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1 Introduction

The glmmEP package supports binary response mixed model analysis based on an expectation
propagation approximation to the log-likelihood. Full details of the methodology, as well as
theoretical back-up, are in the article by Hall, Johnstone, Ormerod, Wand & Yu (2018).

The package’s central function is glmmEP (). In this vignette we explain how to set up the
input data matrices for glmmEP () and then obtain inferential summaries of the fit. We first
use a simulated data set, corresponding to a simulation study described in Hall et al. (2018).
We then conduct some analyses involving a dataset that arose for a contraception use study.

2 Nature of the Computations and Some Caveats

Exact likelihood-based inference for binary response mixed models involves numerical integra-
tion with dimension matching that of the random effects vectors. Typically this dimension
is a low number between 1 and 5, with 1 (corresponding to random intercept models) and 2
(corresponding to random slope models) being the most common The essence of the expec-
tation propagation approach is to replace each multivariate integral by a fixed-point iterative
algorithm which, in certain cases, has closed formed updates. This has the attraction of cir-
cumventing the numerical integration requirement. On the other hand, fixed-point iterative
algorithms are susceptible to breakdown NEXT MENTION START VALUES. SAY THAT
THOROUGHLY TESTED ON SIMULATED DATA..

Get 'em to e-mail us.

Add limitations.

3 Illustration for Simulated Data

In an R session the gImmEP package is loaded via the command:

library(glmmEP)

3.1 Generation and Format of the Simulated Data

The next chunk of code obtains simulated data corresponding to the simulation study in
Section 4.1.2. of Hall et al. (2018):

dataObj <- glmmSimData(seed=54321) ; y <- dataObj$y ; idNum <- dataObj$idNum
Xfixed <- dataObj$Xfixed ; Xrandom <- dataObj$Xrandom

The dimension for these data are:
m = number of groups = 2, 500,
n; = number of measurements in the ith group

=a randomly generated integer between 20 and 30,
m
Z n; = total number of measurements = 6, 229,
i=1
d" = fixed effects dimension = 6

and d® =random effects dimension = 2.



The command:
print(y[1:100])

leads to the output:

(1] 1011100100001 111111011110011100110110
381 0011001111011101011001111001011001011
[r5] 11011111001011001010110001

which are the first 100 entries of the response vector y which must be numerical with all entries

either 0 or 1. The length of y is 6,229. The command:
print (idNum[1:100])
gives
(1] 1111111111111 111111111112222222222222

[38] 2222222222223333333333333333333334444
[75] 4 4 4444444444444444455555505

which are the first 100 entries of the identification number vector idNum. The length of idNum
is 6,229. It is apparent that the sample sizes in the first four groups are ny = 24, ny = 25,
ng = 21 and ny = 23. Next, if one issues:

print(Xfixed[1:10])

then the resultant output is:

x1 x2 x3 x4 x5
[1,1 1 0.36289082 0.002376411 0.09104755 0.1273508 0.3222632
[2,] 1 0.04930613 0.190524008 0.26741325 0.3577301 0.3285285
[3,1] 1 0.57960823 0.032975174 0.80433496 0.3783690 0.5370373
[4,] 1 0.81654150 0.092146002 0.94197020 0.4696319 0.6734873
[6,] 1 0.45523877 0.016108288 0.25312640 0.3708289 0.3986340
[6,] 1 0.45992203 0.436338940 0.96050362 0.7808369 0.7156205
[7,] 1 0.23505112 0.710328994 0.57337595 0.8998197 0.7668252
[8,] 1 0.75835507 0.991308090 0.34212789 0.1302605 0.5837071
[9,] 1 0.32415353 0.080589397 0.33139670 0.4897236 0.3431149
[10,] 1 0.33242435 0.559411192 0.01339585 0.2474313 0.6049820

which displays the first 10 rows of the 6,229 x 6 fixed effects design matrix Xfixed. An
important aspect of glmmEP () is that it insists on the first column having all entries equal to
1, corresponding to the fixed effects intercept. Lastly, issuing

print (Xrandom[1:10])

gives
x1
[1,] 1 0.36289082
[2,] 1 0.04930613
[3,] 1 0.57960823
[4,] 1 0.81654150
[5,] 1 0.45523877
[6,] 1 0.45992203
[7,] 1 0.23505112
[8,] 1 0.75835507
[9,] 1 0.32415353
[10,] 1 0.33242435

Note that Xrandom coincides with the first 2 columns of Xfixed. This means that, in the
upcoming call to glmmEP (), there will be a random intercept and a random slope corresponding
to the first predictor x1.



3.2 Probit Mixed Model Analysis of the Data
The appropriate fitting command is:
fitSimulRanIntAndSpl <- glmmEP(y,Xfixed,Xrandom,idNum)

and takes about 20-30 seconds to fit on typical 2018 computers.
An inferential summary of the fit is obtained via:

summary (fitSimulRanIntAndSpl)

and leads to

95% C.I low estimate 95% C.I upp
intercept 0.13272044 0.30246606 0.4722118

x1 0.69789090 0.88043814  1.0629854
x2 -0.54163761 -0.41337685 -0.2851161
x3 -0.03726938 0.09050807 0.2182855
x4 -1.45392631 -1.31994887 -1.1859724
x5 1.04426639 1.17685492 1.3094436
sigmal 0.60352982 0.70879985  0.8324305
sigma?2 0.76176324 0.94008393 1.1601476
rhol2 -0.60952776 -0.44659755 -0.2474686

The first six rows of this summary table are estimates and 95% confidence intervals for the
fixed effects parameters, corresponding to the intercept and the predictors and the predictors
Z1,...,T5. The last three rows are estimates and 95% confidence intervals for the parameters
01, oz and pio within the random effects covariance matrix:

Ui | ind. 0 0'% P12
~ N
el (o) o))

For example, the expectation propagation-approximate estimate of the fixed effect associated
with x1 is

C®)

L= 0.88043814 with corresponding 95% confidence interval (0.69789090, 1.0629854).
The esimate of the standard deviation of the random slope is

g, = 0.94008393 with corresponding 95% confidence interval (0.76176324,1.16701476).

The code

uHat <- fitSimulRanIntAndSlp$randomEffects
plot(uHat[,1],uHat[,2],col="dodgerblue",xlab="random intercepts predicted values",

ylab="random slopes predicted values",bty="1",1lwd=2,cex.lab=1.5,cex.axis=1.5)
abline (v=0,col="slateblue",lwd=2) ; abline(h=0,col="slateblue",lwd=2)

leads to the plot shown in Figure 1 concerning the expectation propagation-approximate best
predictions of the random effects.

3.3 Controlling the Convergence Parameters

FILL IN HERE.

4 Analysis of Data from a Contraception Use Study

Data from the 1988 Bangladesh Fertility Survey are stored in the data frame Contraception
within the R package mimRev (Bates, Maechler and Bolker, 2014). Steele, Diamond and
Amin (1996) contains details of the study and some multilevel analyses. Variables in the
Contraception data frame include:
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Figure 1: Scatterplot of the expectation propagation-approzimate best predictions of the random
slopes and corresponding random intercepts, which are part of the £itSimulRanIntAndSlp fit
object.

use a two-level factor variable indicating whether a woman is a user of contraception at the
time of the survey, with levels Y for use and N for non-use.

age age of the woman in years at the time of the survey, centred about the average age of all
women in the study.

district a multi-level factor variable that codes the district, out of 60 districts in total, in
which the woman lives,

urban a two-level factor variable indicating whether or not the district in which the woman
lives is urban, with levels Y for urban dwelling and N for rural dwelling.

livch a four-level factor variable that indicates the number of living children of the woman,
with levels 0 for no children, 1 for one child, 2 for two children and 3+ for three or more
children.

The following code leads to visualisation of the data shown in Figure 2:

library(lattice)
colourVec <- c("forestgreen", "sienna')
ContraceptionHiLivCh <- Contraception[Contraception$livch=="3+",]
figRaw <- xyplot(jitter(as.numeric(use),factor=0.5)
~ ageldistrict,groups=district,data=ContraceptionHiLivCh,
layout=c(6,10),
xlab=list(label="age (years) centred about average",cex=1.35),
ylab=1list (label="indicator of contraception use (jittered)",cex=1.35),
scales=list(cex=1.25),strip=FALSE,as.table=TRUE,
key=list(title="subset of data for women with three or more living children",
columns=2, points=list(pch=rep(1,2),col=colourVec([1:2]),
text=1ist(c("rural district","urban district"),cex=1.55)),
panel=function(x,y,subscripts,groups)
{
colourInd <- 3 - as.numeric(ContraceptionHiLivCh$urban[subscripts[1]])
panel.superpose(x,y,subscripts, groups, col=colourVec[colourInd],
pch=1,cex=0.5)



»
print (figRaw)

In Figure 2 each panel corresponds to a different district and each point is the age/use
pair for a woman in that district. The use data are re-coded as 0 if the woman is a non-user
of contraception and 1 if the woman uses contraception. Jittering has been added to these
vertical axes data to aid visualisation. Lastly, Figure 2 is restricted to the subset for which
livch=3+, namely women with three or more living children.

subset of data for women with three or more living children
rural district ¢ urban district
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Figure 2: Visualisation of the Contraception data frame for the livch=3+ subset, correspond-
ing to women with three or more living children. Fach panel is for a different district with
colour-coding of the points according to whether the district is rural or urban. The indicators
of contraception use values have been jittered to aid visualisation.

4.1 Random Intercepts Model

Our first analysis of these data using glmmEP () involves a probit mixed model with the response
variable being the indicator of contraception use and predictors urban versus rural status, age
and number of living children. The district is the grouping variable. The following code sets
up the input data for fitting via glmmEP() (since the current release of glmmEP() does not
support factor-type variables we are required to use indicator variable coding for categorical
variables):

y <- as.numeric(as.character(Contraception$use)=="Y")
age <- Contraception$age



isUrban <- as.numeric(as.character(Contraception$urban)=="Y")

livchFactor <- Contraception$livch

1ivChEql <- as.numeric(as.character(Contraception$livch)=="1")

1ivChEq2 <- as.numeric(as.character(Contraception$livch)=="2")

1ivChGe3 <- as.numeric(as.character(Contraception$livch)=="3+")

Xfixed <- cbind(1,isUrban,age,1ivChEql,1ivChEq2,1ivChGe3)

colnames (Xfixed) <- c("intercept","isUrban", "age",
"1ivChEq1","1ivChEq2","1ivChGe3")

idNum <- as.numeric(as.character(Contraception$district))

Xrandom <- as.matrix(rep(1,length(y)))

colnames (Xrandom) <- "intercept"

Fitting is then achieved via:
fitContracRanInt <- glmmEP(y,Xfixed,Xrandom,idNum)
and the inferential summary of the model parameters is produced from the command:

summary (fitContracRanInt)

resulting in the output:

95% C.I low estimate 95%, C.I upp
intercept -0.9683392 -0.8077013 -0.6470634
isUrban 0.3066033 0.4491163 0.5916293
age -0.8477430 -0.5374353 -0.2271276
1ivChEql 0.4845205 0.6701782  0.8558358
1ivChEq2 0.6292168 0.8348053 1.0403938
1ivChGt2 0.6043650 0.8147953 1.0252256
sigma 0.2031284 0.2825052 0.3929001

We see from this output that each of the fixed parameters are statistically significant. For
example, the coefficient of the indicator of the district being urban has an estimate of 0.4491163
and a corresponding 95% confidence interval of (0.3066033,0.5916293). The random intercept
standard deviation corresponds to the row labelled sigma and its estimate is 0.2825052 with
a 95% confidence interval of (0.2031284,0.3929001), indicating a significant amount of within-

district correlation.
The following code:

hist(uHat,xlab="random intercepts predicted values",probability=TRUE,
col="dodgerblue",breaks=15,main="",cex.lab=1.5)
abline(v=0,col="slateblue",lwd=2)

leads to the histogram shown in Figure 3. This is a visual summary of the expectation
propagation-approximate best predictions of the random intercepts.

Lastly, we embellish Figure 2 by computing the estimated probability of contraception use
curves. The code for this is:

ng <- 101
ageg <- seq(min(age),max(age),length=ng)
probRanIntg <- vector("list",60)
idNumOrig <- idNum
idNum <- match(idNumOrig,unique (idNumOrig))
distSttInds <- c(1,(1:length(y)) [diff (idNum)==1] + 1)
for (i in 1:60)
probRanIntg[[i]] <- pnorm(betaHat[1]+uHat [i]+betaHat [2]*ageg
+ betaHat [3]*isUrban[distSttInds[i]]+betaHat [6])
figFitRanInt <- xyplot(jitter((as.numeric(use)-1),factor=0.5)
~ ageldistrict,groups=district,data=ContraceptionHiLivCh,
layout=c(6,10),
xlab=1ist(label="age (years) centred about average",cex=1.35),
ylab=1list (label="indicator of contraception use (jittered)",cex=1.35),
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Figure 3: Histogram of the expectation propagation-approrimate best predictions of the random
intercepts, which are part of the fitContracRanInt fit object.

scales=list(cex=1.25),strip=FALSE,as.table=TRUE,
key=list(title="subset of data for women with three or more living children",
columns=2,
points=1list(pch=rep(1,2),col=colourVec[1:2],lwd=rep(2,2)),
text=list(c("rural district", "urban district"),cex=1.55)),
panel=function(x,y,subscripts, groups)
{
iDistrict <- panel.number() ; panel.grid()
colourInd <- 3 - as.numeric(ContraceptionHiLivCh$urban[subscripts[1]])
panel.superpose(x,y,subscripts,groups,
col=colourVec[colourInd],pch=1,cex=0.5)
panel.xyplot (ageg,probRanIntg[[iDistrict]],col="blue",lwd=2,type="1")
»

Note that the calculation of the ordinate vectors in probRanIntg is simplified by the fact
that Figure 2 is restricted to the subset of women with three or more living children. The
plot that results from this code is shown in Figure 4. It shows that the estimated probability
of contraception use increases steeply with age about 5 years either side of the average age.
Differences between the districts and those with rural and urban status is difficult to discern
visually. However the confidence intervals given earlier in this subsection show that there are,
indeed, significant differences.

4.2 Random Intercepts and Slopes Model

We now extend the model to allow the slope of the urban district indicator to be random. The
only change in the design matrix set-up is that Xrandom is now:

Xrandom <- cbind(1,isUrban)
colnames (Xrandom) <- c("intercept","isUrban")

With this new version of Xrandom we call glmmEP () as before using:
fitContracRanIntAndSlp <- glmmEP(y,Xfixed,Xrandom,idNum)
The inferential summary from the command:

summary (fitContracRanIntAndSlp)



subset of data for women with three or more living children
rural district = urban district
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Figure 4: The data from Figure 2 with the addition of the estimated probability of contraception
use curves, according to the expectation propagation random intercepts model fit within the
fitContracRanInt fit object.

resulting in the output:

95% C.I low estimate 957 C.I upp
intercept -1.22775470 -1.04180458 -0.855854477
isUrban 0.29587366 0.50025510 0.704636522

age -0.02587946 -0.01634977 -0.006820457
livChEql  0.49356594 0.68154005 0.869514157
1livChEq2 0.62253242 0.83058450 1.038636581
1livChGe3 0.61062229 0.82445626 1.038290261
sigmal 0.27557767 0.37853878 0.519968122
sigma?2 0.31078854 0.49648071 0.793121574
rhol2 -0.93599174 -0.79843144 -0.449328947

Note that the estimate of the random slope coefficent has estimate
o2 = 0.49648071 with corresponding 95% confidence interval (0.31078854,0.793121574).

The tight confidence interval well away from zero verifies significant variability in the random
slopes associated with the indicator of a district being urban.

The scatterplot shown in Figure 5 is a visual summary of the expectation propagation-
approximate best predictions of the bivariate random intercepts and slopes, and is produced
from the following code:



plot(uHat[,1],uHat[,2],col="dodgerblue",lwd=2,xlab="random intercepts predicted values",
ylab="random slopes predicted values",bty="1",6cex.lab=1.5,cex.axis=1.5)
abline(v=0,col="slateblue",lwd=2) ; abline(h=0,col="slateblue",lwd=2)
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Figure 5: Scatterplot of the expectation propagation-approzimate best predictions of the random
slopes and corresponding random intercepts, which are part of the fitContracRanIntAndSlp
fit object.

Our final plot is the analogue of Figure 4 for the random intercepts and slopes model,

which is shown in Figure 6
Figure 6 is produced using;:

probRanIntAndSlpg <- vector("list",60)
for (i in 1:60)
probRanIntAndSlpg[[i]] <- pnorm(betaHat[1]+uHat[i,1]+betaHat[2]*ageg
+(betaHat [3]+uHat [i,2])*isUrban[distSttInds[i]]
+betaHat [6])
figFitRanIntAndSlp <- xyplot(jitter((as.numeric(use)-1),factor=0.5)
~ ageldistrict,groups=district,data=ContraceptionHiLivCh,
layout=c(6,10),
xlab=1ist (label="age (years) centred about average",cex=1.35),
ylab=1list (label="indicator of contraception use (jittered)",cex=1.35),
scales=1list(cex=1.25),strip=FALSE,as.table=TRUE,
key=1list(title="subset of data for women with three or more living children",
columns=2,
points=list(pch=rep(1,2),col=colourVec[1:2],lwd=rep(2,2)),
text=list (c("rural district","urban district"),cex=1.55)),
panel=function(x,y,subscripts, groups)
{
iDistrict <- panel.number ()
panel.grid()
colourInd <- 3 - as.numeric(ContraceptionHiLivCh$urban[subscripts[1]])
panel.superpose(x,y,subscripts, groups,
col=colourVec[colourInd],pch=1,cex=0.5)
panel.xyplot (ageg,probRanIntAndSlpg[[iDistrict]],col="blue",lwd=2,type="1")
»



subset of data for women with three or more living children
rural district = urban district
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Figure 6: The data from Figure 2 with the addition of the estimated probability of contraception
use curves, according to the expectation propagation random intercepts and slopes model fit
within the fitContracRanIntAndSlp fit object.
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FINAL TO DO LIST

* Add bit about glmmmEP.control()
* At the end make sure about consistency of axis label sizes.

* Rethink no. of signif. values in vignette and package.
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