25) computations whereas with the mixture equations (2.6–
2.7),

∑
ni
O(n2

iT) computations are needed, in this case O(T × 13). So, it can be seen that in
this easy example the computational cost is almost halved.

2.2 Gradients

See equations 10–12 in Lystig and Hughes (2002) for the score recursion functions of the hidden
Markov model for a univariate time series. Here the corresponding score recursion for the
multivariate mixture case are provided. The t = 1 components of this score recursion are
defined as (for an arbitrary parameter λ1):

ψ1(jk;λ1) :=
∂

∂λ1
Pr(O1|S1 = jk) (2.9)

=
[
∂

∂λ1
pk

]
πjk

bjk
(O1) + pk

[
∂

∂λ1
πjk

]
bjk

(O1)

+ pkπjk

[
∂

∂λ1
bjk

(O1)
]
,

(2.10)

6

and for t > 1 the definition is:

ψt(jk;λ1) =
∂

∂λ1
Pr(O1, . . . ,Ot, St = jk)

Pr(O1, . . . ,Ot−1)
(2.11)

=
nk∑
i=1

{
ψt−1(i;λ1)aijk

bjk
(Ot)

+ φt−1(i)
[
∂

∂λ1
aijk

]
bjk

(Ot)

+ φt−1(i)aijk

[
∂

∂λ1
bjk

(Ot)
] }

× (Φt−1)−1.

(2.12)

Using above equations, Lystig and Hughes (2002) derive the following equation for the partial
derivative of the likelihood:

∂

∂λ1
lT =

ΨT (λ1)
ΦT

, (2.13)

where Ψt =
∑K

k=1

∑nk

i=1 ψt(jk;λ1). Starting from the equation from the logarithm of the likeli-
hood, this is easily seen to be correct:

∂

∂λ1
logPr(O1, . . . ,OT) = Pr(O1, . . . ,OT)−1 ∂

∂λ1
Pr(O1, . . . ,OT)

=
Pr(O1, . . . ,OT−1)
Pr(O1, . . . ,OT)

ΨT (λ1)

=
ΨT (λ1)

ΦT
.

Further, to actually compute the gradients, the partial derivatives of the parameters and
observation distribution functions are neccessary, i.e., ∂

∂λ1
pk, ∂

∂λ1
πi, ∂

∂λ1
aij , and ∂

∂λ1
bi(Ot).

Only the latter case requires some attention. We need the following derivatives ∂
∂λ1

bj(Ot) =
∂

∂λ1
bj(O1

t , . . . , O
m
t), for arbitrary parameters λ1. To stress that bj is a vector of functions, we

here used boldface. First note that because of local independence we can write:

∂

∂λ1

[
bj(O1

t , . . . , O
m
t)

]
=

∂

∂λ1

[
bj(O1

t)
] × [

bj(O2
t)

]
, . . . , [bj(Om

t)] .

Applying the chain rule for products we get:

∂

∂λ1
[bj(O1

t , . . . , O
m
t)] =

m∑
l=1


 ∏

i=1,...,l̂,...,m

bj(Oi
t)


 × ∂

∂λ1
[bj(Ol

t)], (2.14)

where l̂ means that that term is left out of the product. These latter terms, ∂
∂λ1

[bj(Ok
t)], are

easy to compute given either multinomial or gaussian observation densities bj()̇

2.3 Parameter estimation

Parameters are estimated in depmix using a direct optimization approach instead of the EM
algorithm which is frequently used for this type of model. The EM algorithm however has some

7

drawbacks. First, it can be slow to converge. Second, applying constraints to parameters can
be problmatic. The EM algorithm can sometimes lead to incorrect estimates when constraints
are applied to parameters in the M-step of the algorithm. The package was designed to be
used with the npsol-library, the main reason being that it handles general linear (in-)equality
constraints very well. Unfortunately, npsol is not freeware and hence is not distributed with
depmix. Two other options are available for optimization using nlm and optim respectively.
Linear equality constraints are fitted through reparametrization. Inequality constraints are
fitted through adding a penalty to the likelihood depending on the amount by which a constraint
is not satisfied. The argument vfactor to the fitting function can be used to control this
bahavior. See details of this in the chapter on fitting models.

8

Chapter 3

Using depmix

Three steps are involved in using depmix which are illustrated below with examples:

1. data specification with function markovdata

2. model specification with function dmm

3. model fitting with function fitdmm

To be able to fit models, data need to in a specific format created for this package. Basically,
data should be in the form of a matrix with each row corresponding to measures taken at a
single measurement occasion for a single subject. The function markovdata further only requires
one argument providing the itemtypes, being one of categorical, continuous or covariate. A
markovdata object is a matrix with a number of attributes.

3.1 Creating data sets

As an example we make a dataset with two variables measured at two times 50 occasions.

> x = rnorm(100, 10, 2)

> y = ifelse(runif(100) < 0.5, 0, 1)

> z = matrix(c(x, y), 100, 2)

> md = markovdata(z, itemtypes = c("cont", "cat"), ntimes = c(50,

+ 50))

> md[1:10,]

continuous categorical
[1,] 11.642114 0
[2,] 7.996006 1
[3,] 10.481705 0
[4,] 10.440898 0
[5,] 8.454049 1
[6,] 11.578053 0
[7,] 8.875631 1
[8,] 10.135414 0
[9,] 10.783023 1

[10,] 10.400851 0

9

In the example below, we split the dataset speed into three separate datasets, which we
later use as an example to do multi-group analysis.

> data(speed)

name=speed: file= .../speed.rda:: found

> r1 = markovdata(dat = speed[1:168,], itemt = itemtypes(speed))

> r2 = markovdata(dat = speed[169:302,], itemt = itemtypes(speed))

> r3 = markovdata(dat = speed[303:439,], itemt = itemtypes(speed))

> summary(r2)

Data set: 3-item data
nr of items: 3
item type(s): continuous categorical covariate
nr of covariates: 1
item name(s): rt corr Pacc
length(s) of series: 134
data: 6.621406 5.332719 5.463832 5.361292 5.398163 5.384495 ...

Here is the full specification of the markovdata function.

markovdata Specifying Markov data objects

Description

Markovdata creates an object of class md, to be used by fitdmm.

Usage

markovdata(dat, itemtypes, nitems = length(itemtypes), ntimes =
length(as.matrix(dat))/nitems, replicates = rep(1,
length(ntimes)), inames = NULL, dname = NULL, xm =
NA)

S3 method for class �md�:
summary(object, ...)
S3 method for class �md�:
plot(x, nitems = 1:(min(5, dim(x)[2])),

nind = 1:(min(5,length(attributes(x)$ntimes))),...)
S3 method for class �md�:
print(x, ...)

dname(object)
ntimes(object)
itemtypes(object)
replicates(object)

10

ncov(object)
inames(object)
nitems(object)
ind(object)

Arguments

dat An R object to be coerced to markovdata, a data frame or matrix.

itemtypes A vector providing the types of measurement with possible values ‘contin-
uous’, ‘categorical’, and ‘covariate’. This is mainly only used to rearrange
the data when there are covariates in such a way that the covariate is in
the last column. Only one covariate is supported in estimation of models.

ntimes The number of repeated measurements, ie the length of the time series
(this may be a vector containing the lengths of independent realiazations).
It defaults the number of rows of the data frame or data matrix.

replicates Using this argument case weights can be provided. This is particularly
usefull in eg latent class analysis with categorical variables when there
usually are huge numbers of replicates, ie identical response patterns.
depmix computes the raw data log likelihood for each case separately.
Thus, when there are many replicates of a case a lot of computation time
is saved by specifying case weights instead of providing the full data set.

inames The names of items. These default to the column names of matrices or
dataframes.

dname The name of the dataset, used in summary, print and plot functions.

xm xm is the missing data code. It can be any value but zero. Missing data
are recoded into NA.

object,x An object of class md.

... Further arguments passed on to plot and summary.

nitems,nind In the plot function, these arguments control which data are to be plotted,
ie nitems indicates a range of items, and nind a range of realizations,
respectively.

Details

The function markovdata coerces a given data frame or matrix to be an object of class md
such that it can be used in fithmm. The md object has its own summary, print and plot
methods.

The functions dname, itemtypes, ntimes, and replicates retrieve the respective attributes
with these names; similarly ncov, nitems, inames, and ind retrieve the number of co-
variates, the number of items (the number of columns of the data), the column names and
the number of independent realizations respectively.

11

Value

An md-object is a matrix of dimensions sum(ntimes) by nitems, containing the measured
variables and covariates rearranged such that the covariate appears in the last column. The
column names are inames and the matrix has three further attributes:

dname The name of the data set.

itemtypes See above.

ntimes See above. This will be a vector computed as ntimes=rep(ntimes,nreal).

replicates The number of replications of each case, used as weigths in computing
the log likelihood.

Author(s)

Ingmar Visser 〈i.visser@uva.nl〉

See Also

dmm, depmix

Examples

x=rnorm(100,10,2)

y=ifelse(runif(100)<0.5,0,1)

z=matrix(c(x,y),100,2)

md=markovdata(z,itemtypes=c("cont","cat"))

summary(md)

data(speed)

summary(speed)

plot(speed,nind=2)

split the data into three data sets

(to perform multi group analysis)

r1=markovdata(dat=speed[1:168,],item=itemtypes(speed))

r2=markovdata(dat=speed[169:302,],item=itemtypes(speed))

r3=markovdata(dat=speed[303:439,],item=itemtypes(speed))

summary(r2)

3.2 Data set speed

Throughout this manual we will use a data set called speed, and hence we provide some back-
ground information on how these data were gathered.

12

speed Speed Accuracy Switching Data

Description

This data set is a bivariate series of reaction times and accuracy scores of a single subject
switching between slow and accurate responding and fast guessing on a lexical decision task.
The slow and accurate responding, and the fast guessing can be modelled using two states,
with a switching regime between them. The dataset further contains a third variable called
Pacc, representing the relative pay-off for accurate responding, which is on a scale of zero
to one. The value of Pacc was varied during the experiment to induce the switching. This
data set is a subset of data from experiment 2 in Van der Maas et al, 2005.

Usage

data(speed)

Format

An object of class markovdata.

Source

Han L. J. Van der Maas, Conor V. Dolan and Peter C. M. Molenaar (2005), Phase Tran-
sitions in the Trade-Off between Speed and Accuracy in Choice Reaction Time Tasks.
Manuscript in revision.

Interesting hypotheses to test are: is the switching regime symmetric? Is there evidence for
two states or does one state suffice? Is the guessing state actually a guessing state, i.e., is the
probability correct at chance level of 0.5?

3.3 Defining models

A dependent mixture model is defined by the number of states, and by the item distribution
functions, and can be created with the dmm-function as follows:

> mod <- dmm(nstates = 2, itemtypes = c("gaus", 2))

> summary(mod)

Model: 2 -state model
Number of parameters: 15
Free parameters: 9
Number of states: 2
Number of items: 2
Item types: gaussian 2

Parameter values, transition matrix

13

distribution code parameters
multinomial 2, 3, 4, . . . p1, p2, p3, . . .
gaussian, normal 1 µ, σ
lognormal -21 lµ , lσ
weibull -22 shape (a), scale (b)
gamma -23 shape (a), scale (s)
3lognormal -31 lµ , lσ, shift
3weibull -32 shape (a), scale (b), shift
3gamma -33 shape (a), scale (s), shift

Table 3.1: Allowable distribution names, internal codes, and number of parameters.

State1 State2
State1 0.081 0.919
State2 0.438 0.562

Parameter values, observation parameters

Item1,mean Item1,stddev Item2,p 1 Item2,p 2
State1 11.321 1.594 0.055 0.945
State2 9.952 1.958 0.557 0.443

Parameter values, initial state probabilies

State1 State2
val 0.421 0.579

Here itemtypes is a vector of length the number of items measured at each occasion speci-
fying the desired distributions, in this case the first item is to follow a normal distribution, and
the second item follows a bernouilli distribution. Allowable distributions are listed in Table 3.1,
along with their internal code, and the parameter names. The R-internal code is used for esti-
mating these parameters. Specifics of these distributions and their estimation can be found in
their respective help files. Itemtypes can be specified by their name or by their internal code,
except in the case of multinomial items, which have to be specified by a number.

The function dmm returns an object of class dmm which has its own summary function provid-
ing the parameter values of the model. See the help files for further details. Except in simple
cases, starting values can be a problem in latent Markov models, and so in general it’s best to
provide them if you have a fairly good idea of what to expect. Providing starting values is done
through the stval argument:

> st <- c(1, 0.9, 0.1, 0.2, 0.8, 2, 1, 0.7, 0.3, 5, 2, 0.2, 0.8,

+ 0.5, 0.5)

> mod <- dmm(nsta = 2, itemt = c(1, 2), stval = st)

> summary(mod)

14

Model: 2 -state model
Number of parameters: 15
Free parameters: 9
Number of states: 2
Number of items: 2
Item types: 1 2

Parameter values, transition matrix

State1 State2
State1 0.9 0.1
State2 0.2 0.8

Parameter values, observation parameters

Item1,mean Item1,stddev Item2,p 1 Item2,p 2
State1 2 1 0.7 0.3
State2 5 2 0.2 0.8

Parameter values, initial state probabilies

State1 State2
val 0.5 0.5

dmm Dependent Mixture Model Specifiction

Description

dmm dmm creates an object of class dmm, a dependent mixture model.

lca lca creates an object of class dmm,lca, a latent class model or an independent mixture
model.

Usage

dmm(nstates, itemtypes, modname = NULL, fixed = NULL,
stval = NULL, conrows = NULL, conpat = NULL, tdfix =
NULL, tdst = NULL, linmat = NULL, snames = NULL,
inames = NULL)

S3 method for class �dmm�:
summary(object, specs=FALSE, precision=3, se=NULL, ...)

lca(nclasses, itemtypes, modname = NULL, fixed = NULL,

15

stval = NULL, conrows = NULL, conpat = NULL,
linmat = NULL, snames = NULL, inames = NULL)

Arguments

nstates The number of latent states/classes of the model.

nclasses The number of classes of an lca model, ie the number of states in a dmm
model. They are now called classes because they do not change over time.

itemtypes A vector of length nitems providing the type of measurement, 1 for contin-
uous (=gaussian) data, 2 for a binary item, n>3 for categorical items with
n answer possibilities. Answer categories are assumed to be unordered cat-
egorical. Ordinal responses can be implemented using inequality and/or
linear constraints.

modname A character string with the name of the model, good when fitting many
models. Components of mixture models keep their own names. Names
are printed in the summary. Boring default names are provided.

fixed A vector of length the number of parameters of the model idicating
whether parameters are fixed (0) or not (>0). This may be identical
to conpat (see below).

stval Start values of the parameters. These will be random if not specified.
Start values must be specified (for all parameters) if there are fixed pa-
rameters.

conrows Argument conrows can be used to specify general constraints between
parameters. See details below.

conpat Argument conpat can be used to specify fixed parameters and equality
constraints. It can not be used in conjuction with fixed. See details below.

tdfix,tdst The first is a logical vector indicating (with 1’s) which parameters are
dependent on covariates (it should have length npars). Tdst provides
the starting values for the regression parameters. Using tdcov=TRUE in
fitdmm will actually fit the regression parameters. The covariate itself
has to be specified in the data as ”covariate” (see help on markovdata)
and should be scaled to 0-1.

linmat A complete matrix of linear constraints. This argument is intended for
internal use only, it is used by the fit routine to re-create the model with
the fitted parameter values. Warning: use of this argument results in
complete replacement of the otherwise created matrix A, which contains
e.g. sum contraints for transition matrix parameters. If linmat is pro-
vided, make sure it is correct, otherwise strange results may occur in
fitting models.

snames Names for the states may be provided in statenames. Defaults are State1,
State2 etc. They are printed in the summary.

inames Names for items may be provided in itemnames. Defaults are Item1,
Item2 etc. They are printed in the summary.

dmm Object of class dmm.

16

precision Precision sets the number of digits to be printed in the summary functions.

se Vector with standard errors, these are passed on from the summary.fit
function if and when ses are available.

specs,... Internal use.

object An object of class dmm.

Details

The function dmm creates an object of class dmm and sets random initial parameter values
if these are not provided. Even though dmm is not a mixture of Markov models, the mix-
ture parameter is is included in the parameter vector. This is important when specifying
constraints. Parameters are ordered as follows: the first parameter(s) are the mixing pro-
portions of the mixture of Markov and/or latent class models. I.e., when a single latent
class model or a single Markov chain is fitted, this mixture proportion has value 1.0 and is
it is fixed in estimation. After the mixing proportions, the next parameters in the parame-
ter vector are the transition matrix parameters, the square of nstates in row-major order.
That is, first the transition probabilities from state 1 to all the other states are given, then
the probabilities from state 2 to all the other states etc. Next are the observation matrix
parameters. These are provided consecutively for each state/class. Ie a trichtomous item
model with two states has 6 observation parameters; the first three are the probabilities of
observing category 1, 2 and 3 respectively in state 1 (which sum to one), and then similarly
for state 2. As another example: suppose we have model for one binary item and one
gaussian item, in that order, we would have 4 observation parameters for each state, first
the probabilities of observing a symbol from category 1 or 2 in state 1, the two parameters,
the mean and standard deviation for state 1, and then the same state 2 (see the example
in fitdmm with data from rudy). Finally the initial state probabilities are provided, in the
order of the states. In the case of a latent class model or a finite mixture model, these
parameters are usually denote as the mixture proportions.

Linear constraints can be set using arguments conrows and conpat. conrows must be
contain nc by npars values, in row major order, with nc the number of contraints to be
specified. conrows is used to define general linear constraints. A row of conrows must
contain the partial derivatives of a general linear constraint with respect to each of the
parameters. Suppose we want the constraint x1 -2*x2=0, one row of conrows should contain
a 1 in position one and -2 in position and zeroes in the remaining positions. In the function
mixdmm conrows is understood to specify linear constraints on the mixing proportions only.
As a consequence, it is not possible to easily constrain parameters between components of
a mixture model.

conpat can be used as a shortcut for both fixed and conrows. It must be a single vector
of length npars contaning 0’s (zeroes) for fixed parameters, 1’s (ones) for free parameters and
higher numbers for possibly equality constrained parameters. E.g. conpat=c(1,1,0,2,2,3,3,3)
would indicate that pars 1 and 2 are freely estimated, par 3 is fixed at its startvalue (which
must be provided in this case), par 4 and 5 are to estimated equal and pars 6, 7 and 8 are
also to be estimated equal.

Value

dmm returns an object of class dmm which has its own summary method. This will print
the parameter values, itemtypes, number of (free) parameters, and the number of states.

17

There is no print method. Using print will print all fields of the model which is a list of the
following:

modname See above.
nstates See above
snames See above.
nitems The number of items(=length(itemtypes)).
itemtypes See above.
inames See above.
npars The total parameter count of the model.
nparstotal The total number of parameters of when the covariate parameters are

included.
freepars The number of freely estimated parameters (it is computed as sum(as.logical(fixed))-

rank(qr(A)).
freeparsnotd The number of freely estimated parameters (it is computed as sum(as.logical(fixed))-

rank(qr(A)); this version without the covariate parameters.
pars A vector of length npars containing parameter values.
fixed fixed is a (logical) vector of length npars specifying which parameters

are fixed and which are not.
A The matrix A contains the general linear constraints of the model. nrow(A)

is the number of linear constraints. A starts with a number of rows for
the sum constraints for the transition, observation and initial state pa-
rameters, after which the user provided constraints are added.

bu,bl bu and bl represent the upper and lower bounds of the parameters and
the constraints. These vectors are each of length npars + nrow(A).

bllin,bulin The lower and upper bounds of the linear constraints.
td,tdin,tdtr,tdob,tdfit

Logicals indicating whehter there covariates, in which parameters they
are, and whether they are estimated or not (the latter is used to decide
whether to print those values or not).

st Logical indicating whether the model has user specified starting values.

lca returns an object of class dmm, lca, and is otherwise identical to a dmm object. The
only difference is that the transition matrix parameters are irrelevant, and consequently
they are not printed in the summary function.

Author(s)

Ingmar Visser 〈i.visser@uva.nl〉

References

On hidden Markov models: Lawrence R. Rabiner (1989). A tutorial on hidden Markov
models and selected applications in speech recognition. Proceedings of IEEE, 77-2, p. 267-
295.

On latent class models: A. L. McCutcheon (1987). Latent class analysis. Sage Publications.

18

See Also

mixdmm on defining mixtures of dmm’s, mgdmm for defining multi group models, and generate
for generating data from models.

Examples

create a 2 state model with one continuous and one binary response

with start values provided in st

st <- c(1,0.9,0.1,0.2,0.8,2,1,0.7,0.3,5,2,0.2,0.8,0.5,0.5)

mod <- dmm(nsta=2,itemt=c(1,2), stval=st)

summary(mod)

2 class latent class model with equal conditional probabilities in each class

stv=c(1,rep(c(0.9,0.1),5),rep(c(0.1,0.9),5),0.5,0.5)

here the conditional probs of the first item are set equal to those in

the subsequent items

conpat=c(1,rep(c(2,3),5),rep(c(4,5),5),1,1)

lc=lca(ncl=2,itemtypes=rep(2,5),conpat=conpat,stv=stv)

summary(lc)

3.3.1 Generating data

The dmm-class has a generate method that can be used to generate data according to a specified
model.

> gen <- generate(c(100, 50), mod)

> summary(gen)

Data set: 2-item data
nr of items: 2
item type(s): 1 2
item name(s): 1 2
length(s) of series: 100 50
nr of independent series: 2
data: 1.662868 2.212274 2.745824 1.660324 1.394527 7.677464 ...

generate Generate data from a dependent mixture model

Description

generate generate generates a dataset according to a given dmm.

19

> plot(gen)

1

0
2

4
6

8

1

1.
0

1.
4

1.
8

2

0
2

4
6

8
10

1

1.
0

1.
4

1.
8

0 20 40 60 80 100

2

Time

2−item data

Figure 3.1: Two timeseries generated by 2-state model with one gaussian item and one binary
item.

20

Usage

generate(ntimes,dmm,nreal=1)

Arguments

ntimes The number of repeated measurements, ie the length of the time series
(this may be a vector containing the lengths of independent realiazations).

dmm Object of class dmm or mixdmm.

nreal The number of independent realizations that is to generated. Each of
them will have the dimension of ntimes; all this does is replace ntimes
by rep(ntimes,nreal).

Details

generate generates a date set of the specified dimensions ntimes and nreal using the
parameter values in dmm, which should be an object of class dmm or mixdmm. generate does
not handle multi group models, which can be run separately.

Value

Generate returns an object of class markovdata. The return object has an attribute called
instates, a vector with the starting states of each realization. When the model is a mixture
the return has another attribute incomp containing the components of each realization.

Author(s)

Ingmar Visser 〈i.visser@uva.nl〉

See Also

dmm, markovdata

Examples

create a 2 state model with one continuous and one binary response

with start values provided in st

st <- c(1,0.9,0.1,0.2,0.8,2,1,0.7,0.3,5,2,0.2,0.8,0.5,0.5)

mod <- dmm(nsta=2,itemt=c(1,2), stval=st)

generate two series of lengths 100 and 50 respectively using above model

gen<-generate(c(100,50),mod)

summary(gen)

plot(gen)

21

3.4 Fitting models

Fitting models is done using the function fitdmm. The standard call only requires a dataset
and a model as in:

> data(speed)

name=speed: file= .../speed.rda:: found

> mod <- dmm(nstates = 2, itemtypes = c(1, 2))

> fitex <- fitdmm(speed, mod)

Initial loglikelihood: -297.4306
iteration = 0
Step:
[1] 0 0 0 0 0 0 0 0 0
Parameter:
[1] 0.4074968 -0.6030893 -0.5559689 0.7830820 -0.1846599 6.4032844 0.2318094
[8] 5.5372838 0.2189520
Function Value
[1] 297.4306
Gradient:
[1] 17.838774 4.395048 1.009810 6.808036 9.848922 30.788829 -43.417653
[8] 32.399634 54.905265

iteration = 16
Parameter:
[1] 0.3877964 -0.6050630 -0.5429171 0.7942191 -0.2057752 6.3914953 0.2396807
[8] 5.5200651 0.2019121
Function Value
[1] 296.1200
Gradient:
[1] -0.55687642 0.99484837 3.34099578 0.08263532 3.08080738 -0.57541695
[7] -0.09220585 -0.81976170 -0.25060547

Successive iterates within tolerance.
Current iterate is probably solution.

Final loglikelihood: -296.1200
Computing posteriors
Computing standard errors
This took 16 iterations, 6.044 seconds

Calling fitdmm produces some online ouput about the progress of the optimization which
can be controlled with the printlevel argument. Its default value of 1 just gives the first and
the last iteration of the optimization; 0 gives no output, and setting it to 5 or higher values will
produce output at each iteration. These values correspond with the 0,1, and 2 printlevel of nlm.
When using optim, the printlevel argument is used to set the REPORT argument of optim (see
its help page for details). Printlevel 0 gives report 0, printlevel 1 gives report 10, printlevels 2–4
give report 5 and printlevel>4 gives report 1, producing output at every iteration. Printlevels

22

starting from 15 and higher produce increasingly annoying output from the C-routines that
compute the loglikelihood.

Fitdmm returns an object of class fit which has a summary method showing the estimated
parameter values, along with standard errors, and t-ratios whenever those are available. Along
with the log-likelihood, the AIC and BIC values are provided. Apart from the printed values
(see summary below), a fit-object has a number of other fields. Most importantly, it contains a
copy of the fitted model in mod and it has a field post containing posterior state estimates. That
is, for each group g, post$states[[g]] is a matrix with dimensions the number of states of
the model + 2, and sum(ntimes(dat)). The first column contains the a posteriori component
model, the second column has the state number within the component, and the other columns
are used for the a posteriori probabilities of each of the states.

> summary(fitex)

Model: 2 -state model fitted at Wed Jul 12 16:37:59 2006
Optimization information, method is nlm
Iterations: 16
Inform: 2 (look up the respective manuals for more information.)

Loglikelihood of fitted model: -296.12
AIC: 610.24
BIC: 647.001
Number of observations (used in BIC): 439
Fitted model
Model: 2 -state model
Number of parameters: 15
Free parameters: 9
Number of states: 2
Number of items: 2
Item types: 1 2

Parameter values, transition matrix

State1 State2
State1 0.916 0.084
se 0.018 0.018
t 50.854 4.671
State2 0.104 0.896
se 0.024 0.024
t 4.263 36.678

Parameter values, observation parameters

Item1,mean Item1,stddev Item2,p 1 Item2,p 2
State1 6.391 0.240 0.098 0.902
se 0.016 0.012 0.019 0.019
t 399.429 20.735 5.060 46.543
State2 5.520 0.202 0.469 0.531

23

se 0.017 0.014 0.037 0.037
t 324.383 14.475 12.638 14.313

Parameter values, initial state probabilies

State1 State2
val 1.000 0.000
se 0.578 0.578
t 1.731 0.000

fitdmm Fitting Dependent Mixture Models

Description

fitdmm fitdmm fits mixtures of hidden/latent Markov models on arbitrary length time series of
mixed categorical and continuous data. This includes latent class models and finite mixture
models (for time series of length 1), which are in effect independent mixture models.

posterior posterior computes the most likely latent state sequence for a given dataset and
model.

Usage

fitdmm(dat,dmm,printlevel=1,poster=TRUE,tdcov=0,ses=TRUE,
method="nlm",der=1,vfactor=15,iterlim=100,
accuracy="standard",kmst=!dmm$st,kmrep=5,postst=TRUE)

loglike(dat, dmm, tdcov = 0, grad = FALSE, hess = FALSE, set
= TRUE, grInd = 0, sca = 1, printlevel = 1)

posterior(dat,dmm,tdcov=0,printlevel=1)
computeSes(dat,dmm)
bootstrap(object,dat,samples=100, pvalonly=0,...)
S3 method for class �fit�:
summary(object, precision=3, fd=1, ...)
oneliner(object,precision=3)

Arguments

dat An object (or list of objects) of class md, see markovdata. If dat is a list
of objects of class md a multigroup model is fitted on these data sets.

dmm An object (or a list of objects) of class dmm, see dmm. If dmm is a list
of objects of class dmm, these are taken to components of a mixture of
dmm’s model and will be coerced to class mixdmm. In any case, the model
that is fitted a multigroup mixture of dmm’s with default ngroups=1 and
number of components=1.

24

printlevel printlevel controls the output provided by the C-routines that are called
to optimize the parameters. The default of 1 provides minmal output: just
the initial and final loglikelihood of the model. Setting higher values will
provide more output on the progress the iterations.

poster By default posteriors are computed, the result of which can be found in
fit$post.

method This is the optimization algorithm that is used. NLM is the default
method. There is further support for optim and NPSOL.

der Specifies whether derivatives are to be used in optimization.

vfactor vfactor controls optimization in optim and nlm. Since in those routines
there is no possibility for enforcing constraints, constraints are enforced by
adding a penalty term to the loglikelihood. The penalty term is printed
at the end of optimization if it is not close enough to zero. This may
have several reasons. When parameters are estimated at bounds for ex-
ample. This can be solved by fixing those parameters on their boundary
values. When this is not acceptable vfactor may be increased such that
the penalty is larger and the probability that they actually hold in the
fitted model is correspondingly higher.

tdcov Logical, when set to TRUE, given that the model and data have covari-
ates, the corresponding parameters will be estimated.

ses Logical, determines whether standard errors are computed after optimiza-
tion.

iterlim The iteration limit for npsol, defaults to 100, which may be too low for
large models.

accuracy This argument can be used to set accuracy of optimization when using
nlm as optimizer. It can take values ”standard” (the default), ”high” and
”best” for increasing levels of accuracy.

grad logical; if TRUE the gradients are returned.

hess logical; if TRUE the hessian is returned; it is not implemented currently
and hence setting it to true will produce a warning.

set Whith the default value TRUE, the data and models parameters are sent
to the C/C++ routines before computing the loglikelihood. When set
is FALSE, this is not done. If an incorrect model was set earlier in the
C-routines this may cause serious errors and/or crashes.

sca If set to -1.0 the negative loglikelihood, gradients and hessian are returned.

object An object of class fit, ie the return value of fitdmm.

kmst,postst These arguments control the generation of starting values by kmeans and
posterior estimates respectively.

kmrep If no starting values are provided, kmrep sets of starting values are gener-
ated using kmeans in appropriate cases. The best resulting set of starting
values is optimized further.

grInd Logical argument; if TRUE, individual contributions of each independent
realization to the gradient vector will be returned.

25

fd Print the finite difference based standard errors in the summary if both
those and bootstrapped standard errors are available.

samples The number of samples to be used in bootstrapping.

pvalonly Logical, if 1 only a bootstrapped pvalue is returned and not fitted para-
maters to compute standard errors, optimization is truncated when the
loglikelihood is better than the original loglikelihood.

precision Precision sets the number of digits to be printed in the summary functions.

... Used in summary.

Details

The function fitdmm optimizes the parameters of a mixture of dmms using a general purpose
optimization routine subject to linear constraints on the parameters.

Value

fitdmm returns an object of class fit which has a summary method that prints the summary
of the fitted model, and the following fields:

date,timeUsed,totMem
The date that the model was fitted, the time it took to so and the memory
usage.

loglike The loglikelihood of the fitted model.

aic The AIC of the fitted model.

bic The BIC of the fitted model.

mod The fitted model.

post See function posterior for details.

logl The loglikelihood.

gr,grset gr contains the gradients. grset is a logical vector giving information
as to which gradients are set, currently all gradients are set except the
gradients for the mixing proportions.

hs,hsset hs contains the hessian. hsset is a logical giving information as to which
elements are computed.

states A matrix of dimension 2+sum(nstates) by sum(length(ntimes)) contain-
ing in the first column the a posteriori component, in the second column
the a posteriori state and in the remaining column the posterior proba-
bilities of all states.

comp Contains the posterior component number for each independent realiza-
tion; all ones for a single component model.

computeSes returns a vector of length npars with the standard errors and a matrix hs with
the hessian used to compute them. The routine is not fail safe and can produce errors, ie
when the (corrected) hessian is singular.

bootstrap returns an object of class fit with three extra fields, the bootstrapped standard
errors, bse, a matrix with goodness-of-fit measures of the bootstrap samples, ie logl, AIC

26

and BIC and pbetter, which is the proportion of bootstrap samples that resulted in better
fits than the original model.

summary.fit pretty-prints the outputs.

oneliner returns a vector of loglike, aic, bic, modnpars,modfreepars, date.

Note

The repeated library by Jim Lindsey fits hidden markov models. fitdmm fits time series of
arbitrary length and mixtures of dmms, where, to the best of my knowledge, other packages
are limited due to the different optimization routines that are commonly used for these
types of models (this is certainly so for categorical data models).

Author(s)

Ingmar Visser 〈i.visser@uva.nl〉, Development of this pacakge was supported by European
Commission grant 51652 (NEST) and by a VENI grant from the Dutch Organization for
Scientific Research (NWO).

References

Lawrence R. Rabiner (1989). A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of IEEE, 77-2, p. 267-295.

Theodore C. Lystig and James P. Hughes (2002). Exact computation of the observed
information matrix for hidden Markov models. Journal of Computational and Graphical
Statistics.

See Also

dmm,markovdata,repeated

Examples

COMBINED RT AND CORRECT/INCORRECT SCORES from a �switching� experiment

data(speed)

mod <- dmm(nsta=2,itemt=c(1,2)) # gaussian and binary items

fit1 <- fitdmm(dat=speed,dmm=mod)

summary(fit1)

add some constraints using conpat

conpat=rep(1,15)

conpat[1]=0

conpat[14:15]=0

conpat[8:9]=0

use starting values from the previous model fit, except for the guessing

parameters which should really be 0.5

stv=c(1,.896,.104,.084,.916,5.52,.20,.5,.5,6.39,.24,.098,.90,0,1)

mod=dmm(nstates=2,itemt=c("n",2),stval=stv,conpat=conpat)

fit2 <- fitdmm(dat=speed,dmm=mod)

27

summary(fit2)

add covariates to the model to incorporate the fact the accuracy pay off changes per trial

2-state model with covariates + other constraints

conpat=rep(1,15)

conpat[1]=0

conpat[8:9]=0

conpat[14:15]=0

conpat[2]=2

conpat[5]=2

stv=c(1,0.9,0.1,0.1,0.9,5.5,0.2,0.5,0.5,6.4,0.25,0.9,0.1,0,1)

tdfix=rep(0,15)

tdfix[2:5]=1

stcov=rep(0,15)

stcov[2:5]=c(-0.4,0.4,0.15,-0.15)

mod<-dmm(nstates=2,itemt=c("n",2),stval=stv,conpat=conpat,tdfix=tdfix,tdst=stcov,modname="twoboth+cov"

fit3 <- fitdmm(dat=speed,dmm=mod,tdcov=1,der=0,ses=0,vfa=80,accu="best")

summary(fit3)

split the data into three time series

data(speed)

r1=markovdata(dat=speed[1:168,],item=itemtypes(speed))

r2=markovdata(dat=speed[169:302,],item=itemtypes(speed))

r3=markovdata(dat=speed[303:439,],item=itemtypes(speed))

define 2-state model with constraints

conpat=rep(1,15)

conpat[1]=0

conpat[8:9]=0

conpat[14:15]=0

stv=c(1,0.9,0.1,0.1,0.9,5.5,0.2,0.5,0.5,6.4,0.25,0.9,0.1,0,1)

mod<-dmm(nstates=2,itemt=c("n",2),stval=stv,conpat=conpat)

define 3-group model with equal transition parameters, and no

equalities between the obser parameters

mgr <-mgdmm(dmm=mod,ng=3,trans=TRUE,obser=FALSE)

fitmg <- fitdmm(dat=list(r1,r2,r3),dmm=mgr)

summary(fitmg)

LEARNING DATA AND MODELS (with absorbing states)

data(discrimination)

all or none model with error prob in the learned state

fixed = c(0,0,0,1,1,1,1,0,0,0,0)

stv = c(1,1,0,0.03,0.97,0.1,0.9,0.5,0.5,0,1)

allor <- dmm(nstates=2,itemtypes=2,fixed=fixed,stval=stv,modname="All-or-none")

Concept identification model: learning only after an error

st=c(1,1,0,0,0,0.5,0.5,0.5,0.25,0.25,0.05,0.95,0,1,1,0,0.25,0.375,0.375)

28

fix some parameters

fx=rep(0,19)

fx[8:12]=1

fx[17:19]=1

add a couple of constraints

conr1 <- rep(0,19)

conr1[9]=1

conr1[10]=-1

conr2 <- rep(0,19)

conr2[18]=1

conr2[19]=-1

conr3 <- rep(0,19)

conr3[8]=1

conr3[17]=-2

conr=c(conr1,conr2,conr3)

cim <- dmm(nstates=3,itemtypes=2,fixed=fx,conrows=conr,stval=st,modname="CIM")

define a mixture of the above models ...

mix <- mixdmm(dmm=list(allor,cim),modname="MixAllCim")

... and fit it on the combined data discrimination

fitmix <- fitdmm(discrimination,mix)

summary(fitmix)

29

Chapter 4

Extending and constraining
models

4.1 Fixing and constraining parameters

Continuing the example from above, it can be seen that in one of the states, the probability of a
correct answer is about .5, as is the probability of an incorrect answer, i.e., these are parameters
Item2,p1 and Item2,p2. This latent state, is supposed to be a guessing state, and hence it makes
sense to constrain these parameters to their theoretical values of .5. Similarly, the initial state
probability for the slow state is one, and zero for the other state, and hence it makes sense
to fix these parameters. The third constraint that we consider here is an equality constraint
between the transition parameters. Using this constraint, we can test the hypothesis whether
the switching between states is a symmetric process or not. Hence, we constrain the transition
parameters a11 and a22.

Constraining and fixing parameters is done in a similar fashion as the pa command that is
used in LISREL (Jöreskog and Sörbom, 1999). The conpat argument to the fitdmm-function
specifies for each parameter in the model whether it’s fixed (0) or free (1 or higher). Equality
constraints can be imposed by having two parameters have the same number in the conpat
vector. When only fixed values are required the fixed argument can be used instead of conpat,
with zeroes for fixed parameters and other values (ones e.g.) for non-fixed parameters.

Fitting the models subject to these constraints is mostly done through reparametrization.
Inequality constraints are enforced by adding a penalty to the loglikelihood when the constraint
is not satisfied. The penalty is linear in the amount by which the constraint is not satisfied,
and not logarithmic or something similar which is often used (see e.g. the documentation for
constrOptim which uses a logarithmic boundary for inequality constraints). This has advan-
tages and disadvantages. There are two marked disadvantages. First, the loglikelihood is not
smooth at the boundary of the paramter space. Second, it can happen that the constraint is
not satisfied. Whenever cosntraints are not satisfied fitdmm exits with a warning stating the
amount by which it is not satisfied. This can be remedied by upping the vfactor argument
which simply increases the penalty by this factor (its default value is 5). An advantage is that
using a linear penalty, it is possible that the parameter is estimated at the boundary, which is
prohibited with logarithmic boundaries.

30

Parameter numbering When using the conpat and fixed arguments, complete vectors
should be supplied, i.e., these vectors should have length of the number of parameters of the
model. Parameters are numbered in the following order:

1. the mixing proportions of a mixture of latent Markov models, i.e., just one parameter for
a single component model which has value 1 and is fixed

2. the component parameters for each component consisting of the following:

(a) transition parameters in row major order, a11, a12, a13, . . . , a21, a22, a23, . . .

(b) the observation parameters per state and per item, in the order listed in Table 3.1

(c) the initial state probabilities per state

> conpat = rep(1, 15)

> conpat[1] = 0

> conpat[14:15] = 0

> conpat[8:9] = 0

> conpat[2] = conpat[5] = 2

> stv = c(1, 0.896, 0.104, 0.084, 0.916, 5.52, 0.2, 0.5, 0.5, 6.39,

+ 0.24, 0.098, 0.902, 0, 1)

> mod = dmm(nstates = 2, itemt = c("n", 2), stval = stv, conpat = conpat)

In the example above conpat is used to specify a number of constraints. First, conpat[1]=0
specifies that the mixing proportion of the model should be fixed (at its starting value of 1),
which is always the case for single component models. Second, conpat[14:15]=0 fixes the
initial state probabilities to zero and one respectively. Similarly, for conpat[8:9]=0, which
are the guessing state parameters for the accuracy scores. They are both fixed at 0.5 so as to
make the guessing state an actual guessing state. Finally, by invoking conpat[2]=conpat[5]=2,
transition parameters a11 and a22 are set to be equal. Whenever equality constraints are not
sufficient, general linear constraints can be specified using the conrows argument.

The constrained model has the following estimated parameters1:

> summary(fitfix)

Model: 2 -state model fitted at Fri Apr 15 14:52:22 2005
Optimization information, method is nlm
Iterations: 11
Inform: 1 (look up the respective manuals for more information.)

Loglikelihood of fitted model: -296.585
AIC: 605.169
BIC: 629.676
Number of observations (used in BIC): 439
Fitted model
Model: 2 -state model
Number of parameters: 15
Free parameters: 6

1Note that in running this example with the starting values from the unconstrained model, the initial log-
likelihood is worse than the final loglikelihood because the initial likelihood is based on parameters that do not
satisfy the constraints.

31

Number of states: 2
Number of items: 2
Item types: normal 2

Parameter values, transition matrix

State1 State2
State1 0.909 0.091
se 0.015 0.015
t 61.030 6.088
State2 0.091 0.909
se 0.015 0.015
t 6.088 61.030

Parameter values, observation parameters

Item1,mean Item1,stddev Item2,p 1 Item2,p 2
State1 5.521 0.203 0.500 0.500
se 0.017 0.014 0.000 0.000
t 325.190 14.623 NA NA
State2 6.392 0.239 0.098 0.902
se 0.016 0.012 0.019 0.019
t 400.978 20.788 5.052 46.525

Parameter values, initial state probabilies

State1 State2
val 0 1
se 0 0
t NA NA

4.2 Multi group/case analysis

depmix can handle multiple cases or multiple groups. A multigroup model is specified using the
function mgdmm as follows:

> mgr <- mgdmm(dmm = mod, ng = 3, trans = TRUE, obser = FALSE)

> mgrfree <- mgdmm(dmm = mod, ng = 3, trans = FALSE)

The ng argument specifies the number of groups, and the dmm argument specifies the model
for each group. dmm can be either a single model or list of models of length(ng). If it is a single
model, each group has an identical structural model (same fixed and constrained parameters),
and else each group has its model. Three further arguments can be used to constrain parameters
between groups, trans, obser, and init respectively. By setting either of these to TRUE, the
corresponding transition, observation, and initial state parameters are estimated equal between

32

groups2.
In this example, the model from above was used and fitted on the three observed series,

and the trans=TRUE ensures that the transition matrix parameters are constrained to be equal
between the models for these series, whereas the observation parameters are freely estimated,
i.e. to capture learning effects. The resulting parameters are:

> summary(fitmg)

Model: 3 group model fitted at Thu Apr 28 11:17:27 2005
Optimization information, method is nlm
Iterations: 31
Inform: 2 (look up the respective manuals for more information.)

Loglikelihood of fitted model: -280.026
AIC: 594.053
BIC: 663.489
Number of observations (used in BIC): 439
Fitted model
Model: 3 group model
Nr of groups: 3
Nr of parameters: 45
Free parameters: 17
Model for group: 1
Model: 2 -state model
Number of parameters: 15
Free parameters: 7
Number of states: 2
Number of items: 2
Item types: normal 2

Parameter values, transition matrix

State1 State2
State1 0.903 0.097
State2 0.084 0.916

Parameter values, observation parameters

Item1,mean Item1,stddev Item2,p 1 Item2,p 2
State1 5.616 0.259 0.500 0.500
State2 6.425 0.254 0.058 0.942

Parameter values, initial state probabilies

2There is at this moment no way of fine-tuning this to restrict equalities to individual parameters. However,
this can be accomplished by manually changing the linear constraint matrix, and the corresponding upper and
lower boundaries.

33

State1 State2
val 0.5 0.5

Model for group: 2
Model: 2 -state model
Number of parameters: 15
Free parameters: 7
Number of states: 2
Number of items: 2
Item types: normal 2

Parameter values, transition matrix

State1 State2
State1 0.903 0.097
State2 0.084 0.916

Parameter values, observation parameters

Item1,mean Item1,stddev Item2,p 1 Item2,p 2
State1 5.526 0.149 0.5 0.5
State2 6.408 0.238 0.1 0.9

Parameter values, initial state probabilies

State1 State2
val 0.5 0.5

Model for group: 3
Model: 2 -state model
Number of parameters: 15
Free parameters: 7
Number of states: 2
Number of items: 2
Item types: normal 2

Parameter values, transition matrix

State1 State2
State1 0.903 0.097
State2 0.084 0.916

Parameter values, observation parameters

Item1,mean Item1,stddev Item2,p 1 Item2,p 2

34

State1 5.422 0.167 0.500 0.500
State2 6.355 0.214 0.107 0.893

Parameter values, initial state probabilies

State1 State2
val 0.5 0.5

The loglikelihood ratio statistic can be used to test whether constraining these transition
parameters significantly reduces the goodness-of-fit of the model. The statistic has value LR =
1.815, and it has an approximate χ2 distribution with df = 4 because in each but the first
model, two transition matrix parameters were estimated equal to the parameters in the first
model (note that the other two transition parameters were already had to be constrained to
ensure that the rows of the transition matrices sum to 1). The associated p-value for the statistic
is p = 0.77, indicating that constraining the transition matrix parameters does not significantly
worsen the goodness-of-fit of the model.

mgdmm Multi group model specification

Description

mgdmm mgdmm creates an object of class mgd, a multi-group model, from a given model of either
class dmm or class mixdmm or lists of these.

Usage

mgdmm(dmm,ng=1,modname=NULL,trans=FALSE,obser=FALSE,init=FALSE,conpat=NULL)
S3 method for class �mgd�:
summary(object, specs=FALSE, precision=3, se=NULL, ...)

Arguments

modname A character string with the name of the model, good when fitting many
models. Components of mixture models keep their own names. Names
are printed in the summary. Boring default names are provided.

dmm Object (or list of objects) of class dmm; see details below.

ng Number of groups for a multigroup model.
trans,obser,init

Logical arguments specify whether transition parameters, observation
parameters and initial state parameters should be estimated equal across
groups.

conpat Can be used to specify general linear constraints. See dmm for details.

35

precision Precision sets the number of digits to be printed in the summary functions.

se Vector with standard errors, these are passed on from the summary.fit
function if and when ses are available.

specs,... Internal use.

object An object of class mgd.

Details

The function mgdmm can be used to define an mgd-model or multi group dmm. Its default
behavior is to create ng copies of the dmm argument, thereby providing identical starting
values for each group’s model. If the dmm argument is a list of models of length ng, the
starting values of those models will be used instead. This may save quite some cpu time
when fitting large models by providing the parameter values of separately fitted models as
starting values. Currently, depmix does not automatically generate starting values for multi
group models.

Value

mgdmm returns an object of class mgd which contains all the fields of an object of class dmm
and the following extra:

ng ng is the number of groups in the multigroup model.

mixmod mixmod is a list of length ng of mixdmm models for each group.

itemtypes See above.
npars,freepars,pars,fixed,A,bl,bu

The same as above but now for the combined model, here npars equals
the sum of npars of the component models plus the mixing proportions.

Author(s)

Ingmar Visser 〈i.visser@uva.nl〉

See Also

dmm on defining single component models, and mixdmm for defining mixtures of dmm’s.

Examples

create a 2 state model with one continuous and one binary response

with start values provided in st

st <- c(1,0.9,0.1,0.2,0.8,2,1,0.7,0.3,5,2,0.2,0.8,0.5,0.5)

mod <- dmm(nsta=2,itemt=c(1,2), stval=st)

define 3-group model with equal transition parameters, and no

equalities between the obser parameters

mgr <- mgdmm(dmm=mod,ng=3,trans=TRUE,obser=FALSE)

summary(mgr)

36

4.3 Models with time-dependent covariates

Specifying a model with covariates is done by including two arguments in a call to dmm called
tdfix and tdst, where td means time dependent. tdfix is a logical vector of length the number
of parameters of the model, specifying which parameters are to be estimated time-dependent.
For an arbitrary parameter λ, the model that is estimated has the form:

λt = λ0 + βxt, (4.1)

where λ0 is the intercept of the parameter, β is the regression coefficient, and xt is the time-
dependent covariate. The covariate has to be scaled to lie between 0 and 1; this is neccessary
to be able to impose the right constraints on β in order to ensure that λt is always appropriate,
ie within its lower and upper bounds (mostly 0 and 1 for multinomial item parameters and
transition parameters etc). The current version of depmix does not have non-time-dependent
covariates, which can simply be faked by having xt be constant, and there is only support for
a single covariate.

In the example below, the transition parameters (numbers 2–5) are defined to depend on
the covariate which is the pay-off for accuracy. Providing starting values for the covariates is
optional. If not provided they are chosen at random around 0 which usually works just fine.

> conpat = rep(1, 15)

> conpat[1] = 0

> conpat[8:9] = 0

> conpat[14:15] = 0

> conpat[2] = 2

> conpat[5] = 2

> stv = c(1, 0.9, 0.1, 0.1, 0.9, 5.5, 0.2, 0.5, 0.5, 6.4, 0.25,

+ 0.9, 0.1, 0, 1)

> tdfix = rep(0, 15)

> tdfix[2:5] = 1

> tdst = rep(0, 15)

> tdst[2:5] = c(-0.4, 0.4, 0.15, -0.15)

> mod <- dmm(nstates = 2, itemt = c("n", 2), stval = stv, conpat = conpat,

+ tdfix = tdfix, tdst = tdst, modname = "twoboth+cov")

> summary(fittd)

Model: twoboth+cov fitted at Fri Apr 15 14:52:43 2005
Optimization information, method is nlm
Iterations: 28
Inform: 3 (look up the respective manuals for more information.)

Loglikelihood of fitted model: -284.856
AIC: 585.713
BIC: 618.389
Number of observations (used in BIC): 439
Fitted model
Model: twoboth+cov
Number of parameters: 30
Free parameters: 8

37

Number of states: 2
Number of items: 2
Item types: normal 2

Parameter values, transition matrix

State1 State2
State1 0.890 0.110
be -0.224 0.224
State2 0.110 0.890
be -0.110 0.110

Parameter values, observation parameters

Item1,mean Item1,stddev Item2,p 1 Item2,p 2
State1 5.516 0.198 0.5 0.5
State2 6.390 0.241 0.1 0.9

Parameter values, initial state probabilies

State1 State2
val 0 1

38

Chapter 5

Special topics

5.1 Starting values

Although providing your own starting values is preferable, depmix has a routine for generating
starting values using the kmeans-function from the stats-package. This will usually provide
reasonable starting values, but can be way off in a number of cases. First, for univariate
categorical time series, kmeans does not work at all, and depmix will provide a warning. Second,
for multivariate series with unordered categorical items with more than 2 categories, kmeans
may provide good starting values, but they may similarly be completely off, due to the implicit
assumption in kmeans that the categories are indicating an underlying continuum. Starting
values using kmeans are automatically provided when a model is specified without starting
values. The argument kmst to the fitdmm-function can be used to control this behavior.

Starting values of the paramaters, either user provided or generated, are further boosted by
using posterior estimates. That is, first the a posteriori latent states are generated from the
current parameter values for the data at hand. Next, from the a posteriori latent states, new
parameter estimates are derived. This is done by default and can be controlled by the postst
argument. Provided that the starting values were close to their true values, using this procedure
further pushes those parameters in the right direction. If however the original values were bad,
this procedure may result in bad estimates, i.e., optimization will lead to some non-optimal
local maximum of the loglikelihood.

5.2 Finite mixtures and latent class models

The function lca can be used to specify latent class models and/or finite mixture models.
It is simply a wrapper for the dmm function, and all it does is adding appropriate numbers of
zeroes and ones to the parameter specification vectors for starting values, fixed values and linear
constraints. When a model has class lca the summary function does not print the transition
matrix (because it is fixed and/or not estimated).

5.3 Mixtures of latent Markov models

depmix provides support for fitting mixtures of latent Markov models using the mixdmm function;
it takes a list of dmm’s as argument, possibly together with the starting values for the mixing

39

proportions for each component model. There’s an example in the helpfiles.

mixdmm Mixture of dmm’s specification

Description

mixdmm creates an object of class mixdmm, ie a mixture of dmm’s, given a list of component
models of class dmm.

Usage

mixdmm(dmm, modname=NULL, mixprop=NULL, conrows=NULL)
S3 method for class �mixdmm�:
summary(object, specs=FALSE, precision=3, se=NULL, ...)

Arguments

dmm A list of dmm objects to form the mixture.
modname A character string with the name of the model, good when fitting many

models. Components of mixture models keep their own names. Names
are printed in the summary. Boring default names are provided.

conrows Argument conrows can be used to specify general constraints between
parameters.

mixprop Arugement mixprop can be used to set the initial values of the mixing
proportions of a mixture of dmm’s.

precision Precision sets the number of digits to be printed in the summary functions.
object An object of class mixdmm.
specs,... Internal use. Not functioning currently.
se Vector with standard errors, these are passed on from the summary.fit

function if and when ses are available.

Details

The function mixdmm can be used to define a mixture of dmm’s by providing a list of such
objects as argument to this function. See the dmm helpfile on how to use the conrows
argument. Note that it has to be of length npars, ie including all parameters of the model
and not just the mixing proportions.

Value

mixdmm returns an object of class mixdmm which has the same fields as a dmm object. In
addition it has the following fields:

nrcomp The number of components of the mixture model.
mod A list of the component models, that is a list of objects of class dmm.

40

Author(s)

Ingmar Visser 〈i.visser@uva.nl〉

See Also

dmm on defining single component models, and mgdmm on defining multi group models. See
generate for generating data.

Examples

define component 1

all or none model with error prob in the learned state

fixed = c(0,0,0,1,1,1,1,0,0,0,0)

stv = c(1,1,0,0.07,0.93,0.9,0.1,0.5,0.5,0,1)

allor <- dmm(nstates=2,itemtypes=2,fixed=fixed,stval=stv,modname="All-or-none")

define component 2

Concept identification model: learning only after an error

st=c(1,1,0,0,0,0.5,0.5,0.5,0.25,0.25,0.8,0.2,1,0,0,1,0.25,0.375,0.375)

fix some parameters

fx=rep(0,19)

fx[8:12]=1

fx[17:19]=1

add a couple of constraints

conr1 <- rep(0,19)

conr1[9]=1

conr1[10]=-1

conr2 <- rep(0,19)

conr2[18]=1

conr2[19]=-1

conr3 <- rep(0,19)

conr3[8]=1

conr3[17]=-2

conr=c(conr1,conr2,conr3)

cim <- dmm(nstates=3,itemtypes=2,fixed=fx,conrows=conr,stval=st,modname="CIM")

define a mixture of the above component models

mix <- mixdmm(dmm=list(allor,cim),modname="MixAllCim")

summary(mix)

An example of fitting a mixture of dmm’s is in the fitdmm helpfile. It fits the model in
the example to data from a discrimination learning experiment which is provided as data set
discrimination.

discrimination Discrimination Learning Data

41

Description

This data set is from a simple discrimation learning experiment. It consists of 192 binary
series of responses of different lengths. This is a subset of the data described by Raijmakers
et al. (2001), and it is analyzed much more extensively using latent Markov models and
depmix in Schmittmann et al. (2006) and Visser et al. (2006)..

Usage

data(discrimination)

Format

An object of class markovdata.

Source

Maartje E. J. Raijmakers, Conor V. Doland and Peter C. M. Molenaar (2001). Finite
mixture distribution models of simple discrimination learning. Memory & Cognition, vol
29(5).

Ingmar Visser, Verena D. Schmittmann, and Maartje E. J. Raijmakers (2006). Markov
process models for discrimination learning. In: Kees van Montfort, Han Oud, and Albert
Satorra (Eds.), Longitudinal models in the behavioral and related sciences, Mahwah (NJ):
Lawrence Erlbaum Associates (in press).

Verena D. Schmittmann, Ingmar Visser and Maartje E. J. Raijmakers (2006). Multiple
learning modes in the development of rule-based category-learning task performance. Neu-
ropsychologia, vol 44(11), p. 2079-2091.

5.4 Known issues and future plans

Constraint violations Parameter optimization is done by adding a penalty to the log likeli-
hood whenever constraints are not satisfied, ie linear inequality and box constraints. Equality
constraints are fitted by reparametrization and do not suffer from this problem. Refer to the
section on parameter estimation and the fitdmm help page on how to deal with constraint
violations. Future plans include using Lagrange multipliers to overcome this problem.

42

Bibliography

L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state Markov
chains. Annals of Mathematical Statistics, 67:1554–40, 1966.

Eric Ghysels. On the periodic structure of the business cycle. Journal of Business and Economic
Statistics, 12(3):289–298, 1994.

K.G. Jöreskog and D. Sörbom. LISREL 8 [Computer program]. Scientific Software Interna-
tional., Chicago, 1999.

Chang-Jin Kim. Dynamic linear models with Markov-switching. Journal of Econometrics, 60:
1–22, 1994.

Anders Krogh. An introduction to hidden Markov models for biological sequences. In S. L.
Salzberg, D. B. Searls, and S. Kasif, editors, Computational methods in molecular biology,
chapter 4, pages 45–63. Elsevier, Amsterdam, 1998.

Theodore C. Lystig and James P. Hughes. Exact computation of the observed information
matrix for hidden markov models. Journal of Computational and Graphical Statistics, 2002.

Han L. J. van der Maas, Conor V. Dolan, and Peter C. M. Molenaar. Phase transitions in the
trade-off between speed and accuracy in choice reaction time tasks. Manuscript in revision,
2005.

A. L. McCutcheon. Latent class analysis. Number 07-064 in Sage University Paper series on
Quantitative Applications in the Social Sciences. Beverly Hills: Sage Publications, 1987.

R Development Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2006. URL http://www.R-project.
org. ISBN 3-900051-07-0.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of IEEE, 77(2):267–295, 1989.

Maartje E. J. Raijmakers, Conor V. Dolan, and Peter C. M. Molenaar. Finite mixture dis-
tribution models of simple discrimination learning. Memory & Cognition, 29(5):659–677,
2001.

Gregor Rainer and Earl K. Miller. Neural ensemble states in prefrontal cortex identified using a
hidden Markov model with a modified em algorithm. Neurocomputing, 32–33:961–966, 2000.

Verena D. Schmittmann, Conor V. Dolan, Han L. J. van der Maas, and Michael C. Neale. Dis-
crete latent Markov models for normally distributed response data. Multivariate Behavioral
Research, 40(4):461–488, 2005.

43

Verena D. Schmittmann, Ingmar Visser, and Maartje E. J. Raijmakers. Multiple learning modes
in the development of rule-based category-learning task performance. Neuropsychologia, 44
(11):2079–2091, 2006.

Frank Van de Pol, Rolf Langeheine, and W. De Jong. PANMARK 3. Panel analysis using
Markov chains. A latent class analysis program [User manual]. Voorburg: The Netherlands,
1996.

Jeroen K. Vermunt and Jay Magidson. Latent Gold 3.0 [Computer program and User’s Guide].
Belmont (MA), USA, 2003.

Ingmar Visser, Verena D. Schmittmann, and Maartje E. J. Raijmakers. Markov process models
for discrimination learning. In Kees van Montfort, Han Oud, and Albert Satorra, editors,
Longitudinal models in the behavioral and related sciences, chapter xxx. Lawrence Erlbaum
Associates, Mahwah (NJ), In Press.

Thomas D. Wickens. Models for Behavior: Stochastic processes in psychology. W. H. Freeman
and Company, San Francisco, 1982.

44

