Introduction to creditmodel

2019-10-24

The creditmodel package provides a highly efficient R tool suite for Credit Modeling Analysis and Visualization. Contains infrastructure functionalities such as data exploration and preparation, missing values treatment, outliers treatment, variable derivation, variable selection, dimensionality reduction, grid search for hyper parameters, data mining and visualization, model evaluation, strategy analysis etc. creditmodel can facilitate reliable predictive models (such as xgboost or scorecard) and data analysis on a standard laptop computer within minutes. This introductory vignette provides a brief glance at the training_model module of the package.

Quick Modeling

When I first wrote the creditmodel package, its primary purpose was to provide a tool to make the development of binary classification models (machine learning based models as well as credit scorecard) simpler and faster. Therefore, I wrote the package to automatically build model. However, as the package grew in functionality, this choice was increasingly problematic.

Importantly, the creditmodel package now provides a set of complementary tools with different missions. Now, Let’s start with quick modeling.


library(creditmodel)
#> Registered S3 methods overwritten by 'ggplot2':
#>   method         from 
#>   [.quosures     rlang
#>   c.quosures     rlang
#>   print.quosures rlang
#> Package 'creditmodel' version 1.1.5

B_model = training_model(dat = UCICreditCard,
                         model_name = "UCICreditCard",
                         target = "default.payment.next.month",
                         x_list = NULL,
                         occur_time = "apply_date",
                         obs_id = "ID",
                         dat_test = NULL,
                         preproc = TRUE,
                         miss_values = c(-1, -2),
                         missing_proc = TRUE,
                         outlier_proc = TRUE,
                         trans_log = TRUE,
                         feature_filter = list(filter = c("IV", "PSI", "COR", "XGB"),
                                               cv_folds = 1,
                                               iv_cp = 0.02,
                                               psi_cp = 0.2,
                                               cor_cp = 0.95,
                                               xgb_cp = 0,
                                               hopper = TRUE),
                         vars_plot = FALSE,
                         algorithm = list("LR","XGB"),
                         breaks_list = NULL,
                         LR.params = lr_params(
                           iter = 2,
                           method = 'random_search',
                           tree_control = list(p = 0.02,
                                               cp = c(0.00001, 0.00000001),
                                               xval = 5,
                                               maxdepth = c(10, 15)),
                           bins_control = list(bins_num = 10,
                                               bins_pct = c(0.02, 0.03, 0.05),
                                               b_chi = c(0.01, 0.02, 0.03),
                                               b_odds = 0.1,
                                               b_psi = c(0.02, 0.06),
                                               b_or = c(.05, 0.1, 0.15, 0.2),
                                               mono = c(0.1, 0.2, 0.4, 0.5),
                                               odds_psi = c(0.1, 0.15, 0.2),
                                               kc = 1),
                           f_eval = 'ks',
                           lasso = TRUE,
                           step_wise = FALSE),
                         XGB.params = xgb_params(
                           iter = 3,
                           method = 'random_search',
                           params = list(
                             max_depth = c(3:6),
                             eta = c(0.01, 0.05, 0.1, 0.2),
                             gamma = c(0.01, 0.05, 0.1),
                             min_child_weight = c(1, 5, 10, 20, 30, 40, 50),
                             subsample = c(0.8, 0.7, 0.6, 0.5),
                             colsample_bytree = c(0.8, 0.7, 0.6, 0.5),
                             scale_pos_weight = c(1, 2, 3)),
                           f_eval = 'auc'),
                         parallel = FALSE,
                         cores_num = NULL,
                         save_pmml = FALSE,
                         plot_show = TRUE,
                         model_path = tempdir(),
                         seed = 46)
#> -- Building ---------------------------------------------------------------------------------------- UCICreditCard --
#> -- Creating the model output file path ------------------------------------------------------------------------------
#> -- Seting model output file path:
#> * model      : C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/model
#> * data       : C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data
#> * variable   : C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable
#> * performance: C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/performance
#> * predict    : C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict
#> -- Checking datasets and target -------------------------------------------------------------------------------------
#> -- Cleansing & Prepocessing data ------------------------------------------------------------------------------------
#> -- Checking data and target format...
#> -- Cleansing data
#> -- Replacing null or blank or miss_values with NA
#> -- Deleting low variance variables
#> -- Processing NAs & special value rate is more than 0.999
#> -- Formating time variables
#> -- Transfering character variables which are actually numerical to numeric
#> -- Removing duplicated observations
#> -- Merging categories which percent is less than 0.001 or obs number is less than 20
#> -- Saving data_cleansing to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/data_cleansing.csv
#> -- Logarithmic transformation
#> -- Following variables are log transformed:
#> * LIMIT_BAL -> LIMIT_BAL_log
#> * PAY_0     -> PAY_0_log
#> * PAY_2     -> PAY_2_log
#> * PAY_AMT1  -> PAY_AMT1_log
#> * PAY_AMT2  -> PAY_AMT2_log
#> * PAY_AMT3  -> PAY_AMT3_log
#> * PAY_AMT4  -> PAY_AMT4_log
#> * PAY_AMT5  -> PAY_AMT5_log
#> * PAY_AMT6  -> PAY_AMT6_log
#> -- Spliting train & test --------------------------------------------------------------------------------------------
#> -- train_test_split:
#> * Total: 30000 (100%)
#> * Train: 20874 (70%)
#> * Test : 9126 (30%)
#> -- Processing outliers using Kmeans and LOF
#> * LIMIT_BAL_log  0%  no_outlier
#> * AGE    0%  no_outlier
#> * PAY_0_log  0%  no_outlier
#> * PAY_2_log  0%  no_outlier
#> * PAY_3  0%  no_outlier
#> * PAY_4  0%  no_outlier
#> * PAY_5  0%  no_outlier
#> * PAY_6  0%  no_outlier
#> * BILL_AMT1  0%  no_outlier
#> * BILL_AMT2  0%  no_outlier
#> * BILL_AMT3  0%  no_outlier
#> * BILL_AMT4  0%  no_outlier
#> * BILL_AMT5  0%  no_outlier
#> * BILL_AMT6  0%  no_outlier
#> * PAY_AMT1_log   0%  no_outlier
#> * PAY_AMT2_log   0%  no_outlier
#> * PAY_AMT3_log   0%  no_outlier
#> * PAY_AMT4_log   0%  no_outlier
#> * PAY_AMT5_log   0%  no_outlier
#> * PAY_AMT6_log   0%  no_outlier
#> -- Saving data_outlier_proc to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/data_outlier_proc.csv
#> -- Processing NAs
#> * MARRIAGE   0.1581% IM
#> * PAY_0_log  27.963% IM
#> * PAY_2_log  32.6579%    IM
#> * PAY_3  33.5154%    IM
#> * PAY_4  33.3573%    IM
#> * PAY_5  33.5968%    IM
#> * PAY_6  35.4939%    IM
#> * BILL_AMT1  0.1102% IM
#> * BILL_AMT2  0.1246% IM
#> * BILL_AMT3  0.1389% IM
#> * BILL_AMT4  0.1533% IM
#> * BILL_AMT5  0.1198% IM
#> * BILL_AMT6  0.1533% IM
#> -- Saving data_missing_proc to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/data_missing_proc.csv
#> -- Filtering features -----------------------------------------------------------------------------------------------
#> -- Feature filtering by PSI
#> -- Feature filtering by IV
#> -- Selecting variables by XGboost
#> -- Feature filtering by Correlation
#> -- Saving feature_filter to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/feature_filter.csv
#> -- Saving feature_filter_table to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/feature_filter_table.csv
#> -- Training logistic regression model/scorecard ---------------------------------------------------------------------
#> -- Searching optimal binning & feature selection parameters ---------------------------------------------------------
#> [1]  train_ks:0.4125  test_ks:0.389  psi:0.001
#> * tree_control:{ p:0.02, cp:0.00001, xval:5, maxdepth:10 }
#> * bins_control:{ bins_num:10, bins_pct:0.02, b_chi:0.01, b_odds:0.1, b_psi:0.02, b_or:0.05, mono:0.1, odds_psi:0.1, kc:1 }
#> * thresholds:{ cor_p:0.8, iv_i:0.02, psi_i:0.1, cos_i:0.5 }
#> [2]  train_ks:0.4125  test_ks:0.389  psi:0.001
#> * tree_control:{ p:0.02, cp:0.00001, xval:5, maxdepth:10 }
#> * bins_control:{ bins_num:10, bins_pct:0.02, b_chi:0.01, b_odds:0.1, b_psi:0.02, b_or:0.05, mono:0.1, odds_psi:0.1, kc:1 }
#> * thresholds:{ cor_p:0.8, iv_i:0.02, psi_i:0.1, cos_i:0.5 }
#> -- [best iter] ------------------------------------------------------------------------------------------------------
#> [1]  train_ks:0.4125 test_ks:0.389   psi:0.001
#> * tree_control:{ p:0.02, cp:0.00001, xval:5, maxdepth:10 }
#> * bins_control:{ bins_num:10, bins_pct:0.02, b_chi:0.01, b_odds:0.1, b_psi:0.02, b_or:0.05, mono:0.1, odds_psi:0.1, kc:1 }
#> * thresholds:{ cor_p:0.8, iv_i:0.02, psi_i:0.1, cos_i:0.5 }
#> -- Constrained optimal binning of varibles --------------------------------------------------------------------------
#> -- Getting optimal binning breaks
#> * PAY_0_log: -0.5,0.346573590279972,Inf
#> * PAY_2_log: -0.5,0.346573590279972,Inf
#> * PAY_3: -1,1,Inf
#> * PAY_4: -1,0,Inf
#> * PAY_5: -1,1,Inf
#> * PAY_AMT1_log: 3.06778244554087,7.60115239706291,Inf
#> -- Saving breaks_list.breaks_list to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/breaks_list.breaks_list.csv
#> -- Filtering variables by IV & PSI ----------------------------------------------------------------------------------
#> -- Selecting variables by PSI & IV
#> -- Calculating PSI
#> --PAY_0_log
#> * PSI: 0  -->  Very stable
#> --PAY_2_log
#> * PSI: 0  -->  Very stable
#> --PAY_3
#> * PSI: 0  -->  Very stable
#> --PAY_4
#> * PSI: 0  -->  Very stable
#> --PAY_5
#> * PSI: 0  -->  Very stable
#> --PAY_AMT1_log
#> * PSI: 0  -->  Very stable
#> -- Calculating IV
#> --PAY_0_log
#> * IV: 0.692  -->  Very Strong
#> --PAY_2_log
#> * IV: 0.538  -->  Very Strong
#> --PAY_3
#> * IV: 0.405  -->  Very Strong
#> --PAY_4
#> * IV: 0.352  -->  Very Strong
#> --PAY_5
#> * IV: 0.314  -->  Very Strong
#> --PAY_AMT1_log
#> * IV: 0.148  -->  Strong
#> -- Saving feature.IV_PSI to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/feature.IV_PSI.csv
#> -- Saving feature.PSI to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/feature.PSI.csv
#> -- Saving feature.IV to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/feature.IV.csv
#> -- Saving LR.IV_PSI_features to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/LR.IV_PSI_features.csv
#> -- Transforming WOE -------------------------------------------------------------------------------------------------
#> -- Transforming variables to woe
#> -- Saving lr_train.dat.woe to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/LR/lr_train.dat.woe.csv
#> -- Filtering variables by correlation -------------------------------------------------------------------------------
#> -- Processing bins table
#> * PAY_0_log IV: 0.692 PSI: 0
#> * PAY_2_log IV: 0.537 PSI: 0
#> * PAY_3 IV: 0.406 PSI: 0
#> * PAY_4 IV: 0.352 PSI: 0
#> * PAY_5 IV: 0.314 PSI: 0
#> * PAY_AMT1_log IV: 0.149 PSI: 0
#> -- Filtering variables by LASSO -------------------------------------------------------------------------------------
#> Saving 8 x 6.5 in image
#> -- Saving lr_premodel_features to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/lr_premodel_features.csv
#> -- Start training lr model ------------------------------------------------------------------------------------------
#> -- Saving lr_model_features to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/LR/lr_model_features.csv
#> -- Saving UCICreditCard.lr_coef to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/performance/LR/UCICreditCard.lr_coef.csv
#> -- Generating standard socrecard ------------------------------------------------------------------------------------
#> -- Using scorecard to predict the train and test
#> -- Saving lr_train_score to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict/LR/lr_train_score.csv
#> -- Saving lr_test_score to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict/LR/lr_test_score.csv
#> -- Saving lr_train_prob to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict/LR/lr_train_prob.csv
#> -- Saving lr_test_prob to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict/LR/lr_test_prob.csv
#> -- Producing plots that characterize performance of scorecard
#> Saving 12 x 6.5 in image
#> -- Saving UCICreditCard.LR.performance_table to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/performance/LR/UCICreditCard.LR.performance_table.csv
#> -- Saving LR.params to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/performance/LR/LR.params.csv
#> -- Training XGboost Model -------------------------------------------------------------------------------------------
#> -- Searching optimal parameters of XGboost --------------------------------------------------------------------------
#> [1]  train_auc:0.768799  eval_auc:0.751964
#> * params:{max_depth:3, eta:0.01, gamma:0.01, min_child_weight:1, subsample:0.8, colsample_bytree:0.8, scale_pos_weight:1}
#> [2]  train_auc:0.772677  eval_auc:0.751984
#> * params:{max_depth:3, eta:0.01, gamma:0.01, min_child_weight:1, subsample:0.8, colsample_bytree:0.8, scale_pos_weight:1}
#> [3]  train_auc:0.769792  eval_auc:0.751976
#> * params:{max_depth:3, eta:0.01, gamma:0.01, min_child_weight:1, subsample:0.8, colsample_bytree:0.8, scale_pos_weight:1}
#> -- [best iter] ------------------------------------------------------------------------------------------------------
#> [2]  train_auc:0.772677  eval_auc:0.751984
#> * params:{max_depth:3, eta:0.01, gamma:0.01, min_child_weight:1, subsample:0.8, colsample_bytree:0.8, scale_pos_weight:1}
#> -- Saving XGB.x_train to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/XGB/XGB.x_train.csv
#> -- Saving XGB.x_test to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/XGB/XGB.x_test.csv
#> -- Saving XGB.y_train to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/XGB/XGB.y_train.csv
#> -- Saving XGB.y_test to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/data/XGB/XGB.y_test.csv
#> [1]  train-auc:0.709020  eval-auc:0.712786 
#> Multiple eval metrics are present. Will use eval_auc for early stopping.
#> Will train until eval_auc hasn't improved in 100 rounds.
#> 
#> [2]  train-auc:0.747521  eval-auc:0.745226 
#> [3]  train-auc:0.747617  eval-auc:0.745381 
#> [4]  train-auc:0.756840  eval-auc:0.755324 
#> [5]  train-auc:0.757154  eval-auc:0.757429 
#> [6]  train-auc:0.758090  eval-auc:0.757886 
#> [7]  train-auc:0.758037  eval-auc:0.757704 
#> [8]  train-auc:0.757308  eval-auc:0.757175 
#> [9]  train-auc:0.758632  eval-auc:0.758537 
#> [10] train-auc:0.758226  eval-auc:0.757628 
#> [11] train-auc:0.758803  eval-auc:0.758058 
#> [12] train-auc:0.758845  eval-auc:0.758036 
#> [13] train-auc:0.758708  eval-auc:0.758519 
#> [14] train-auc:0.759093  eval-auc:0.758778 
#> [15] train-auc:0.760089  eval-auc:0.759870 
#> [16] train-auc:0.760542  eval-auc:0.760058 
#> [17] train-auc:0.760571  eval-auc:0.759975 
#> [18] train-auc:0.760621  eval-auc:0.759956 
#> [19] train-auc:0.760726  eval-auc:0.759699 
#> [20] train-auc:0.760669  eval-auc:0.759714 
#> [21] train-auc:0.760720  eval-auc:0.759621 
#> [22] train-auc:0.760500  eval-auc:0.759595 
#> [23] train-auc:0.760448  eval-auc:0.759457 
#> [24] train-auc:0.760347  eval-auc:0.759224 
#> [25] train-auc:0.760535  eval-auc:0.759467 
#> [26] train-auc:0.760433  eval-auc:0.759268 
#> [27] train-auc:0.760492  eval-auc:0.759368 
#> [28] train-auc:0.760459  eval-auc:0.759314 
#> [29] train-auc:0.760532  eval-auc:0.759474 
#> [30] train-auc:0.760616  eval-auc:0.759489 
#> [31] train-auc:0.760667  eval-auc:0.759546 
#> [32] train-auc:0.761010  eval-auc:0.759613 
#> [33] train-auc:0.760805  eval-auc:0.759576 
#> [34] train-auc:0.760888  eval-auc:0.759696 
#> [35] train-auc:0.761190  eval-auc:0.759652 
#> [36] train-auc:0.761063  eval-auc:0.759825 
#> [37] train-auc:0.761065  eval-auc:0.759823 
#> [38] train-auc:0.761057  eval-auc:0.759915 
#> [39] train-auc:0.761150  eval-auc:0.760020 
#> [40] train-auc:0.761105  eval-auc:0.759977 
#> [41] train-auc:0.761122  eval-auc:0.759953 
#> [42] train-auc:0.761019  eval-auc:0.759911 
#> [43] train-auc:0.761119  eval-auc:0.759977 
#> [44] train-auc:0.761038  eval-auc:0.759915 
#> [45] train-auc:0.760971  eval-auc:0.760060 
#> [46] train-auc:0.761098  eval-auc:0.760065 
#> [47] train-auc:0.761146  eval-auc:0.760093 
#> [48] train-auc:0.761128  eval-auc:0.759962 
#> [49] train-auc:0.761170  eval-auc:0.759930 
#> [50] train-auc:0.761133  eval-auc:0.760027 
#> [51] train-auc:0.761188  eval-auc:0.760016 
#> [52] train-auc:0.761080  eval-auc:0.759963 
#> [53] train-auc:0.761038  eval-auc:0.759860 
#> [54] train-auc:0.761055  eval-auc:0.759916 
#> [55] train-auc:0.761208  eval-auc:0.760020 
#> [56] train-auc:0.761442  eval-auc:0.760171 
#> [57] train-auc:0.761490  eval-auc:0.760191 
#> [58] train-auc:0.761604  eval-auc:0.760362 
#> [59] train-auc:0.761611  eval-auc:0.760247 
#> [60] train-auc:0.761788  eval-auc:0.760395 
#> [61] train-auc:0.761742  eval-auc:0.760294 
#> [62] train-auc:0.761626  eval-auc:0.760282 
#> [63] train-auc:0.761708  eval-auc:0.760361 
#> [64] train-auc:0.761635  eval-auc:0.760311 
#> [65] train-auc:0.761577  eval-auc:0.760264 
#> [66] train-auc:0.761581  eval-auc:0.760306 
#> [67] train-auc:0.761558  eval-auc:0.760311 
#> [68] train-auc:0.761587  eval-auc:0.760317 
#> [69] train-auc:0.761654  eval-auc:0.760420 
#> [70] train-auc:0.761667  eval-auc:0.760559 
#> [71] train-auc:0.761855  eval-auc:0.760611 
#> [72] train-auc:0.761673  eval-auc:0.760532 
#> [73] train-auc:0.761675  eval-auc:0.760600 
#> [74] train-auc:0.761735  eval-auc:0.760669 
#> [75] train-auc:0.761915  eval-auc:0.760806 
#> [76] train-auc:0.761870  eval-auc:0.760799 
#> [77] train-auc:0.761926  eval-auc:0.760855 
#> [78] train-auc:0.762426  eval-auc:0.760984 
#> [79] train-auc:0.762469  eval-auc:0.760988 
#> [80] train-auc:0.762488  eval-auc:0.760938 
#> [81] train-auc:0.762467  eval-auc:0.760945 
#> [82] train-auc:0.762492  eval-auc:0.760911 
#> [83] train-auc:0.762436  eval-auc:0.760898 
#> [84] train-auc:0.762469  eval-auc:0.760912 
#> [85] train-auc:0.762383  eval-auc:0.760888 
#> [86] train-auc:0.762309  eval-auc:0.760873 
#> [87] train-auc:0.762381  eval-auc:0.760921 
#> [88] train-auc:0.762384  eval-auc:0.760956 
#> [89] train-auc:0.762456  eval-auc:0.760896 
#> [90] train-auc:0.762480  eval-auc:0.760893 
#> [91] train-auc:0.762526  eval-auc:0.760923 
#> [92] train-auc:0.762556  eval-auc:0.760955 
#> [93] train-auc:0.762674  eval-auc:0.760867 
#> [94] train-auc:0.762609  eval-auc:0.760923 
#> [95] train-auc:0.762551  eval-auc:0.760970 
#> [96] train-auc:0.762627  eval-auc:0.760947 
#> [97] train-auc:0.762589  eval-auc:0.761013 
#> [98] train-auc:0.762658  eval-auc:0.760956 
#> [99] train-auc:0.762707  eval-auc:0.760961 
#> [100]    train-auc:0.762736  eval-auc:0.760982 
#> [101]    train-auc:0.762717  eval-auc:0.760998 
#> [102]    train-auc:0.762742  eval-auc:0.761004 
#> [103]    train-auc:0.762755  eval-auc:0.761060 
#> [104]    train-auc:0.762765  eval-auc:0.761040 
#> [105]    train-auc:0.762775  eval-auc:0.761125 
#> [106]    train-auc:0.762760  eval-auc:0.761040 
#> [107]    train-auc:0.762747  eval-auc:0.761049 
#> [108]    train-auc:0.763227  eval-auc:0.761298 
#> [109]    train-auc:0.763275  eval-auc:0.761377 
#> [110]    train-auc:0.763353  eval-auc:0.761194 
#> [111]    train-auc:0.763429  eval-auc:0.761158 
#> [112]    train-auc:0.763442  eval-auc:0.761147 
#> [113]    train-auc:0.763372  eval-auc:0.761158 
#> [114]    train-auc:0.763387  eval-auc:0.761155 
#> [115]    train-auc:0.763396  eval-auc:0.761221 
#> [116]    train-auc:0.763392  eval-auc:0.761133 
#> [117]    train-auc:0.763385  eval-auc:0.761175 
#> [118]    train-auc:0.763401  eval-auc:0.761186 
#> [119]    train-auc:0.763336  eval-auc:0.760945 
#> [120]    train-auc:0.763400  eval-auc:0.761190 
#> [121]    train-auc:0.763334  eval-auc:0.760949 
#> [122]    train-auc:0.763405  eval-auc:0.760905 
#> [123]    train-auc:0.763429  eval-auc:0.760871 
#> [124]    train-auc:0.763389  eval-auc:0.760943 
#> [125]    train-auc:0.763491  eval-auc:0.761199 
#> [126]    train-auc:0.763486  eval-auc:0.761237 
#> [127]    train-auc:0.763481  eval-auc:0.761198 
#> [128]    train-auc:0.763430  eval-auc:0.760977 
#> [129]    train-auc:0.763409  eval-auc:0.760986 
#> [130]    train-auc:0.763446  eval-auc:0.761245 
#> [131]    train-auc:0.763468  eval-auc:0.761217 
#> [132]    train-auc:0.763456  eval-auc:0.761232 
#> [133]    train-auc:0.763525  eval-auc:0.760957 
#> [134]    train-auc:0.763565  eval-auc:0.760914 
#> [135]    train-auc:0.763622  eval-auc:0.760990 
#> [136]    train-auc:0.763578  eval-auc:0.760913 
#> [137]    train-auc:0.763608  eval-auc:0.760907 
#> [138]    train-auc:0.763631  eval-auc:0.760935 
#> [139]    train-auc:0.763606  eval-auc:0.760911 
#> [140]    train-auc:0.763634  eval-auc:0.760923 
#> [141]    train-auc:0.763606  eval-auc:0.760908 
#> [142]    train-auc:0.763608  eval-auc:0.760904 
#> [143]    train-auc:0.763637  eval-auc:0.760911 
#> [144]    train-auc:0.763668  eval-auc:0.760954 
#> [145]    train-auc:0.763657  eval-auc:0.760921 
#> [146]    train-auc:0.763669  eval-auc:0.760976 
#> [147]    train-auc:0.763683  eval-auc:0.760991 
#> [148]    train-auc:0.763689  eval-auc:0.760980 
#> [149]    train-auc:0.763722  eval-auc:0.760936 
#> [150]    train-auc:0.763708  eval-auc:0.760906 
#> [151]    train-auc:0.763707  eval-auc:0.760907 
#> [152]    train-auc:0.763746  eval-auc:0.760906 
#> [153]    train-auc:0.763736  eval-auc:0.760912 
#> [154]    train-auc:0.763760  eval-auc:0.760890 
#> [155]    train-auc:0.763786  eval-auc:0.760896 
#> [156]    train-auc:0.764345  eval-auc:0.761730 
#> [157]    train-auc:0.764370  eval-auc:0.761795 
#> [158]    train-auc:0.764344  eval-auc:0.761742 
#> [159]    train-auc:0.764339  eval-auc:0.761752 
#> [160]    train-auc:0.764319  eval-auc:0.761790 
#> [161]    train-auc:0.764358  eval-auc:0.761756 
#> [162]    train-auc:0.764383  eval-auc:0.761777 
#> [163]    train-auc:0.764332  eval-auc:0.761741 
#> [164]    train-auc:0.764350  eval-auc:0.761774 
#> [165]    train-auc:0.764728  eval-auc:0.761771 
#> [166]    train-auc:0.764742  eval-auc:0.761746 
#> [167]    train-auc:0.764689  eval-auc:0.761693 
#> [168]    train-auc:0.764695  eval-auc:0.761546 
#> [169]    train-auc:0.764701  eval-auc:0.761573 
#> [170]    train-auc:0.764704  eval-auc:0.761562 
#> [171]    train-auc:0.764732  eval-auc:0.761567 
#> [172]    train-auc:0.764688  eval-auc:0.761500 
#> [173]    train-auc:0.764687  eval-auc:0.761477 
#> [174]    train-auc:0.764699  eval-auc:0.761499 
#> [175]    train-auc:0.764722  eval-auc:0.761506 
#> [176]    train-auc:0.764702  eval-auc:0.761490 
#> [177]    train-auc:0.764711  eval-auc:0.761474 
#> [178]    train-auc:0.764706  eval-auc:0.761473 
#> [179]    train-auc:0.764692  eval-auc:0.761465 
#> [180]    train-auc:0.764695  eval-auc:0.761438 
#> [181]    train-auc:0.764722  eval-auc:0.761472 
#> [182]    train-auc:0.764717  eval-auc:0.761491 
#> [183]    train-auc:0.763921  eval-auc:0.760319 
#> [184]    train-auc:0.763906  eval-auc:0.760302 
#> [185]    train-auc:0.763897  eval-auc:0.760292 
#> [186]    train-auc:0.763924  eval-auc:0.760313 
#> [187]    train-auc:0.763926  eval-auc:0.760301 
#> [188]    train-auc:0.763922  eval-auc:0.760349 
#> [189]    train-auc:0.763918  eval-auc:0.760297 
#> [190]    train-auc:0.763928  eval-auc:0.760292 
#> [191]    train-auc:0.763901  eval-auc:0.760244 
#> [192]    train-auc:0.763930  eval-auc:0.760262 
#> [193]    train-auc:0.763961  eval-auc:0.760340 
#> [194]    train-auc:0.763987  eval-auc:0.760320 
#> [195]    train-auc:0.763981  eval-auc:0.760279 
#> [196]    train-auc:0.764010  eval-auc:0.760278 
#> [197]    train-auc:0.764039  eval-auc:0.760334 
#> [198]    train-auc:0.764042  eval-auc:0.760347 
#> [199]    train-auc:0.764041  eval-auc:0.760354 
#> [200]    train-auc:0.764056  eval-auc:0.760321 
#> [201]    train-auc:0.764085  eval-auc:0.760294 
#> [202]    train-auc:0.764113  eval-auc:0.760321 
#> [203]    train-auc:0.764083  eval-auc:0.760242 
#> [204]    train-auc:0.764152  eval-auc:0.760321 
#> [205]    train-auc:0.764169  eval-auc:0.760321 
#> [206]    train-auc:0.764196  eval-auc:0.760326 
#> [207]    train-auc:0.764188  eval-auc:0.760358 
#> [208]    train-auc:0.764192  eval-auc:0.760404 
#> [209]    train-auc:0.764190  eval-auc:0.760402 
#> [210]    train-auc:0.764218  eval-auc:0.760465 
#> [211]    train-auc:0.764234  eval-auc:0.760504 
#> [212]    train-auc:0.764205  eval-auc:0.760488 
#> [213]    train-auc:0.764205  eval-auc:0.760530 
#> [214]    train-auc:0.764229  eval-auc:0.760518 
#> [215]    train-auc:0.764231  eval-auc:0.760504 
#> [216]    train-auc:0.764199  eval-auc:0.760507 
#> [217]    train-auc:0.764207  eval-auc:0.760490 
#> [218]    train-auc:0.764251  eval-auc:0.760507 
#> [219]    train-auc:0.764305  eval-auc:0.760543 
#> [220]    train-auc:0.764270  eval-auc:0.760525 
#> [221]    train-auc:0.764235  eval-auc:0.760521 
#> [222]    train-auc:0.764261  eval-auc:0.760532 
#> [223]    train-auc:0.764299  eval-auc:0.760558 
#> [224]    train-auc:0.764331  eval-auc:0.760589 
#> [225]    train-auc:0.764369  eval-auc:0.760615 
#> [226]    train-auc:0.764362  eval-auc:0.760651 
#> [227]    train-auc:0.764372  eval-auc:0.760658 
#> [228]    train-auc:0.764358  eval-auc:0.760628 
#> [229]    train-auc:0.764370  eval-auc:0.760759 
#> [230]    train-auc:0.764391  eval-auc:0.760726 
#> [231]    train-auc:0.764392  eval-auc:0.760653 
#> [232]    train-auc:0.764416  eval-auc:0.760671 
#> [233]    train-auc:0.764403  eval-auc:0.760679 
#> [234]    train-auc:0.764388  eval-auc:0.760674 
#> [235]    train-auc:0.764404  eval-auc:0.760702 
#> [236]    train-auc:0.764380  eval-auc:0.760696 
#> [237]    train-auc:0.765265  eval-auc:0.761974 
#> [238]    train-auc:0.765279  eval-auc:0.761972 
#> [239]    train-auc:0.765282  eval-auc:0.761999 
#> [240]    train-auc:0.765292  eval-auc:0.762065 
#> [241]    train-auc:0.765295  eval-auc:0.762073 
#> [242]    train-auc:0.765295  eval-auc:0.762067 
#> [243]    train-auc:0.765286  eval-auc:0.762078 
#> [244]    train-auc:0.765292  eval-auc:0.762073 
#> [245]    train-auc:0.765299  eval-auc:0.762044 
#> [246]    train-auc:0.765296  eval-auc:0.762002 
#> [247]    train-auc:0.764420  eval-auc:0.760781 
#> [248]    train-auc:0.764474  eval-auc:0.760779 
#> [249]    train-auc:0.764496  eval-auc:0.760778 
#> [250]    train-auc:0.764509  eval-auc:0.760782 
#> [251]    train-auc:0.764539  eval-auc:0.760869 
#> [252]    train-auc:0.764492  eval-auc:0.760860 
#> [253]    train-auc:0.764498  eval-auc:0.760831 
#> [254]    train-auc:0.764497  eval-auc:0.760814 
#> [255]    train-auc:0.764499  eval-auc:0.760813 
#> [256]    train-auc:0.764487  eval-auc:0.760811 
#> [257]    train-auc:0.764540  eval-auc:0.760871 
#> [258]    train-auc:0.764540  eval-auc:0.760888 
#> [259]    train-auc:0.764582  eval-auc:0.760861 
#> [260]    train-auc:0.764567  eval-auc:0.760768 
#> [261]    train-auc:0.764560  eval-auc:0.760736 
#> [262]    train-auc:0.764580  eval-auc:0.760751 
#> [263]    train-auc:0.765875  eval-auc:0.761472 
#> [264]    train-auc:0.765348  eval-auc:0.760970 
#> [265]    train-auc:0.765336  eval-auc:0.760943 
#> [266]    train-auc:0.765614  eval-auc:0.761168 
#> [267]    train-auc:0.765654  eval-auc:0.761191 
#> [268]    train-auc:0.765768  eval-auc:0.761308 
#> [269]    train-auc:0.765764  eval-auc:0.761299 
#> [270]    train-auc:0.765765  eval-auc:0.761309 
#> [271]    train-auc:0.766098  eval-auc:0.761902 
#> [272]    train-auc:0.766166  eval-auc:0.762343 
#> [273]    train-auc:0.766178  eval-auc:0.762343 
#> [274]    train-auc:0.766343  eval-auc:0.762628 
#> [275]    train-auc:0.766330  eval-auc:0.762635 
#> [276]    train-auc:0.766351  eval-auc:0.762618 
#> [277]    train-auc:0.766294  eval-auc:0.762633 
#> [278]    train-auc:0.766307  eval-auc:0.762625 
#> [279]    train-auc:0.766302  eval-auc:0.762619 
#> [280]    train-auc:0.766298  eval-auc:0.762613 
#> [281]    train-auc:0.766223  eval-auc:0.762811 
#> [282]    train-auc:0.766084  eval-auc:0.762705 
#> [283]    train-auc:0.766160  eval-auc:0.762758 
#> [284]    train-auc:0.766178  eval-auc:0.762770 
#> [285]    train-auc:0.766100  eval-auc:0.762675 
#> [286]    train-auc:0.766077  eval-auc:0.762666 
#> [287]    train-auc:0.766088  eval-auc:0.762670 
#> [288]    train-auc:0.766173  eval-auc:0.762710 
#> [289]    train-auc:0.766239  eval-auc:0.762957 
#> [290]    train-auc:0.766259  eval-auc:0.762964 
#> [291]    train-auc:0.766276  eval-auc:0.762949 
#> [292]    train-auc:0.766172  eval-auc:0.762820 
#> [293]    train-auc:0.766219  eval-auc:0.762808 
#> [294]    train-auc:0.766207  eval-auc:0.762787 
#> [295]    train-auc:0.766218  eval-auc:0.762790 
#> [296]    train-auc:0.766206  eval-auc:0.762778 
#> [297]    train-auc:0.766258  eval-auc:0.762862 
#> [298]    train-auc:0.766286  eval-auc:0.762866 
#> [299]    train-auc:0.766263  eval-auc:0.762845 
#> [300]    train-auc:0.766264  eval-auc:0.762857 
#> [301]    train-auc:0.766339  eval-auc:0.762831 
#> [302]    train-auc:0.766296  eval-auc:0.762869 
#> [303]    train-auc:0.766303  eval-auc:0.762894 
#> [304]    train-auc:0.766329  eval-auc:0.762991 
#> [305]    train-auc:0.766335  eval-auc:0.762996 
#> [306]    train-auc:0.766349  eval-auc:0.763000 
#> [307]    train-auc:0.766347  eval-auc:0.762972 
#> [308]    train-auc:0.766366  eval-auc:0.762931 
#> [309]    train-auc:0.766365  eval-auc:0.762918 
#> [310]    train-auc:0.766348  eval-auc:0.762912 
#> [311]    train-auc:0.766362  eval-auc:0.762907 
#> [312]    train-auc:0.766359  eval-auc:0.762930 
#> [313]    train-auc:0.766351  eval-auc:0.762936 
#> [314]    train-auc:0.766384  eval-auc:0.762941 
#> [315]    train-auc:0.766425  eval-auc:0.762952 
#> [316]    train-auc:0.766453  eval-auc:0.763005 
#> [317]    train-auc:0.766471  eval-auc:0.763041 
#> [318]    train-auc:0.766516  eval-auc:0.763020 
#> [319]    train-auc:0.766566  eval-auc:0.763068 
#> [320]    train-auc:0.766536  eval-auc:0.763104 
#> [321]    train-auc:0.766484  eval-auc:0.763086 
#> [322]    train-auc:0.766464  eval-auc:0.763213 
#> [323]    train-auc:0.766509  eval-auc:0.763217 
#> [324]    train-auc:0.766484  eval-auc:0.763209 
#> [325]    train-auc:0.766501  eval-auc:0.763222 
#> [326]    train-auc:0.766462  eval-auc:0.763182 
#> [327]    train-auc:0.766458  eval-auc:0.763160 
#> [328]    train-auc:0.766454  eval-auc:0.763119 
#> [329]    train-auc:0.766493  eval-auc:0.763180 
#> [330]    train-auc:0.766549  eval-auc:0.763170 
#> [331]    train-auc:0.766603  eval-auc:0.763207 
#> [332]    train-auc:0.766574  eval-auc:0.763220 
#> [333]    train-auc:0.766643  eval-auc:0.763192 
#> [334]    train-auc:0.766664  eval-auc:0.763189 
#> [335]    train-auc:0.766644  eval-auc:0.763191 
#> [336]    train-auc:0.766621  eval-auc:0.763198 
#> [337]    train-auc:0.766646  eval-auc:0.763194 
#> [338]    train-auc:0.766615  eval-auc:0.763112 
#> [339]    train-auc:0.766662  eval-auc:0.763102 
#> [340]    train-auc:0.766739  eval-auc:0.763149 
#> [341]    train-auc:0.766735  eval-auc:0.763143 
#> [342]    train-auc:0.766745  eval-auc:0.763175 
#> [343]    train-auc:0.766709  eval-auc:0.763181 
#> [344]    train-auc:0.766724  eval-auc:0.763172 
#> [345]    train-auc:0.766720  eval-auc:0.763170 
#> [346]    train-auc:0.766752  eval-auc:0.763166 
#> [347]    train-auc:0.766763  eval-auc:0.763187 
#> [348]    train-auc:0.766705  eval-auc:0.763224 
#> [349]    train-auc:0.766694  eval-auc:0.763195 
#> [350]    train-auc:0.766723  eval-auc:0.763205 
#> [351]    train-auc:0.766766  eval-auc:0.763180 
#> [352]    train-auc:0.766772  eval-auc:0.763159 
#> [353]    train-auc:0.766749  eval-auc:0.763213 
#> [354]    train-auc:0.766796  eval-auc:0.763232 
#> [355]    train-auc:0.766786  eval-auc:0.763228 
#> [356]    train-auc:0.766747  eval-auc:0.763235 
#> [357]    train-auc:0.766734  eval-auc:0.763214 
#> [358]    train-auc:0.766749  eval-auc:0.763187 
#> [359]    train-auc:0.766768  eval-auc:0.763221 
#> [360]    train-auc:0.766805  eval-auc:0.763214 
#> [361]    train-auc:0.766803  eval-auc:0.763210 
#> [362]    train-auc:0.766811  eval-auc:0.763202 
#> [363]    train-auc:0.766820  eval-auc:0.763195 
#> [364]    train-auc:0.766842  eval-auc:0.763174 
#> [365]    train-auc:0.766835  eval-auc:0.763170 
#> [366]    train-auc:0.766976  eval-auc:0.763309 
#> [367]    train-auc:0.767066  eval-auc:0.763342 
#> [368]    train-auc:0.767077  eval-auc:0.763372 
#> [369]    train-auc:0.767080  eval-auc:0.763356 
#> [370]    train-auc:0.767091  eval-auc:0.763369 
#> [371]    train-auc:0.767114  eval-auc:0.763261 
#> [372]    train-auc:0.767116  eval-auc:0.763281 
#> [373]    train-auc:0.767102  eval-auc:0.763279 
#> [374]    train-auc:0.767235  eval-auc:0.763281 
#> [375]    train-auc:0.767297  eval-auc:0.763325 
#> [376]    train-auc:0.767315  eval-auc:0.763340 
#> [377]    train-auc:0.767315  eval-auc:0.763326 
#> [378]    train-auc:0.767335  eval-auc:0.763328 
#> [379]    train-auc:0.767370  eval-auc:0.763286 
#> [380]    train-auc:0.767378  eval-auc:0.763294 
#> [381]    train-auc:0.767393  eval-auc:0.763298 
#> [382]    train-auc:0.767378  eval-auc:0.763316 
#> [383]    train-auc:0.767401  eval-auc:0.763316 
#> [384]    train-auc:0.767415  eval-auc:0.763322 
#> [385]    train-auc:0.767458  eval-auc:0.763295 
#> [386]    train-auc:0.767582  eval-auc:0.763405 
#> [387]    train-auc:0.767575  eval-auc:0.763398 
#> [388]    train-auc:0.767585  eval-auc:0.763452 
#> [389]    train-auc:0.767566  eval-auc:0.763475 
#> [390]    train-auc:0.767722  eval-auc:0.763527 
#> [391]    train-auc:0.767727  eval-auc:0.763499 
#> [392]    train-auc:0.767763  eval-auc:0.763486 
#> [393]    train-auc:0.767912  eval-auc:0.763690 
#> [394]    train-auc:0.767913  eval-auc:0.763713 
#> [395]    train-auc:0.767956  eval-auc:0.763678 
#> [396]    train-auc:0.767917  eval-auc:0.763693 
#> [397]    train-auc:0.767918  eval-auc:0.763688 
#> [398]    train-auc:0.767931  eval-auc:0.763653 
#> [399]    train-auc:0.767949  eval-auc:0.763667 
#> [400]    train-auc:0.768102  eval-auc:0.763722 
#> [401]    train-auc:0.768141  eval-auc:0.763682 
#> [402]    train-auc:0.768152  eval-auc:0.763668 
#> [403]    train-auc:0.768189  eval-auc:0.763755 
#> [404]    train-auc:0.768203  eval-auc:0.763736 
#> [405]    train-auc:0.768223  eval-auc:0.763792 
#> [406]    train-auc:0.768233  eval-auc:0.763855 
#> [407]    train-auc:0.768284  eval-auc:0.763830 
#> [408]    train-auc:0.768272  eval-auc:0.763881 
#> [409]    train-auc:0.768279  eval-auc:0.763910 
#> [410]    train-auc:0.768313  eval-auc:0.763926 
#> [411]    train-auc:0.768341  eval-auc:0.763945 
#> [412]    train-auc:0.768348  eval-auc:0.763962 
#> [413]    train-auc:0.768374  eval-auc:0.763904 
#> [414]    train-auc:0.768397  eval-auc:0.763898 
#> [415]    train-auc:0.768397  eval-auc:0.763907 
#> [416]    train-auc:0.768405  eval-auc:0.763885 
#> [417]    train-auc:0.768414  eval-auc:0.763887 
#> [418]    train-auc:0.768422  eval-auc:0.763908 
#> [419]    train-auc:0.768404  eval-auc:0.763945 
#> [420]    train-auc:0.768415  eval-auc:0.763923 
#> [421]    train-auc:0.768419  eval-auc:0.763955 
#> [422]    train-auc:0.768422  eval-auc:0.763935 
#> [423]    train-auc:0.768436  eval-auc:0.763915 
#> [424]    train-auc:0.768425  eval-auc:0.763900 
#> [425]    train-auc:0.768430  eval-auc:0.763877 
#> [426]    train-auc:0.768401  eval-auc:0.763843 
#> [427]    train-auc:0.768404  eval-auc:0.763848 
#> [428]    train-auc:0.768402  eval-auc:0.763846 
#> [429]    train-auc:0.768409  eval-auc:0.763806 
#> [430]    train-auc:0.768427  eval-auc:0.763795 
#> [431]    train-auc:0.768434  eval-auc:0.763820 
#> [432]    train-auc:0.768476  eval-auc:0.763828 
#> [433]    train-auc:0.768475  eval-auc:0.763789 
#> [434]    train-auc:0.768480  eval-auc:0.763828 
#> [435]    train-auc:0.768480  eval-auc:0.763840 
#> [436]    train-auc:0.768460  eval-auc:0.763869 
#> [437]    train-auc:0.768490  eval-auc:0.763860 
#> [438]    train-auc:0.768502  eval-auc:0.763886 
#> [439]    train-auc:0.768501  eval-auc:0.763874 
#> [440]    train-auc:0.768493  eval-auc:0.763887 
#> [441]    train-auc:0.768503  eval-auc:0.763875 
#> [442]    train-auc:0.768516  eval-auc:0.763863 
#> [443]    train-auc:0.768529  eval-auc:0.763873 
#> [444]    train-auc:0.768552  eval-auc:0.763864 
#> [445]    train-auc:0.768583  eval-auc:0.763848 
#> [446]    train-auc:0.768598  eval-auc:0.763835 
#> [447]    train-auc:0.768601  eval-auc:0.763843 
#> [448]    train-auc:0.768600  eval-auc:0.763831 
#> [449]    train-auc:0.768665  eval-auc:0.763861 
#> [450]    train-auc:0.768533  eval-auc:0.763701 
#> [451]    train-auc:0.768563  eval-auc:0.763641 
#> [452]    train-auc:0.768600  eval-auc:0.763669 
#> [453]    train-auc:0.768598  eval-auc:0.763684 
#> [454]    train-auc:0.768596  eval-auc:0.763678 
#> [455]    train-auc:0.768733  eval-auc:0.763595 
#> [456]    train-auc:0.768776  eval-auc:0.763617 
#> [457]    train-auc:0.768898  eval-auc:0.763669 
#> [458]    train-auc:0.768919  eval-auc:0.763652 
#> [459]    train-auc:0.768944  eval-auc:0.763638 
#> [460]    train-auc:0.768937  eval-auc:0.763608 
#> [461]    train-auc:0.768956  eval-auc:0.763601 
#> [462]    train-auc:0.768982  eval-auc:0.763632 
#> [463]    train-auc:0.769120  eval-auc:0.763807 
#> [464]    train-auc:0.769014  eval-auc:0.763659 
#> [465]    train-auc:0.769133  eval-auc:0.763808 
#> [466]    train-auc:0.769150  eval-auc:0.763817 
#> [467]    train-auc:0.769049  eval-auc:0.763644 
#> [468]    train-auc:0.769035  eval-auc:0.763692 
#> [469]    train-auc:0.769034  eval-auc:0.763657 
#> [470]    train-auc:0.769026  eval-auc:0.763672 
#> [471]    train-auc:0.769043  eval-auc:0.763670 
#> [472]    train-auc:0.769045  eval-auc:0.763671 
#> [473]    train-auc:0.769059  eval-auc:0.763662 
#> [474]    train-auc:0.769044  eval-auc:0.763669 
#> [475]    train-auc:0.769069  eval-auc:0.763674 
#> [476]    train-auc:0.769111  eval-auc:0.763697 
#> [477]    train-auc:0.769125  eval-auc:0.763696 
#> [478]    train-auc:0.769229  eval-auc:0.763842 
#> [479]    train-auc:0.769254  eval-auc:0.763913 
#> [480]    train-auc:0.769256  eval-auc:0.763898 
#> [481]    train-auc:0.769245  eval-auc:0.763892 
#> [482]    train-auc:0.769275  eval-auc:0.763903 
#> [483]    train-auc:0.769298  eval-auc:0.763903 
#> [484]    train-auc:0.769306  eval-auc:0.763900 
#> [485]    train-auc:0.769344  eval-auc:0.763916 
#> [486]    train-auc:0.769358  eval-auc:0.763964 
#> [487]    train-auc:0.769387  eval-auc:0.763946 
#> [488]    train-auc:0.769452  eval-auc:0.764000 
#> [489]    train-auc:0.769470  eval-auc:0.763986 
#> [490]    train-auc:0.769476  eval-auc:0.763982 
#> [491]    train-auc:0.769488  eval-auc:0.763987 
#> [492]    train-auc:0.769494  eval-auc:0.764011 
#> [493]    train-auc:0.769520  eval-auc:0.764012 
#> [494]    train-auc:0.769515  eval-auc:0.763988 
#> [495]    train-auc:0.769528  eval-auc:0.763982 
#> [496]    train-auc:0.769523  eval-auc:0.763919 
#> [497]    train-auc:0.769527  eval-auc:0.763906 
#> [498]    train-auc:0.769538  eval-auc:0.763817 
#> [499]    train-auc:0.769541  eval-auc:0.763776 
#> [500]    train-auc:0.769582  eval-auc:0.763785 
#> [501]    train-auc:0.769594  eval-auc:0.763783 
#> [502]    train-auc:0.769664  eval-auc:0.763832 
#> [503]    train-auc:0.769728  eval-auc:0.763858 
#> [504]    train-auc:0.769726  eval-auc:0.763886 
#> [505]    train-auc:0.769755  eval-auc:0.763911 
#> [506]    train-auc:0.769794  eval-auc:0.763916 
#> [507]    train-auc:0.769804  eval-auc:0.763906 
#> [508]    train-auc:0.769815  eval-auc:0.763900 
#> [509]    train-auc:0.769855  eval-auc:0.763897 
#> [510]    train-auc:0.769830  eval-auc:0.763901 
#> [511]    train-auc:0.769849  eval-auc:0.763918 
#> [512]    train-auc:0.769861  eval-auc:0.763894 
#> [513]    train-auc:0.769858  eval-auc:0.763843 
#> [514]    train-auc:0.769869  eval-auc:0.763838 
#> [515]    train-auc:0.769871  eval-auc:0.763850 
#> [516]    train-auc:0.769876  eval-auc:0.763839 
#> [517]    train-auc:0.769871  eval-auc:0.763840 
#> [518]    train-auc:0.769876  eval-auc:0.763835 
#> [519]    train-auc:0.769866  eval-auc:0.763824 
#> [520]    train-auc:0.769873  eval-auc:0.763806 
#> [521]    train-auc:0.769922  eval-auc:0.763774 
#> [522]    train-auc:0.769924  eval-auc:0.763773 
#> [523]    train-auc:0.769961  eval-auc:0.763832 
#> [524]    train-auc:0.769983  eval-auc:0.763823 
#> [525]    train-auc:0.769984  eval-auc:0.763819 
#> [526]    train-auc:0.769986  eval-auc:0.763858 
#> [527]    train-auc:0.769960  eval-auc:0.763780 
#> [528]    train-auc:0.769990  eval-auc:0.763783 
#> [529]    train-auc:0.770004  eval-auc:0.763792 
#> [530]    train-auc:0.769986  eval-auc:0.763805 
#> [531]    train-auc:0.769991  eval-auc:0.763782 
#> [532]    train-auc:0.770017  eval-auc:0.763795 
#> [533]    train-auc:0.770008  eval-auc:0.763785 
#> [534]    train-auc:0.770030  eval-auc:0.763800 
#> [535]    train-auc:0.770011  eval-auc:0.763787 
#> [536]    train-auc:0.770013  eval-auc:0.763785 
#> [537]    train-auc:0.770052  eval-auc:0.763810 
#> [538]    train-auc:0.770068  eval-auc:0.763800 
#> [539]    train-auc:0.770075  eval-auc:0.763820 
#> [540]    train-auc:0.770107  eval-auc:0.763811 
#> [541]    train-auc:0.770135  eval-auc:0.763813 
#> [542]    train-auc:0.770137  eval-auc:0.763808 
#> [543]    train-auc:0.770132  eval-auc:0.763799 
#> [544]    train-auc:0.770161  eval-auc:0.763830 
#> [545]    train-auc:0.770141  eval-auc:0.763834 
#> [546]    train-auc:0.770137  eval-auc:0.763831 
#> [547]    train-auc:0.770138  eval-auc:0.763830 
#> [548]    train-auc:0.770146  eval-auc:0.763833 
#> [549]    train-auc:0.770170  eval-auc:0.763834 
#> [550]    train-auc:0.770158  eval-auc:0.763827 
#> [551]    train-auc:0.770193  eval-auc:0.763841 
#> [552]    train-auc:0.770239  eval-auc:0.763858 
#> [553]    train-auc:0.770258  eval-auc:0.763849 
#> [554]    train-auc:0.770262  eval-auc:0.763838 
#> [555]    train-auc:0.770264  eval-auc:0.763838 
#> [556]    train-auc:0.770282  eval-auc:0.763819 
#> [557]    train-auc:0.770297  eval-auc:0.763820 
#> [558]    train-auc:0.770359  eval-auc:0.763937 
#> [559]    train-auc:0.770359  eval-auc:0.763936 
#> [560]    train-auc:0.770357  eval-auc:0.763929 
#> [561]    train-auc:0.770402  eval-auc:0.763870 
#> [562]    train-auc:0.770412  eval-auc:0.763878 
#> [563]    train-auc:0.770410  eval-auc:0.763871 
#> [564]    train-auc:0.770437  eval-auc:0.763861 
#> [565]    train-auc:0.770452  eval-auc:0.763872 
#> [566]    train-auc:0.770472  eval-auc:0.763890 
#> [567]    train-auc:0.770482  eval-auc:0.763882 
#> [568]    train-auc:0.770536  eval-auc:0.763878 
#> [569]    train-auc:0.770523  eval-auc:0.763864 
#> [570]    train-auc:0.770533  eval-auc:0.763921 
#> [571]    train-auc:0.770542  eval-auc:0.763936 
#> [572]    train-auc:0.770540  eval-auc:0.763939 
#> [573]    train-auc:0.770547  eval-auc:0.763951 
#> [574]    train-auc:0.770564  eval-auc:0.763969 
#> [575]    train-auc:0.770566  eval-auc:0.763981 
#> [576]    train-auc:0.770588  eval-auc:0.763927 
#> [577]    train-auc:0.770618  eval-auc:0.763924 
#> [578]    train-auc:0.770622  eval-auc:0.763939 
#> [579]    train-auc:0.770620  eval-auc:0.763945 
#> [580]    train-auc:0.770653  eval-auc:0.763966 
#> [581]    train-auc:0.770662  eval-auc:0.763992 
#> [582]    train-auc:0.770662  eval-auc:0.763992 
#> [583]    train-auc:0.770675  eval-auc:0.763975 
#> [584]    train-auc:0.770683  eval-auc:0.763908 
#> [585]    train-auc:0.770712  eval-auc:0.763907 
#> [586]    train-auc:0.770717  eval-auc:0.763910 
#> [587]    train-auc:0.770718  eval-auc:0.763905 
#> [588]    train-auc:0.770730  eval-auc:0.763912 
#> [589]    train-auc:0.770752  eval-auc:0.763900 
#> [590]    train-auc:0.770756  eval-auc:0.763884 
#> [591]    train-auc:0.770749  eval-auc:0.763897 
#> [592]    train-auc:0.770749  eval-auc:0.763897 
#> [593]    train-auc:0.770747  eval-auc:0.763874 
#> Stopping. Best iteration:
#> [493]    train-auc:0.769520  eval-auc:0.764012
#> 
#> -- Saving UCICreditCard.XGB_input_vars to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/model/XGB/UCICreditCard.XGB_input_vars.csv
#> -- Saving XGB_feature_importance to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/variable/XGB/XGB_feature_importance.csv
#> -- Saving XGB.train_prob to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict/XGB/XGB.train_prob.csv
#> -- Saving XGB.test_prob to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/predict/XGB/XGB.test_prob.csv
#> -- Producing plots that characterize the performance of XGboost
#> Saving 12 x 6.5 in image
#> -- Saving UCICreditCard.XGB.performance_table to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/performance/XGB/UCICreditCard.XGB.performance_table.csv

#> -- Saving XGB.params to:
#> * C:\Users\28142\AppData\Local\Temp\RtmpEHFLzU/UCICreditCard/performance/XGB/XGB.params.csv

In a few minutes, the program completed data cleaning and pretreatment, variable screening, scorecard, Xgboost, GBDT, RandomForest four models development and evaluation.