The creditmodel package provides a highly efficient R tool suite for Credit Modeling Analysis and Visualization. Contains infrastructure functionalities such as data exploration and preparation, missing values treatment, outliers treatment, variable derivation, variable selection, dimensionality reduction, grid search for hyper parameters, data mining and visualization, model evaluation, strategy analysis etc. creditmodel can facilitate reliable predictive models (such as xgboost or scorecard) and data analysis on a standard laptop computer within minutes. This introductory vignette provides a brief glance at the training_model module of the package.
When I first wrote the creditmodel package, its primary purpose was to provide a tool to make the development of binary classification models (machine learning based models as well as credit scorecard) simpler and faster. Therefore, I wrote the package to automatically build model. However, as the package grew in functionality, this choice was increasingly problematic.
Importantly, the creditmodel package now provides a set of complementary tools with different missions. Now, Let’s start with quick modeling.
library(creditmodel)
#> Registered S3 methods overwritten by 'ggplot2':
#> method from
#> [.quosures rlang
#> c.quosures rlang
#> print.quosures rlang
#> Package 'creditmodel' version 1.1.5
B_model = training_model(dat = UCICreditCard,
model_name = "UCICreditCard",
target = "default.payment.next.month",
x_list = NULL,
occur_time = "apply_date",
obs_id = "ID",
dat_test = NULL,
preproc = TRUE,
miss_values = c(-1, -2),
missing_proc = TRUE,
outlier_proc = TRUE,
trans_log = TRUE,
feature_filter = list(filter = c("IV", "PSI", "COR", "XGB"),
cv_folds = 1,
iv_cp = 0.02,
psi_cp = 0.2,
cor_cp = 0.95,
xgb_cp = 0,
hopper = TRUE),
vars_plot = FALSE,
algorithm = list("LR","XGB"),
breaks_list = NULL,
LR.params = lr_params(
iter = 2,
method = 'random_search',
tree_control = list(p = 0.02,
cp = c(0.00001, 0.00000001),
xval = 5,
maxdepth = c(10, 15)),
bins_control = list(bins_num = 10,
bins_pct = c(0.02, 0.03, 0.05),
b_chi = c(0.01, 0.02, 0.03),
b_odds = 0.1,
b_psi = c(0.02, 0.06),
b_or = c(.05, 0.1, 0.15, 0.2),
mono = c(0.1, 0.2, 0.4, 0.5),
odds_psi = c(0.1, 0.15, 0.2),
kc = 1),
f_eval = 'ks',
lasso = TRUE,
step_wise = FALSE),
XGB.params = xgb_params(
iter = 3,
method = 'random_search',
params = list(
max_depth = c(3:6),
eta = c(0.01, 0.05, 0.1, 0.2),
gamma = c(0.01, 0.05, 0.1),
min_child_weight = c(1, 5, 10, 20, 30, 40, 50),
subsample = c(0.8, 0.7, 0.6, 0.5),
colsample_bytree = c(0.8, 0.7, 0.6, 0.5),
scale_pos_weight = c(1, 2, 3)),
f_eval = 'auc'),
parallel = FALSE,
cores_num = NULL,
save_pmml = FALSE,
plot_show = TRUE,
model_path = tempdir(),
seed = 46)
#> -- Building ---------------------------------------------------------------------------------------- UCICreditCard --
#> -- Creating the model output file path ------------------------------------------------------------------------------
#> -- Seting model output file path:
#> * model : C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/model
#> * data : C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data
#> * variable : C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable
#> * performance: C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/performance
#> * predict : C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict
#> -- Checking datasets and target -------------------------------------------------------------------------------------
#> -- Cleansing & Prepocessing data ------------------------------------------------------------------------------------
#> -- Checking data and target format...
#> -- Cleansing data
#> -- Replacing null or blank or miss_values with NA
#> -- Deleting low variance variables
#> -- Processing NAs & special value rate is more than 0.999
#> -- Formating time variables
#> -- Transfering character variables which are actually numerical to numeric
#> -- Removing duplicated observations
#> -- Merging categories which percent is less than 0.001 or obs number is less than 20
#> -- Saving data_cleansing to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/data_cleansing.csv
#> -- Logarithmic transformation
#> -- Following variables are log transformed:
#> * LIMIT_BAL -> LIMIT_BAL_log
#> * PAY_0 -> PAY_0_log
#> * PAY_2 -> PAY_2_log
#> * PAY_AMT1 -> PAY_AMT1_log
#> * PAY_AMT2 -> PAY_AMT2_log
#> * PAY_AMT3 -> PAY_AMT3_log
#> * PAY_AMT4 -> PAY_AMT4_log
#> * PAY_AMT5 -> PAY_AMT5_log
#> * PAY_AMT6 -> PAY_AMT6_log
#> -- Spliting train & test --------------------------------------------------------------------------------------------
#> -- train_test_split:
#> * Total: 30000 (100%)
#> * Train: 20874 (70%)
#> * Test : 9126 (30%)
#> -- Processing outliers using Kmeans and LOF
#> * LIMIT_BAL_log 0% no_outlier
#> * AGE 0% no_outlier
#> * PAY_0_log 0% no_outlier
#> * PAY_2_log 0% no_outlier
#> * PAY_3 0% no_outlier
#> * PAY_4 0% no_outlier
#> * PAY_5 0% no_outlier
#> * PAY_6 0% no_outlier
#> * BILL_AMT1 0% no_outlier
#> * BILL_AMT2 0% no_outlier
#> * BILL_AMT3 0% no_outlier
#> * BILL_AMT4 0% no_outlier
#> * BILL_AMT5 0% no_outlier
#> * BILL_AMT6 0% no_outlier
#> * PAY_AMT1_log 0% no_outlier
#> * PAY_AMT2_log 0% no_outlier
#> * PAY_AMT3_log 0% no_outlier
#> * PAY_AMT4_log 0% no_outlier
#> * PAY_AMT5_log 0% no_outlier
#> * PAY_AMT6_log 0% no_outlier
#> -- Saving data_outlier_proc to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/data_outlier_proc.csv
#> -- Processing NAs
#> * MARRIAGE 0.1581% IM
#> * PAY_0_log 27.963% IM
#> * PAY_2_log 32.6579% IM
#> * PAY_3 33.5154% IM
#> * PAY_4 33.3573% IM
#> * PAY_5 33.5968% IM
#> * PAY_6 35.4939% IM
#> * BILL_AMT1 0.1102% IM
#> * BILL_AMT2 0.1246% IM
#> * BILL_AMT3 0.1389% IM
#> * BILL_AMT4 0.1533% IM
#> * BILL_AMT5 0.1198% IM
#> * BILL_AMT6 0.1533% IM
#> -- Saving data_missing_proc to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/data_missing_proc.csv
#> -- Filtering features -----------------------------------------------------------------------------------------------
#> -- Feature filtering by PSI
#> -- Feature filtering by IV
#> -- Selecting variables by XGboost
#> -- Feature filtering by Correlation
#> -- Saving feature_filter to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/feature_filter.csv
#> -- Saving feature_filter_table to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/feature_filter_table.csv
#> -- Training logistic regression model/scorecard ---------------------------------------------------------------------
#> -- Searching optimal binning & feature selection parameters ---------------------------------------------------------
#> [1] train_ks:0.4125 test_ks:0.389 psi:0.001
#> * tree_control:{ p:0.02, cp:0.00001, xval:5, maxdepth:10 }
#> * bins_control:{ bins_num:10, bins_pct:0.02, b_chi:0.01, b_odds:0.1, b_psi:0.02, b_or:0.05, mono:0.1, odds_psi:0.1, kc:1 }
#> * thresholds:{ cor_p:0.8, iv_i:0.02, psi_i:0.1, cos_i:0.5 }
#> [2] train_ks:0.4125 test_ks:0.389 psi:0.001
#> * tree_control:{ p:0.02, cp:0.00001, xval:5, maxdepth:10 }
#> * bins_control:{ bins_num:10, bins_pct:0.02, b_chi:0.01, b_odds:0.1, b_psi:0.02, b_or:0.05, mono:0.1, odds_psi:0.1, kc:1 }
#> * thresholds:{ cor_p:0.8, iv_i:0.02, psi_i:0.1, cos_i:0.5 }
#> -- [best iter] ------------------------------------------------------------------------------------------------------
#> [1] train_ks:0.4125 test_ks:0.389 psi:0.001
#> * tree_control:{ p:0.02, cp:0.00001, xval:5, maxdepth:10 }
#> * bins_control:{ bins_num:10, bins_pct:0.02, b_chi:0.01, b_odds:0.1, b_psi:0.02, b_or:0.05, mono:0.1, odds_psi:0.1, kc:1 }
#> * thresholds:{ cor_p:0.8, iv_i:0.02, psi_i:0.1, cos_i:0.5 }
#> -- Constrained optimal binning of varibles --------------------------------------------------------------------------
#> -- Getting optimal binning breaks
#> * PAY_0_log: -0.5,0.346573590279972,Inf
#> * PAY_2_log: -0.5,0.346573590279972,Inf
#> * PAY_3: -1,1,Inf
#> * PAY_4: -1,0,Inf
#> * PAY_5: -1,1,Inf
#> * PAY_AMT1_log: 3.06778244554087,7.60115239706291,Inf
#> -- Saving breaks_list.breaks_list to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/breaks_list.breaks_list.csv
#> -- Filtering variables by IV & PSI ----------------------------------------------------------------------------------
#> -- Selecting variables by PSI & IV
#> -- Calculating PSI
#> --PAY_0_log
#> * PSI: 0 --> Very stable
#> --PAY_2_log
#> * PSI: 0 --> Very stable
#> --PAY_3
#> * PSI: 0 --> Very stable
#> --PAY_4
#> * PSI: 0 --> Very stable
#> --PAY_5
#> * PSI: 0 --> Very stable
#> --PAY_AMT1_log
#> * PSI: 0 --> Very stable
#> -- Calculating IV
#> --PAY_0_log
#> * IV: 0.692 --> Very Strong
#> --PAY_2_log
#> * IV: 0.538 --> Very Strong
#> --PAY_3
#> * IV: 0.405 --> Very Strong
#> --PAY_4
#> * IV: 0.352 --> Very Strong
#> --PAY_5
#> * IV: 0.314 --> Very Strong
#> --PAY_AMT1_log
#> * IV: 0.148 --> Strong
#> -- Saving feature.IV_PSI to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/feature.IV_PSI.csv
#> -- Saving feature.PSI to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/feature.PSI.csv
#> -- Saving feature.IV to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/feature.IV.csv
#> -- Saving LR.IV_PSI_features to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/LR.IV_PSI_features.csv
#> -- Transforming WOE -------------------------------------------------------------------------------------------------
#> -- Transforming variables to woe
#> -- Saving lr_train.dat.woe to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/LR/lr_train.dat.woe.csv
#> -- Filtering variables by correlation -------------------------------------------------------------------------------
#> -- Processing bins table
#> * PAY_0_log IV: 0.692 PSI: 0
#> * PAY_2_log IV: 0.537 PSI: 0
#> * PAY_3 IV: 0.406 PSI: 0
#> * PAY_4 IV: 0.352 PSI: 0
#> * PAY_5 IV: 0.314 PSI: 0
#> * PAY_AMT1_log IV: 0.149 PSI: 0
#> -- Filtering variables by LASSO -------------------------------------------------------------------------------------
#> Saving 8 x 6.5 in image
#> -- Saving lr_premodel_features to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/lr_premodel_features.csv
#> -- Start training lr model ------------------------------------------------------------------------------------------
#> -- Saving lr_model_features to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/lr_model_features.csv
#> -- Saving UCICreditCard.lr_coef to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/performance/LR/UCICreditCard.lr_coef.csv
#> -- Generating standard socrecard ------------------------------------------------------------------------------------
#> -- Using scorecard to predict the train and test
#> -- Saving lr_train_score to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict/LR/lr_train_score.csv
#> -- Saving lr_test_score to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict/LR/lr_test_score.csv
#> -- Saving lr_train_prob to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict/LR/lr_train_prob.csv
#> -- Saving lr_test_prob to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict/LR/lr_test_prob.csv
#> -- Producing plots that characterize performance of scorecard
#> Saving 12 x 6.5 in image
#> -- Saving UCICreditCard.LR.performance_table to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/performance/LR/UCICreditCard.LR.performance_table.csv
#> -- Saving LR.params to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/performance/LR/LR.params.csv
#> -- Training XGboost Model -------------------------------------------------------------------------------------------
#> -- Searching optimal parameters of XGboost --------------------------------------------------------------------------
#> [1] train_auc:0.768799 eval_auc:0.751964
#> * params:{max_depth:3, eta:0.01, gamma:0.01, min_child_weight:1, subsample:0.8, colsample_bytree:0.8, scale_pos_weight:1}
#> [2] train_auc:0.772677 eval_auc:0.751984
#> * params:{max_depth:3, eta:0.01, gamma:0.01, min_child_weight:1, subsample:0.8, colsample_bytree:0.8, scale_pos_weight:1}
#> [3] train_auc:0.769792 eval_auc:0.751976
#> * params:{max_depth:3, eta:0.01, gamma:0.01, min_child_weight:1, subsample:0.8, colsample_bytree:0.8, scale_pos_weight:1}
#> -- [best iter] ------------------------------------------------------------------------------------------------------
#> [2] train_auc:0.772677 eval_auc:0.751984
#> * params:{max_depth:3, eta:0.01, gamma:0.01, min_child_weight:1, subsample:0.8, colsample_bytree:0.8, scale_pos_weight:1}
#> -- Saving XGB.x_train to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/XGB/XGB.x_train.csv
#> -- Saving XGB.x_test to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/XGB/XGB.x_test.csv
#> -- Saving XGB.y_train to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/XGB/XGB.y_train.csv
#> -- Saving XGB.y_test to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/XGB/XGB.y_test.csv
#> [1] train-auc:0.709020 eval-auc:0.712786
#> Multiple eval metrics are present. Will use eval_auc for early stopping.
#> Will train until eval_auc hasn't improved in 100 rounds.
#>
#> [2] train-auc:0.747521 eval-auc:0.745226
#> [3] train-auc:0.747617 eval-auc:0.745381
#> [4] train-auc:0.756840 eval-auc:0.755324
#> [5] train-auc:0.757154 eval-auc:0.757429
#> [6] train-auc:0.758090 eval-auc:0.757886
#> [7] train-auc:0.758037 eval-auc:0.757704
#> [8] train-auc:0.757308 eval-auc:0.757175
#> [9] train-auc:0.758632 eval-auc:0.758537
#> [10] train-auc:0.758226 eval-auc:0.757628
#> [11] train-auc:0.758803 eval-auc:0.758058
#> [12] train-auc:0.758845 eval-auc:0.758036
#> [13] train-auc:0.758708 eval-auc:0.758519
#> [14] train-auc:0.759093 eval-auc:0.758778
#> [15] train-auc:0.760089 eval-auc:0.759870
#> [16] train-auc:0.760542 eval-auc:0.760058
#> [17] train-auc:0.760571 eval-auc:0.759975
#> [18] train-auc:0.760621 eval-auc:0.759956
#> [19] train-auc:0.760726 eval-auc:0.759699
#> [20] train-auc:0.760669 eval-auc:0.759714
#> [21] train-auc:0.760720 eval-auc:0.759621
#> [22] train-auc:0.760500 eval-auc:0.759595
#> [23] train-auc:0.760448 eval-auc:0.759457
#> [24] train-auc:0.760347 eval-auc:0.759224
#> [25] train-auc:0.760535 eval-auc:0.759467
#> [26] train-auc:0.760433 eval-auc:0.759268
#> [27] train-auc:0.760492 eval-auc:0.759368
#> [28] train-auc:0.760459 eval-auc:0.759314
#> [29] train-auc:0.760532 eval-auc:0.759474
#> [30] train-auc:0.760616 eval-auc:0.759489
#> [31] train-auc:0.760667 eval-auc:0.759546
#> [32] train-auc:0.761010 eval-auc:0.759613
#> [33] train-auc:0.760805 eval-auc:0.759576
#> [34] train-auc:0.760888 eval-auc:0.759696
#> [35] train-auc:0.761190 eval-auc:0.759652
#> [36] train-auc:0.761063 eval-auc:0.759825
#> [37] train-auc:0.761065 eval-auc:0.759823
#> [38] train-auc:0.761057 eval-auc:0.759915
#> [39] train-auc:0.761150 eval-auc:0.760020
#> [40] train-auc:0.761105 eval-auc:0.759977
#> [41] train-auc:0.761122 eval-auc:0.759953
#> [42] train-auc:0.761019 eval-auc:0.759911
#> [43] train-auc:0.761119 eval-auc:0.759977
#> [44] train-auc:0.761038 eval-auc:0.759915
#> [45] train-auc:0.760971 eval-auc:0.760060
#> [46] train-auc:0.761098 eval-auc:0.760065
#> [47] train-auc:0.761146 eval-auc:0.760093
#> [48] train-auc:0.761128 eval-auc:0.759962
#> [49] train-auc:0.761170 eval-auc:0.759930
#> [50] train-auc:0.761133 eval-auc:0.760027
#> [51] train-auc:0.761188 eval-auc:0.760016
#> [52] train-auc:0.761080 eval-auc:0.759963
#> [53] train-auc:0.761038 eval-auc:0.759860
#> [54] train-auc:0.761055 eval-auc:0.759916
#> [55] train-auc:0.761208 eval-auc:0.760020
#> [56] train-auc:0.761442 eval-auc:0.760171
#> [57] train-auc:0.761490 eval-auc:0.760191
#> [58] train-auc:0.761604 eval-auc:0.760362
#> [59] train-auc:0.761611 eval-auc:0.760247
#> [60] train-auc:0.761788 eval-auc:0.760395
#> [61] train-auc:0.761742 eval-auc:0.760294
#> [62] train-auc:0.761626 eval-auc:0.760282
#> [63] train-auc:0.761708 eval-auc:0.760361
#> [64] train-auc:0.761635 eval-auc:0.760311
#> [65] train-auc:0.761577 eval-auc:0.760264
#> [66] train-auc:0.761581 eval-auc:0.760306
#> [67] train-auc:0.761558 eval-auc:0.760311
#> [68] train-auc:0.761587 eval-auc:0.760317
#> [69] train-auc:0.761654 eval-auc:0.760420
#> [70] train-auc:0.761667 eval-auc:0.760559
#> [71] train-auc:0.761855 eval-auc:0.760611
#> [72] train-auc:0.761673 eval-auc:0.760532
#> [73] train-auc:0.761675 eval-auc:0.760600
#> [74] train-auc:0.761735 eval-auc:0.760669
#> [75] train-auc:0.761915 eval-auc:0.760806
#> [76] train-auc:0.761870 eval-auc:0.760799
#> [77] train-auc:0.761926 eval-auc:0.760855
#> [78] train-auc:0.762426 eval-auc:0.760984
#> [79] train-auc:0.762469 eval-auc:0.760988
#> [80] train-auc:0.762488 eval-auc:0.760938
#> [81] train-auc:0.762467 eval-auc:0.760945
#> [82] train-auc:0.762492 eval-auc:0.760911
#> [83] train-auc:0.762436 eval-auc:0.760898
#> [84] train-auc:0.762469 eval-auc:0.760912
#> [85] train-auc:0.762383 eval-auc:0.760888
#> [86] train-auc:0.762309 eval-auc:0.760873
#> [87] train-auc:0.762381 eval-auc:0.760921
#> [88] train-auc:0.762384 eval-auc:0.760956
#> [89] train-auc:0.762456 eval-auc:0.760896
#> [90] train-auc:0.762480 eval-auc:0.760893
#> [91] train-auc:0.762526 eval-auc:0.760923
#> [92] train-auc:0.762556 eval-auc:0.760955
#> [93] train-auc:0.762674 eval-auc:0.760867
#> [94] train-auc:0.762609 eval-auc:0.760923
#> [95] train-auc:0.762551 eval-auc:0.760970
#> [96] train-auc:0.762627 eval-auc:0.760947
#> [97] train-auc:0.762589 eval-auc:0.761013
#> [98] train-auc:0.762658 eval-auc:0.760956
#> [99] train-auc:0.762707 eval-auc:0.760961
#> [100] train-auc:0.762736 eval-auc:0.760982
#> [101] train-auc:0.762717 eval-auc:0.760998
#> [102] train-auc:0.762742 eval-auc:0.761004
#> [103] train-auc:0.762755 eval-auc:0.761060
#> [104] train-auc:0.762765 eval-auc:0.761040
#> [105] train-auc:0.762775 eval-auc:0.761125
#> [106] train-auc:0.762760 eval-auc:0.761040
#> [107] train-auc:0.762747 eval-auc:0.761049
#> [108] train-auc:0.763227 eval-auc:0.761298
#> [109] train-auc:0.763275 eval-auc:0.761377
#> [110] train-auc:0.763353 eval-auc:0.761194
#> [111] train-auc:0.763429 eval-auc:0.761158
#> [112] train-auc:0.763442 eval-auc:0.761147
#> [113] train-auc:0.763372 eval-auc:0.761158
#> [114] train-auc:0.763387 eval-auc:0.761155
#> [115] train-auc:0.763396 eval-auc:0.761221
#> [116] train-auc:0.763392 eval-auc:0.761133
#> [117] train-auc:0.763385 eval-auc:0.761175
#> [118] train-auc:0.763401 eval-auc:0.761186
#> [119] train-auc:0.763336 eval-auc:0.760945
#> [120] train-auc:0.763400 eval-auc:0.761190
#> [121] train-auc:0.763334 eval-auc:0.760949
#> [122] train-auc:0.763405 eval-auc:0.760905
#> [123] train-auc:0.763429 eval-auc:0.760871
#> [124] train-auc:0.763389 eval-auc:0.760943
#> [125] train-auc:0.763491 eval-auc:0.761199
#> [126] train-auc:0.763486 eval-auc:0.761237
#> [127] train-auc:0.763481 eval-auc:0.761198
#> [128] train-auc:0.763430 eval-auc:0.760977
#> [129] train-auc:0.763409 eval-auc:0.760986
#> [130] train-auc:0.763446 eval-auc:0.761245
#> [131] train-auc:0.763468 eval-auc:0.761217
#> [132] train-auc:0.763456 eval-auc:0.761232
#> [133] train-auc:0.763525 eval-auc:0.760957
#> [134] train-auc:0.763565 eval-auc:0.760914
#> [135] train-auc:0.763622 eval-auc:0.760990
#> [136] train-auc:0.763578 eval-auc:0.760913
#> [137] train-auc:0.763608 eval-auc:0.760907
#> [138] train-auc:0.763631 eval-auc:0.760935
#> [139] train-auc:0.763606 eval-auc:0.760911
#> [140] train-auc:0.763634 eval-auc:0.760923
#> [141] train-auc:0.763606 eval-auc:0.760908
#> [142] train-auc:0.763608 eval-auc:0.760904
#> [143] train-auc:0.763637 eval-auc:0.760911
#> [144] train-auc:0.763668 eval-auc:0.760954
#> [145] train-auc:0.763657 eval-auc:0.760921
#> [146] train-auc:0.763669 eval-auc:0.760976
#> [147] train-auc:0.763683 eval-auc:0.760991
#> [148] train-auc:0.763689 eval-auc:0.760980
#> [149] train-auc:0.763722 eval-auc:0.760936
#> [150] train-auc:0.763708 eval-auc:0.760906
#> [151] train-auc:0.763707 eval-auc:0.760907
#> [152] train-auc:0.763746 eval-auc:0.760906
#> [153] train-auc:0.763736 eval-auc:0.760912
#> [154] train-auc:0.763760 eval-auc:0.760890
#> [155] train-auc:0.763786 eval-auc:0.760896
#> [156] train-auc:0.764345 eval-auc:0.761730
#> [157] train-auc:0.764370 eval-auc:0.761795
#> [158] train-auc:0.764344 eval-auc:0.761742
#> [159] train-auc:0.764339 eval-auc:0.761752
#> [160] train-auc:0.764319 eval-auc:0.761790
#> [161] train-auc:0.764358 eval-auc:0.761756
#> [162] train-auc:0.764383 eval-auc:0.761777
#> [163] train-auc:0.764332 eval-auc:0.761741
#> [164] train-auc:0.764350 eval-auc:0.761774
#> [165] train-auc:0.764728 eval-auc:0.761771
#> [166] train-auc:0.764742 eval-auc:0.761746
#> [167] train-auc:0.764689 eval-auc:0.761693
#> [168] train-auc:0.764695 eval-auc:0.761546
#> [169] train-auc:0.764701 eval-auc:0.761573
#> [170] train-auc:0.764704 eval-auc:0.761562
#> [171] train-auc:0.764732 eval-auc:0.761567
#> [172] train-auc:0.764688 eval-auc:0.761500
#> [173] train-auc:0.764687 eval-auc:0.761477
#> [174] train-auc:0.764699 eval-auc:0.761499
#> [175] train-auc:0.764722 eval-auc:0.761506
#> [176] train-auc:0.764702 eval-auc:0.761490
#> [177] train-auc:0.764711 eval-auc:0.761474
#> [178] train-auc:0.764706 eval-auc:0.761473
#> [179] train-auc:0.764692 eval-auc:0.761465
#> [180] train-auc:0.764695 eval-auc:0.761438
#> [181] train-auc:0.764722 eval-auc:0.761472
#> [182] train-auc:0.764717 eval-auc:0.761491
#> [183] train-auc:0.763921 eval-auc:0.760319
#> [184] train-auc:0.763906 eval-auc:0.760302
#> [185] train-auc:0.763897 eval-auc:0.760292
#> [186] train-auc:0.763924 eval-auc:0.760313
#> [187] train-auc:0.763926 eval-auc:0.760301
#> [188] train-auc:0.763922 eval-auc:0.760349
#> [189] train-auc:0.763918 eval-auc:0.760297
#> [190] train-auc:0.763928 eval-auc:0.760292
#> [191] train-auc:0.763901 eval-auc:0.760244
#> [192] train-auc:0.763930 eval-auc:0.760262
#> [193] train-auc:0.763961 eval-auc:0.760340
#> [194] train-auc:0.763987 eval-auc:0.760320
#> [195] train-auc:0.763981 eval-auc:0.760279
#> [196] train-auc:0.764010 eval-auc:0.760278
#> [197] train-auc:0.764039 eval-auc:0.760334
#> [198] train-auc:0.764042 eval-auc:0.760347
#> [199] train-auc:0.764041 eval-auc:0.760354
#> [200] train-auc:0.764056 eval-auc:0.760321
#> [201] train-auc:0.764085 eval-auc:0.760294
#> [202] train-auc:0.764113 eval-auc:0.760321
#> [203] train-auc:0.764083 eval-auc:0.760242
#> [204] train-auc:0.764152 eval-auc:0.760321
#> [205] train-auc:0.764169 eval-auc:0.760321
#> [206] train-auc:0.764196 eval-auc:0.760326
#> [207] train-auc:0.764188 eval-auc:0.760358
#> [208] train-auc:0.764192 eval-auc:0.760404
#> [209] train-auc:0.764190 eval-auc:0.760402
#> [210] train-auc:0.764218 eval-auc:0.760465
#> [211] train-auc:0.764234 eval-auc:0.760504
#> [212] train-auc:0.764205 eval-auc:0.760488
#> [213] train-auc:0.764205 eval-auc:0.760530
#> [214] train-auc:0.764229 eval-auc:0.760518
#> [215] train-auc:0.764231 eval-auc:0.760504
#> [216] train-auc:0.764199 eval-auc:0.760507
#> [217] train-auc:0.764207 eval-auc:0.760490
#> [218] train-auc:0.764251 eval-auc:0.760507
#> [219] train-auc:0.764305 eval-auc:0.760543
#> [220] train-auc:0.764270 eval-auc:0.760525
#> [221] train-auc:0.764235 eval-auc:0.760521
#> [222] train-auc:0.764261 eval-auc:0.760532
#> [223] train-auc:0.764299 eval-auc:0.760558
#> [224] train-auc:0.764331 eval-auc:0.760589
#> [225] train-auc:0.764369 eval-auc:0.760615
#> [226] train-auc:0.764362 eval-auc:0.760651
#> [227] train-auc:0.764372 eval-auc:0.760658
#> [228] train-auc:0.764358 eval-auc:0.760628
#> [229] train-auc:0.764370 eval-auc:0.760759
#> [230] train-auc:0.764391 eval-auc:0.760726
#> [231] train-auc:0.764392 eval-auc:0.760653
#> [232] train-auc:0.764416 eval-auc:0.760671
#> [233] train-auc:0.764403 eval-auc:0.760679
#> [234] train-auc:0.764388 eval-auc:0.760674
#> [235] train-auc:0.764404 eval-auc:0.760702
#> [236] train-auc:0.764380 eval-auc:0.760696
#> [237] train-auc:0.765265 eval-auc:0.761974
#> [238] train-auc:0.765279 eval-auc:0.761972
#> [239] train-auc:0.765282 eval-auc:0.761999
#> [240] train-auc:0.765292 eval-auc:0.762065
#> [241] train-auc:0.765295 eval-auc:0.762073
#> [242] train-auc:0.765295 eval-auc:0.762067
#> [243] train-auc:0.765286 eval-auc:0.762078
#> [244] train-auc:0.765292 eval-auc:0.762073
#> [245] train-auc:0.765299 eval-auc:0.762044
#> [246] train-auc:0.765296 eval-auc:0.762002
#> [247] train-auc:0.764420 eval-auc:0.760781
#> [248] train-auc:0.764474 eval-auc:0.760779
#> [249] train-auc:0.764496 eval-auc:0.760778
#> [250] train-auc:0.764509 eval-auc:0.760782
#> [251] train-auc:0.764539 eval-auc:0.760869
#> [252] train-auc:0.764492 eval-auc:0.760860
#> [253] train-auc:0.764498 eval-auc:0.760831
#> [254] train-auc:0.764497 eval-auc:0.760814
#> [255] train-auc:0.764499 eval-auc:0.760813
#> [256] train-auc:0.764487 eval-auc:0.760811
#> [257] train-auc:0.764540 eval-auc:0.760871
#> [258] train-auc:0.764540 eval-auc:0.760888
#> [259] train-auc:0.764582 eval-auc:0.760861
#> [260] train-auc:0.764567 eval-auc:0.760768
#> [261] train-auc:0.764560 eval-auc:0.760736
#> [262] train-auc:0.764580 eval-auc:0.760751
#> [263] train-auc:0.765875 eval-auc:0.761472
#> [264] train-auc:0.765348 eval-auc:0.760970
#> [265] train-auc:0.765336 eval-auc:0.760943
#> [266] train-auc:0.765614 eval-auc:0.761168
#> [267] train-auc:0.765654 eval-auc:0.761191
#> [268] train-auc:0.765768 eval-auc:0.761308
#> [269] train-auc:0.765764 eval-auc:0.761299
#> [270] train-auc:0.765765 eval-auc:0.761309
#> [271] train-auc:0.766098 eval-auc:0.761902
#> [272] train-auc:0.766166 eval-auc:0.762343
#> [273] train-auc:0.766178 eval-auc:0.762343
#> [274] train-auc:0.766343 eval-auc:0.762628
#> [275] train-auc:0.766330 eval-auc:0.762635
#> [276] train-auc:0.766351 eval-auc:0.762618
#> [277] train-auc:0.766294 eval-auc:0.762633
#> [278] train-auc:0.766307 eval-auc:0.762625
#> [279] train-auc:0.766302 eval-auc:0.762619
#> [280] train-auc:0.766298 eval-auc:0.762613
#> [281] train-auc:0.766223 eval-auc:0.762811
#> [282] train-auc:0.766084 eval-auc:0.762705
#> [283] train-auc:0.766160 eval-auc:0.762758
#> [284] train-auc:0.766178 eval-auc:0.762770
#> [285] train-auc:0.766100 eval-auc:0.762675
#> [286] train-auc:0.766077 eval-auc:0.762666
#> [287] train-auc:0.766088 eval-auc:0.762670
#> [288] train-auc:0.766173 eval-auc:0.762710
#> [289] train-auc:0.766239 eval-auc:0.762957
#> [290] train-auc:0.766259 eval-auc:0.762964
#> [291] train-auc:0.766276 eval-auc:0.762949
#> [292] train-auc:0.766172 eval-auc:0.762820
#> [293] train-auc:0.766219 eval-auc:0.762808
#> [294] train-auc:0.766207 eval-auc:0.762787
#> [295] train-auc:0.766218 eval-auc:0.762790
#> [296] train-auc:0.766206 eval-auc:0.762778
#> [297] train-auc:0.766258 eval-auc:0.762862
#> [298] train-auc:0.766286 eval-auc:0.762866
#> [299] train-auc:0.766263 eval-auc:0.762845
#> [300] train-auc:0.766264 eval-auc:0.762857
#> [301] train-auc:0.766339 eval-auc:0.762831
#> [302] train-auc:0.766296 eval-auc:0.762869
#> [303] train-auc:0.766303 eval-auc:0.762894
#> [304] train-auc:0.766329 eval-auc:0.762991
#> [305] train-auc:0.766335 eval-auc:0.762996
#> [306] train-auc:0.766349 eval-auc:0.763000
#> [307] train-auc:0.766347 eval-auc:0.762972
#> [308] train-auc:0.766366 eval-auc:0.762931
#> [309] train-auc:0.766365 eval-auc:0.762918
#> [310] train-auc:0.766348 eval-auc:0.762912
#> [311] train-auc:0.766362 eval-auc:0.762907
#> [312] train-auc:0.766359 eval-auc:0.762930
#> [313] train-auc:0.766351 eval-auc:0.762936
#> [314] train-auc:0.766384 eval-auc:0.762941
#> [315] train-auc:0.766425 eval-auc:0.762952
#> [316] train-auc:0.766453 eval-auc:0.763005
#> [317] train-auc:0.766471 eval-auc:0.763041
#> [318] train-auc:0.766516 eval-auc:0.763020
#> [319] train-auc:0.766566 eval-auc:0.763068
#> [320] train-auc:0.766536 eval-auc:0.763104
#> [321] train-auc:0.766484 eval-auc:0.763086
#> [322] train-auc:0.766464 eval-auc:0.763213
#> [323] train-auc:0.766509 eval-auc:0.763217
#> [324] train-auc:0.766484 eval-auc:0.763209
#> [325] train-auc:0.766501 eval-auc:0.763222
#> [326] train-auc:0.766462 eval-auc:0.763182
#> [327] train-auc:0.766458 eval-auc:0.763160
#> [328] train-auc:0.766454 eval-auc:0.763119
#> [329] train-auc:0.766493 eval-auc:0.763180
#> [330] train-auc:0.766549 eval-auc:0.763170
#> [331] train-auc:0.766603 eval-auc:0.763207
#> [332] train-auc:0.766574 eval-auc:0.763220
#> [333] train-auc:0.766643 eval-auc:0.763192
#> [334] train-auc:0.766664 eval-auc:0.763189
#> [335] train-auc:0.766644 eval-auc:0.763191
#> [336] train-auc:0.766621 eval-auc:0.763198
#> [337] train-auc:0.766646 eval-auc:0.763194
#> [338] train-auc:0.766615 eval-auc:0.763112
#> [339] train-auc:0.766662 eval-auc:0.763102
#> [340] train-auc:0.766739 eval-auc:0.763149
#> [341] train-auc:0.766735 eval-auc:0.763143
#> [342] train-auc:0.766745 eval-auc:0.763175
#> [343] train-auc:0.766709 eval-auc:0.763181
#> [344] train-auc:0.766724 eval-auc:0.763172
#> [345] train-auc:0.766720 eval-auc:0.763170
#> [346] train-auc:0.766752 eval-auc:0.763166
#> [347] train-auc:0.766763 eval-auc:0.763187
#> [348] train-auc:0.766705 eval-auc:0.763224
#> [349] train-auc:0.766694 eval-auc:0.763195
#> [350] train-auc:0.766723 eval-auc:0.763205
#> [351] train-auc:0.766766 eval-auc:0.763180
#> [352] train-auc:0.766772 eval-auc:0.763159
#> [353] train-auc:0.766749 eval-auc:0.763213
#> [354] train-auc:0.766796 eval-auc:0.763232
#> [355] train-auc:0.766786 eval-auc:0.763228
#> [356] train-auc:0.766747 eval-auc:0.763235
#> [357] train-auc:0.766734 eval-auc:0.763214
#> [358] train-auc:0.766749 eval-auc:0.763187
#> [359] train-auc:0.766768 eval-auc:0.763221
#> [360] train-auc:0.766805 eval-auc:0.763214
#> [361] train-auc:0.766803 eval-auc:0.763210
#> [362] train-auc:0.766811 eval-auc:0.763202
#> [363] train-auc:0.766820 eval-auc:0.763195
#> [364] train-auc:0.766842 eval-auc:0.763174
#> [365] train-auc:0.766835 eval-auc:0.763170
#> [366] train-auc:0.766976 eval-auc:0.763309
#> [367] train-auc:0.767066 eval-auc:0.763342
#> [368] train-auc:0.767077 eval-auc:0.763372
#> [369] train-auc:0.767080 eval-auc:0.763356
#> [370] train-auc:0.767091 eval-auc:0.763369
#> [371] train-auc:0.767114 eval-auc:0.763261
#> [372] train-auc:0.767116 eval-auc:0.763281
#> [373] train-auc:0.767102 eval-auc:0.763279
#> [374] train-auc:0.767235 eval-auc:0.763281
#> [375] train-auc:0.767297 eval-auc:0.763325
#> [376] train-auc:0.767315 eval-auc:0.763340
#> [377] train-auc:0.767315 eval-auc:0.763326
#> [378] train-auc:0.767335 eval-auc:0.763328
#> [379] train-auc:0.767370 eval-auc:0.763286
#> [380] train-auc:0.767378 eval-auc:0.763294
#> [381] train-auc:0.767393 eval-auc:0.763298
#> [382] train-auc:0.767378 eval-auc:0.763316
#> [383] train-auc:0.767401 eval-auc:0.763316
#> [384] train-auc:0.767415 eval-auc:0.763322
#> [385] train-auc:0.767458 eval-auc:0.763295
#> [386] train-auc:0.767582 eval-auc:0.763405
#> [387] train-auc:0.767575 eval-auc:0.763398
#> [388] train-auc:0.767585 eval-auc:0.763452
#> [389] train-auc:0.767566 eval-auc:0.763475
#> [390] train-auc:0.767722 eval-auc:0.763527
#> [391] train-auc:0.767727 eval-auc:0.763499
#> [392] train-auc:0.767763 eval-auc:0.763486
#> [393] train-auc:0.767912 eval-auc:0.763690
#> [394] train-auc:0.767913 eval-auc:0.763713
#> [395] train-auc:0.767956 eval-auc:0.763678
#> [396] train-auc:0.767917 eval-auc:0.763693
#> [397] train-auc:0.767918 eval-auc:0.763688
#> [398] train-auc:0.767931 eval-auc:0.763653
#> [399] train-auc:0.767949 eval-auc:0.763667
#> [400] train-auc:0.768102 eval-auc:0.763722
#> [401] train-auc:0.768141 eval-auc:0.763682
#> [402] train-auc:0.768152 eval-auc:0.763668
#> [403] train-auc:0.768189 eval-auc:0.763755
#> [404] train-auc:0.768203 eval-auc:0.763736
#> [405] train-auc:0.768223 eval-auc:0.763792
#> [406] train-auc:0.768233 eval-auc:0.763855
#> [407] train-auc:0.768284 eval-auc:0.763830
#> [408] train-auc:0.768272 eval-auc:0.763881
#> [409] train-auc:0.768279 eval-auc:0.763910
#> [410] train-auc:0.768313 eval-auc:0.763926
#> [411] train-auc:0.768341 eval-auc:0.763945
#> [412] train-auc:0.768348 eval-auc:0.763962
#> [413] train-auc:0.768374 eval-auc:0.763904
#> [414] train-auc:0.768397 eval-auc:0.763898
#> [415] train-auc:0.768397 eval-auc:0.763907
#> [416] train-auc:0.768405 eval-auc:0.763885
#> [417] train-auc:0.768414 eval-auc:0.763887
#> [418] train-auc:0.768422 eval-auc:0.763908
#> [419] train-auc:0.768404 eval-auc:0.763945
#> [420] train-auc:0.768415 eval-auc:0.763923
#> [421] train-auc:0.768419 eval-auc:0.763955
#> [422] train-auc:0.768422 eval-auc:0.763935
#> [423] train-auc:0.768436 eval-auc:0.763915
#> [424] train-auc:0.768425 eval-auc:0.763900
#> [425] train-auc:0.768430 eval-auc:0.763877
#> [426] train-auc:0.768401 eval-auc:0.763843
#> [427] train-auc:0.768404 eval-auc:0.763848
#> [428] train-auc:0.768402 eval-auc:0.763846
#> [429] train-auc:0.768409 eval-auc:0.763806
#> [430] train-auc:0.768427 eval-auc:0.763795
#> [431] train-auc:0.768434 eval-auc:0.763820
#> [432] train-auc:0.768476 eval-auc:0.763828
#> [433] train-auc:0.768475 eval-auc:0.763789
#> [434] train-auc:0.768480 eval-auc:0.763828
#> [435] train-auc:0.768480 eval-auc:0.763840
#> [436] train-auc:0.768460 eval-auc:0.763869
#> [437] train-auc:0.768490 eval-auc:0.763860
#> [438] train-auc:0.768502 eval-auc:0.763886
#> [439] train-auc:0.768501 eval-auc:0.763874
#> [440] train-auc:0.768493 eval-auc:0.763887
#> [441] train-auc:0.768503 eval-auc:0.763875
#> [442] train-auc:0.768516 eval-auc:0.763863
#> [443] train-auc:0.768529 eval-auc:0.763873
#> [444] train-auc:0.768552 eval-auc:0.763864
#> [445] train-auc:0.768583 eval-auc:0.763848
#> [446] train-auc:0.768598 eval-auc:0.763835
#> [447] train-auc:0.768601 eval-auc:0.763843
#> [448] train-auc:0.768600 eval-auc:0.763831
#> [449] train-auc:0.768665 eval-auc:0.763861
#> [450] train-auc:0.768533 eval-auc:0.763701
#> [451] train-auc:0.768563 eval-auc:0.763641
#> [452] train-auc:0.768600 eval-auc:0.763669
#> [453] train-auc:0.768598 eval-auc:0.763684
#> [454] train-auc:0.768596 eval-auc:0.763678
#> [455] train-auc:0.768733 eval-auc:0.763595
#> [456] train-auc:0.768776 eval-auc:0.763617
#> [457] train-auc:0.768898 eval-auc:0.763669
#> [458] train-auc:0.768919 eval-auc:0.763652
#> [459] train-auc:0.768944 eval-auc:0.763638
#> [460] train-auc:0.768937 eval-auc:0.763608
#> [461] train-auc:0.768956 eval-auc:0.763601
#> [462] train-auc:0.768982 eval-auc:0.763632
#> [463] train-auc:0.769120 eval-auc:0.763807
#> [464] train-auc:0.769014 eval-auc:0.763659
#> [465] train-auc:0.769133 eval-auc:0.763808
#> [466] train-auc:0.769150 eval-auc:0.763817
#> [467] train-auc:0.769049 eval-auc:0.763644
#> [468] train-auc:0.769035 eval-auc:0.763692
#> [469] train-auc:0.769034 eval-auc:0.763657
#> [470] train-auc:0.769026 eval-auc:0.763672
#> [471] train-auc:0.769043 eval-auc:0.763670
#> [472] train-auc:0.769045 eval-auc:0.763671
#> [473] train-auc:0.769059 eval-auc:0.763662
#> [474] train-auc:0.769044 eval-auc:0.763669
#> [475] train-auc:0.769069 eval-auc:0.763674
#> [476] train-auc:0.769111 eval-auc:0.763697
#> [477] train-auc:0.769125 eval-auc:0.763696
#> [478] train-auc:0.769229 eval-auc:0.763842
#> [479] train-auc:0.769254 eval-auc:0.763913
#> [480] train-auc:0.769256 eval-auc:0.763898
#> [481] train-auc:0.769245 eval-auc:0.763892
#> [482] train-auc:0.769275 eval-auc:0.763903
#> [483] train-auc:0.769298 eval-auc:0.763903
#> [484] train-auc:0.769306 eval-auc:0.763900
#> [485] train-auc:0.769344 eval-auc:0.763916
#> [486] train-auc:0.769358 eval-auc:0.763964
#> [487] train-auc:0.769387 eval-auc:0.763946
#> [488] train-auc:0.769452 eval-auc:0.764000
#> [489] train-auc:0.769470 eval-auc:0.763986
#> [490] train-auc:0.769476 eval-auc:0.763982
#> [491] train-auc:0.769488 eval-auc:0.763987
#> [492] train-auc:0.769494 eval-auc:0.764011
#> [493] train-auc:0.769520 eval-auc:0.764012
#> [494] train-auc:0.769515 eval-auc:0.763988
#> [495] train-auc:0.769528 eval-auc:0.763982
#> [496] train-auc:0.769523 eval-auc:0.763919
#> [497] train-auc:0.769527 eval-auc:0.763906
#> [498] train-auc:0.769538 eval-auc:0.763817
#> [499] train-auc:0.769541 eval-auc:0.763776
#> [500] train-auc:0.769582 eval-auc:0.763785
#> [501] train-auc:0.769594 eval-auc:0.763783
#> [502] train-auc:0.769664 eval-auc:0.763832
#> [503] train-auc:0.769728 eval-auc:0.763858
#> [504] train-auc:0.769726 eval-auc:0.763886
#> [505] train-auc:0.769755 eval-auc:0.763911
#> [506] train-auc:0.769794 eval-auc:0.763916
#> [507] train-auc:0.769804 eval-auc:0.763906
#> [508] train-auc:0.769815 eval-auc:0.763900
#> [509] train-auc:0.769855 eval-auc:0.763897
#> [510] train-auc:0.769830 eval-auc:0.763901
#> [511] train-auc:0.769849 eval-auc:0.763918
#> [512] train-auc:0.769861 eval-auc:0.763894
#> [513] train-auc:0.769858 eval-auc:0.763843
#> [514] train-auc:0.769869 eval-auc:0.763838
#> [515] train-auc:0.769871 eval-auc:0.763850
#> [516] train-auc:0.769876 eval-auc:0.763839
#> [517] train-auc:0.769871 eval-auc:0.763840
#> [518] train-auc:0.769876 eval-auc:0.763835
#> [519] train-auc:0.769866 eval-auc:0.763824
#> [520] train-auc:0.769873 eval-auc:0.763806
#> [521] train-auc:0.769922 eval-auc:0.763774
#> [522] train-auc:0.769924 eval-auc:0.763773
#> [523] train-auc:0.769961 eval-auc:0.763832
#> [524] train-auc:0.769983 eval-auc:0.763823
#> [525] train-auc:0.769984 eval-auc:0.763819
#> [526] train-auc:0.769986 eval-auc:0.763858
#> [527] train-auc:0.769960 eval-auc:0.763780
#> [528] train-auc:0.769990 eval-auc:0.763783
#> [529] train-auc:0.770004 eval-auc:0.763792
#> [530] train-auc:0.769986 eval-auc:0.763805
#> [531] train-auc:0.769991 eval-auc:0.763782
#> [532] train-auc:0.770017 eval-auc:0.763795
#> [533] train-auc:0.770008 eval-auc:0.763785
#> [534] train-auc:0.770030 eval-auc:0.763800
#> [535] train-auc:0.770011 eval-auc:0.763787
#> [536] train-auc:0.770013 eval-auc:0.763785
#> [537] train-auc:0.770052 eval-auc:0.763810
#> [538] train-auc:0.770068 eval-auc:0.763800
#> [539] train-auc:0.770075 eval-auc:0.763820
#> [540] train-auc:0.770107 eval-auc:0.763811
#> [541] train-auc:0.770135 eval-auc:0.763813
#> [542] train-auc:0.770137 eval-auc:0.763808
#> [543] train-auc:0.770132 eval-auc:0.763799
#> [544] train-auc:0.770161 eval-auc:0.763830
#> [545] train-auc:0.770141 eval-auc:0.763834
#> [546] train-auc:0.770137 eval-auc:0.763831
#> [547] train-auc:0.770138 eval-auc:0.763830
#> [548] train-auc:0.770146 eval-auc:0.763833
#> [549] train-auc:0.770170 eval-auc:0.763834
#> [550] train-auc:0.770158 eval-auc:0.763827
#> [551] train-auc:0.770193 eval-auc:0.763841
#> [552] train-auc:0.770239 eval-auc:0.763858
#> [553] train-auc:0.770258 eval-auc:0.763849
#> [554] train-auc:0.770262 eval-auc:0.763838
#> [555] train-auc:0.770264 eval-auc:0.763838
#> [556] train-auc:0.770282 eval-auc:0.763819
#> [557] train-auc:0.770297 eval-auc:0.763820
#> [558] train-auc:0.770359 eval-auc:0.763937
#> [559] train-auc:0.770359 eval-auc:0.763936
#> [560] train-auc:0.770357 eval-auc:0.763929
#> [561] train-auc:0.770402 eval-auc:0.763870
#> [562] train-auc:0.770412 eval-auc:0.763878
#> [563] train-auc:0.770410 eval-auc:0.763871
#> [564] train-auc:0.770437 eval-auc:0.763861
#> [565] train-auc:0.770452 eval-auc:0.763872
#> [566] train-auc:0.770472 eval-auc:0.763890
#> [567] train-auc:0.770482 eval-auc:0.763882
#> [568] train-auc:0.770536 eval-auc:0.763878
#> [569] train-auc:0.770523 eval-auc:0.763864
#> [570] train-auc:0.770533 eval-auc:0.763921
#> [571] train-auc:0.770542 eval-auc:0.763936
#> [572] train-auc:0.770540 eval-auc:0.763939
#> [573] train-auc:0.770547 eval-auc:0.763951
#> [574] train-auc:0.770564 eval-auc:0.763969
#> [575] train-auc:0.770566 eval-auc:0.763981
#> [576] train-auc:0.770588 eval-auc:0.763927
#> [577] train-auc:0.770618 eval-auc:0.763924
#> [578] train-auc:0.770622 eval-auc:0.763939
#> [579] train-auc:0.770620 eval-auc:0.763945
#> [580] train-auc:0.770653 eval-auc:0.763966
#> [581] train-auc:0.770662 eval-auc:0.763992
#> [582] train-auc:0.770662 eval-auc:0.763992
#> [583] train-auc:0.770675 eval-auc:0.763975
#> [584] train-auc:0.770683 eval-auc:0.763908
#> [585] train-auc:0.770712 eval-auc:0.763907
#> [586] train-auc:0.770717 eval-auc:0.763910
#> [587] train-auc:0.770718 eval-auc:0.763905
#> [588] train-auc:0.770730 eval-auc:0.763912
#> [589] train-auc:0.770752 eval-auc:0.763900
#> [590] train-auc:0.770756 eval-auc:0.763884
#> [591] train-auc:0.770749 eval-auc:0.763897
#> [592] train-auc:0.770749 eval-auc:0.763897
#> [593] train-auc:0.770747 eval-auc:0.763874
#> Stopping. Best iteration:
#> [493] train-auc:0.769520 eval-auc:0.764012
#>
#> -- Saving UCICreditCard.XGB_input_vars to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/model/XGB/UCICreditCard.XGB_input_vars.csv
#> -- Saving XGB_feature_importance to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/XGB/XGB_feature_importance.csv
#> -- Saving XGB.train_prob to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict/XGB/XGB.train_prob.csv
#> -- Saving XGB.test_prob to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict/XGB/XGB.test_prob.csv
#> -- Producing plots that characterize the performance of XGboost
#> Saving 12 x 6.5 in image
#> -- Saving UCICreditCard.XGB.performance_table to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/performance/XGB/UCICreditCard.XGB.performance_table.csv
#> -- Saving XGB.params to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/performance/XGB/XGB.params.csv
In a few minutes, the program completed data cleaning and pretreatment, variable screening, scorecard, Xgboost, GBDT, RandomForest four models development and evaluation.