Rcpp: R/C++ Interface Classes
Using C++ Libraries from R

Version 2.0

Dominick Samperi

March 12, 2006

Abstract
A set of C++ classes that facilitate the process of using C++ li-
braries (like QuantLib) from within the R statistical software system
is described.

1 Introduction

The R system is written in the C language, and it provides a C API for
package developers who have typically coded functions to be called from
R in C or FORTRAN. Rcpp provides C++ classes that make it relatively
easy to use C++ libraries from R.

The Rcpp “bare bones” approach is to find a small set of data struc-
tures that can be easily passed between R and C++ in a language-natural
way (on both the R and the C++ side), and that is sufficient for the
problem domain under study. Technical details having to do with R API
internals are hidden from the Repp user.® Since the author’s focus was on
applications to finance the choice of data structures was somewhat biased,
but it can be extended without much effort.

2 Quick Start Guide

The official reference on writing R extensions is “Writing R Extensions,”
available at the R web site http://cran.r-project.org. It should be con-
sulted for details that we omit below.

The R package RcppTemplate can be used as a template for building R
packages that use C++ class libraries. It includes a working sample func-
tion RcppExample that illustrates how to use Rcpp. To run the sample
function install the RecppTemplate package in the usual way, and use:

1This is done in a style similar to the JDBC Java database interface; the R system looks
like a “smart database” from the C++ programmer’s point of view.

> library(RcppTemplate)
> example (RcppExample)

There is a binary version of RcppTemplate for Windows. When it is
installed it defines the function RcppExample and places all of the source
code into RHOME/library /RcppTemplate/doc. To build from source un-
der Windows you will have to configure an R development environment.?
At the very least you will need the MinGW compiler (or Dev-Cpp) and
the UNIX tools (see previous footnote).

Under Linux everything should happen automatically. The configure
script configure.in (together with autoconf) sets up the environment
under Linux. The script configure.win is used under Windows.

The source file for the function RcppExample is RcppExample. cpp. It is
located in the src directory before the package is installed, and it is placed
into the doc directory after installation (for easy reference). The source
files for the Rcpp library are Rcpp.cpp and Repp.hpp. They are located
in inst/1ib before installation, and they are placed into the 1ib directory
after installation (not to be confused with 1ibs, where the package shared
library is placed).

During the installation process the Repp (static) library 1ibRepp.a
is built in inst/1ib, and the object files created in src are linked against
this library in order to create the package shared library RcppTemplate.so
(DLL under Windows).

To create your own package using RcppTemplate first unpack the source
archive (the tar.gz file). Rename the directory RcppTemplate to your
package name, let’s call it MyPackage, and modify MyPackage/DESCRIPTION
appropriately.

Insert your C++ source files into MyPackage/src, and insert R source
files into MyPackage/R that make calls to your C++ code (using the .Call
interface). Follow the pattern in RcppExample.cpp and RcppExample.R,
and be sure to replace the string RcppTemplate with MyPackage wherever
it occurs. Similarly, adjust the initialization file MyPackage/R/zzz.R. Add
documentation files as needed to MyPackage/man, following the pattern in
RcppExample.Rd.

To build a test version of your package, change your working directory
so that you are above MyPackage, and use:

$ R CMD INSTALL -library MyPackage.test MyPackage

Test your code in R using code like this:

> library(MyPackage, lib.loc=’MyPackage.test’)
> myfunc ()

2This consists of: R, the UNIX tools for R from http://www.murdoch-
sutherland.com/Rtools, the MinGW GNU compiler, ActivePerl from
http://www.activestate.com, MikTeX (TeX for Windows), and Microsoft’s HTML help
tool. Under Windows NT4 (and some versions of Windows 2000) you will need to install a
patched version of 1d.exe, available at http://www.murdoch-sutherland.com/Rtools.

You can link against your own C++ libraries by placing them into
inst/1ib and modifying the scripts so that the appropriate compiler flags
are inserted (see configure.in, configure.win, Makefile.win, for exam-
ple, and note that autoconf must be run after modifying configure.in).

It is also possible to link against external libraries, but in this case some
code should be inserted (into configure.in, for example) that checks for
the existence of these libraries. For example, the RQuantLib package uses
Rcpp and needs to link against the QuantLib and Boost class libraries.
Its configure.in file does the necessary checking.?

3 Important Note

It is important to remember that there is a potential for conflicts when two
R packages use the same C++ library (whether or not this is done with
the help of Rcpp). For example, if two R packages use QuantLib, and
if both packages are used at the same time, then the static (singleton)
classes of QuantLib may not be manipulated properly: what singleton
object gets modified will depend on the order in which the packages are
loaded!

4 Assumptions

We assume that four kinds of objects will be passed between R and C++.
On the R side they include the following:

1. A list of named values of possibly different types

2. A list of named values of numeric type (real or integer)
3. A numeric vector
4

. A numeric matrix

An example of the first kind of object would be constructed using the
R code

params <- list(method = "BFGS", someDate = c(10,6,2005))

The allowed types are character, real, integer, and vector (of length

3, holding a date in the form: month, day, year). Note that support for

the corresponding Date type on the C++ side depends on QuantLib and

is not available when Rcpp is used without QuantLib. In this case a

dummy Date class is compiled in that knows only how to print itself.*
An example of the second kind of object is

prices <- list(ibm = 80.50, hp = 53.64, c = 45.41)

3If you want to use QuantLib talk with Dirk Eddelbuettel about the possibility of making
your code part of RQuantLib.

4There are many C++ date classes available on the Internet, but unfortunately, there is
no C++ standard date class.

Here all values must be numeric.
Finally, examples of the last two kinds of objects are:

vec <- c(1, 2, 3, 4, 5)
mat <- matrix(seq(1,20),4,5)

Objects of the first kind are called parameter lists and are managed
using the class RcppParams (see below), while objects of the second kind
are called named lists and are managed using the class RcppNamedList.
Objects of the third kind are managed by RcppVector<type> template
classes, and objects of the last kind are managed by RcppMatrix<type>
template classes.

5 User Guide

To call a C++ function named MyFunc, say, the R code would look like:

.Call("MyFunc", pl, p2, p3)

where the parameters (can be more or less than three, of course) can be
objects of the kind discussed in the previous section. Usually this call is
made from an intermediate R function so the interactive call would look
like

> MyFunc(pl, p2, p3)

Now let us consider the following code designed to make a call to a
C++ function named RcppSample

params <- list(method = "BFGS", tolerance = 1.0e-8, startVal = 10)
a <- matrix(seq(1,20), 4, 5)
.Call("RcppSample", params, a)

The corresponding C++ source code for the function RcppSample using
the Repp interface and protocol might look like the code in Figure 1.°

Here RcppExtern ensures that the function is callable from R. The
SEXP type is an internal type used by R to represent everything (in
particular, our parameter values and the return value). It can be quite
tricky to work with SEXP’s directly, and thanks to Rcpp this is not
necessary.

Note that all of the work is done inside of a try/catch block. Excep-
tion messages generated by the C+4 code are propagated back to the R
user naturally (even though R is not written in C++).

The first object created is of type RcppParams and it encapsulates the
params SEXP. Values are extracted from this object naturally as illus-
trated here. There are getTypeValue(name) methods for Type equal to
Double, Int, Bool, String, and Date.

5Thanks to Paul Roebuck for pointing out that the memory occupied by the exception
object message is not reclaimed when error() is called inside of a catch block.

Rcpp checks that the named value is present and that it has the cor-
rect type, and returns an error message to the R user otherwise. Similarly,
the other encapsulation classes described below check that the underly-
ing R data structures have the correct type (this eliminates the need for
a great deal of checking in the R code that ultimately calls the C++
function).

The matrix parameter a is encapsulated by the mat object of type
RcppMatrix<double> (matrix of double’s). It could also have been encap-
sulated inside of a matrix of int’s type, in which case non-integer values
would be truncated toward zero. Note that SEXP parameters are read-
only, but that these encapsulating classes work on a copy of the original,
so they can be modified in the usual way:

mat(i,j) = whatever

The RcppVector<type> classes work similarly.

In these matrix/vector representations subscripting is range checked.
It is possible to get a C/C++ style (unchecked) array copy of an ReppMa-
trix and RcppVector object by using the methods cMatrix() and cVec-
tor (), respectively. The first method returns a pointer of type type **,
and the second returns a pointer of type type * (where type can be dou-
ble or int). These pointer-based representations might be useful when
matrices/vectors need to be passed to software that does not know about
the Rcpp classes. No attempt should be made to free the memory pointed
to by these pointers as it is managed by R (it will be freed automatically
when .Call returns).

Returning to the example, we see that after mat is constructed, C++
classes would typically be used to do some computations (not shown here),
and when they complete an object of type RcppResultSet is used to con-
struct the list (SEXP) to be returned to R. Results to be returned are
added to the list using the add method where the first parameter is the
name that will be seen by the R user. The second parameter is the
corresponding value—it can be of type double, int, string, RcppMa-
trix<double>, etc.

The last call to add here is used to return the input SEXP parameter
params as the last output result (named ”params”). The boolean flag
false here means that the SEXP has not been protected. This will be
the case unless the SEXP has been allocated by the user (not an input
parameter).

For a concrete example see RcppExample.cpp. For examples employ-
ing QuantLib see the files discount.cpp and bermudan.cpp from the
RQuantLib package.

6 Quick Reference

In this quick reference “type” can be double or int.

RcppParams constructor and methods

RcppParams: : RcppParams (SEXP)

double RcppParams::getDoubleValue(string)
int RcppParams::getIntValue(string)
string RcppParams::getStringValue(string)
bool RcppParams::getBoolValue(string)
Date RcppParams::getDateValue(string)

RcppNamedList constructor and methods
RcppNamedList: :RcppNamedList (SEXP)
int RcppNamedList::getLength()
string RcppNamedList::getName(int)
double RcppNamedList::getValue(int)

Matrix and vector constructors
RcppMatrix<type>(SEXP a)

RcppMatrix<type>(int nrow, int ncol)
RcppVector<type>(SEXP a)
RcppVector<type>(int len)

Matrix and vector methods
type& RcppMatrix<type>::operator(int i, int j)
type& RcppVector<type>::operator(int i)
type* RcppVector<type>::cVector()
type** RcppMatrix<type>::cMatrix()

RcppResultSet constructor and methods
RcppResultSet: :RcppResultSet ()

void
void
void
void
void
void
void
void
void
void

RcppResultSet:
RcppResultSet:
RcppResultSet:
RcppResultSet:
RcppResultSet:
RcppResultSet:
RcppResultSet:
RcppResultSet:
RcppResultSet:
RcppResultSet:

:add (string,double)
:add(string,int)
:add(string,string)

radd (string,double*,int)
:add(string,double**,int,int)
radd(string,int*,int)
radd(string,int**,int,int)
:add (string,RcppVector<type>&)
:add (string,RcppMatrix<type>&)
:add (string,SEXP,bool)

The last method here is provided for users who want work with SEXP’s
directly, or when the user wants to pass one of the input SEXP’s back as
a return value, as we did in the example above. The boolean flag tells
Rcpp whether or not the SEXP provided has been protected.

A SEXP that is allocated by the user may be garbage collected by R
at any time so it needs to be protected using the PROTECT function to
prevent this. A SEXP that is passed to a C++ function by R does not
need to be protected because R knows that it is in use.

#include "Rcpp.hpp"
RcppExtern SEXP RcppSample (SEXP params, SEXP a) {
SEXP rl=0; // return list to be filled in below
char* exceptionMesg=NULL;
try {
RcppParams rp(params) ;
string name = rp.getStringValue("method");
double tolerance = rp.getDoubleValue("tolerance");

RcppMatrix<double> mat(a);
// Use 2D matrix via mat(i,j) in the usual way

RcppResultSet rs;
rs.add("namel", resultl);
rs.add("name2", result?2);

rs.add("params", params, false);
rl = rs.getResultList();
} catch(std::exception& ex) {
exceptionMesg = copylMessageToR(ex.what());
}
catch(...) {
exceptionMesg = copyMessageToR("unknown reason");
}
if (exceptionMesg != NULL)
error(exceptionMesg) ;
return rl;

Figure 1: Rcpp use pattern.

