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Abstract

Conditioning on the observed data is an important and flexible design
principle for statistical test procedures. Although generally applicable,
permutation tests currently in use are limited to the treatment of special
cases, such as contingency tables or K-sample problems. A new theoret-
ical framework for permutation tests opens up the way to a unified and
generalized view. We argue that the transfer of such a theory to prac-
tical data analysis has important implications in many applications and
requires tools that enable the data analyst to compute on the theoretical
concepts as closely as possible. We re-analyze four data sets by adapting
the general conceptual framework to these non-standard inference proce-
dures and utilizing the coin add-on package in the R system for statistical
computing to show what one can gain from going beyond the ‘classical’
test procedures.
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1 INTRODUCTION

The distribution of a test statistic under the circumstances of a certain null
hypothesis clearly depends on the unknown distribution of the data and thus
is unknown as well. Two concepts are commonly applied to dispose of this de-
pendency. Unconditional tests impose assumptions on the distribution of the
data such that the null distribution of a test statistic can be derived analyti-
cally. In contrast, conditional tests replace the unknown null distribution by
the conditional null distribution, i.e., the distribution of the test statistic given
the observed data. The latter approach is known as permutation testing and
was developed by R. A. Fisher more than 70 years ago (Fisher, 1935). The
pros and cons of both approaches in different fields of application have been
widely discussed (e.g. by Ludbrook and Dudley, 1998; Berger, 2000; Shuster,
2005). Here, we focus on the practical aspects of permutation testing rather
than dealing with its methodological foundations.

For the construction of permutation tests it is common exercise to ‘recy-
cle’ test statistics well known from the unconditional world, such as linear rank
statistics, ANOVA F statistics or x? statistics for contingency tables, and to
replace the unconditional null distribution with the conditional distribution of
the test statistic under the null hypothesis (Edgington, 1987; Good, 2000; Pe-
sarin, 2001; Ernst, 2004). Because the choice of the test statistic is the only
‘degree of freedom’ for the data analyst, the classical view on permutation tests
requires a ‘cook book’ classification of inference problems (categorical data anal-
ysis, multivariate analysis, K-sample location problems, correlation, etc.), each
being associated with a ‘natural’ form of the test statistic.

The theoretical advances of the last decade (notably Strasser and Weber,
1999; Janssen and Pauls, 2003) give us a much better understanding of the
strong connections between the ‘classical’ permutation tests defined for different
inference problems. As we will argue in this paper, the new theoretical tools
open up the way to a simple construction principle for test procedures in new
and challenging inference problems. Especially attractive for this purpose is the
theoretical framework for permutation tests developed by Strasser and Weber
(1999). This unifying theory is based on a flexible form of multivariate linear
statistics for the general independence problem.

This framework provides us with a conceptual Lego system for the con-
struction of permutation tests consisting of Lego bricks for linear statistics suit-
able for different inference problems (contingency tables, multivariate problems,
etc.), different forms of test statistics, such as quadratic forms for global tests or
test statistics suitable for multiple comparison procedures, and several ways to
compute or approximate the conditional null distribution. The classical proce-
dures, such as a permutation t test, are part of this framework and, even more
interestingly, new test procedures can be embedded into the same theory whose
main ideas are sketched in Section 2.

Currently, the statistician’s toolbox consists of rather inflexible spanners,
such as the Wilcoxon-Mann-Whitney test for comparing two distributions or
the Cochran-Mantel-Haenszel x? test for independence in contingency tables.



With this work, we add an adjustable spanner to the statistician’s toolbox which
helps to address both the common as well as new or unusual inference problems
with the appropriate conditional test procedures. In the main part of this paper
we show how one can construct and implement permutation tests ‘on the fly’
by plugging together Lego bricks for the multivariate linear statistic, the test
statistic and the conditional null distribution, both conceptually and practically
by means of the coin add-on package (Hothorn et al., 2005) in the R system for
statistical computing (R Development Core Team, 2005).

2 A CONCEPTUAL LEGO SYSTEM

To fix notations, we assume that we are provided with observations (Y;, X;)
for i = 1,...,n. The variables Y and X from sample spaces ) and X may be
measured at arbitrary scales and may be multivariate as well. We are interested
in testing the null hypothesis of independence of Y and X

Hy : D(Y|X) = D(Y)

against arbitrary alternatives. Strasser and Weber (1999) suggest to derive
scalar test statistics for testing Hy from multivariate linear statistics of the
form

T = vec (Z g(Xl)h(Yz)T> S RPa*1L,
=1

Here, g : X — RP*! ig a transformation of the X measurements and h : Y —
R2*! s called influence function. The function h(Y;) = h(Yi:, (Y1,...,Y,))
must depend on the responses (Y1,...,Y,) in a permutation symmetric way.
We will give several examples how to choose g and h for specific inference prob-
lems in Section 3.

The distribution of T depends on the joint distribution of Y and X, which
is unknown under almost all practical circumstances. At least under the null
hypothesis one can dispose of this dependency by fixing Xy, ..., X,, and condi-
tioning on all possible permutations S of the responses Yq,...,Y,.

The conditional expectation i € RP?*! and covariance ¥ € RPI*P4 of T
under Hy given all permutations o € S of the responses are derived by Strasser

and Weber (1999):
(ROER
71 V(h|S) ® (Zg )T>

R )

— E(T|S)

2 = V(T|S)



where ® denotes the Kronecker product, and the conditional expectation of the
influence function is E(h|S) = n~* Y, h(Y;) with corresponding ¢ x q covariance
matrix

V(RIS) =n~" 3 (h(Y:) ~ E(R]S)) (h(Y:) = E(A]S)) "

The key step for the construction of test statistics based on the multivariate
linear statistic T is its standardization utilizing the conditional expectation u
and covariance matrix X. Univariate test statistics ¢ mapping a linear statistic
T € RP?*! into the real line can be of arbitrary form. An obvious choice is the
maximum of the absolute values of the standardized linear statistic

T—pn

Cmax (T, g, ¥) = max Jiag(x)1/2

A prominent alternative are quadratic forms cquad (T, g, X) = (T—p) ST (T—pu) "
involving the Moore-Penrose inverse X of 2.

The conditional distribution P(¢(T, u,X) < 2|S) is the number of permu-
tations ¢ € S of the data with corresponding test statistic not exceeding z
divided by the total number of permutations in S. For some special forms of
the multivariate linear statistic the exact distribution of some test statistics is
trackable for small and moderate sample sizes. Conditional Monte-Carlo proce-
dures (‘resampling’) can always be used to approximate the exact distribution
up to any desired accuracy by evaluating the test statistic for a random sample
from the set of all permutations .S. It is important to note that the presence of
a grouping of the observations into blocks, only permutations within blocks are
eligible and that the conditional expectation and covariance matrix need to be
computed separately for each block.

Less well known is the fact that the conditional distribution can be approxi-
mated by its limiting distribution under all circumstances. Strasser and Weber
(1999) showed in their Theorem 2.3 that the conditional distribution of linear
statistics T with conditional expectation p and covariance ¥ tends to a mul-
tivariate normal distribution with parameters p and ¥ as n — oo. Thus, the
asymptotic conditional distribution of test statistics of the form cyay is normal
and can be computed directly in the univariate case (pg = 1) and by numerical
algorithms in the multivariate case (e.g., using the quasi-randomized Monte-
Carlo procedures of Genz, 1992). For quadratic forms cquaq which follow a x?
distribution with degrees of freedom given by the rank of ¥ (e.g. Theorem 6.20,
Rasch, 1995), exact probabilities can be computed efficiently.

3 PLAYING LEGO

The Lego system sketched in the previous section consists of Lego bricks for
the multivariate linear statistic T, namely the transformation g and influence
function h, multiple forms of the test statistic ¢ and several choices of approx-
imations of the null distribution. In this section, we will show how classical
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Figure 1: alpha data: Distribution of levels of expressed alpha synuclein mRNA
in three groups defined by the NACP-REP1 allele lengths.

procedures, starting with the conditional Kruskal-Wallis test and the Cochran-
Mantel-Haenszel test, can be embedded into this general theory and, much more
interesting from our point of view, how new conditional test procedures can be
constructed conceptually and practically. Therefore, each inference problem
comes with R code performing the appropriate conditional test using the coin
functionality which enables the data analyst to benefit from this simple method-
ology in every day’s data analysis. All analyses are reproducible from the coin
package vignette available from http://CRAN.R-project.org/.

Genetic Components of Alcoholism. Various studies have linked alcohol
dependence phenotypes to chromosome 4. One candidate gene is NACP (non-
amyloid component of plaques), coding for alpha synuclein. Bonsch et al. (2005)
found longer alleles of NACP-REP1 in alcohol-dependent patients compared
with healthy controls and report that the allele lengths show some association
with levels of expressed alpha synuclein mRNA (see Figure 1).

Our first attempt to test for different levels of gene expression in the three
groups is the classical Kruskal-Wallis test. Here, the transformation ¢ is a
dummy coding of the allele length (¢(X;) = (0,1,0)T for intermediate length,
for example) and the value of the influence function h(Y;) is the rank of Y;
among the ranks of Y1,...,Y,. Thus, the linear statistic T is the vector of


http://CRAN.R-project.org/

rank sums in each of the three groups and the test statistic is a quadratic
form (T — p)X+ (T — p) " utilzing the conditional expectation y and covariance
matrix 3.

In order to compute the linear statistic we need to define an influence func-
tion performing a ranking of the expression levels. Under the null hypothesis,
the cquad-type Kruskal-Wallis test statistic tends to a x? distribution with two
degrees of freedom (the rank of the conditional covariance matrix ¥) from which
a p-value can be computed. In R, the function independence_test takes a
formula describing the inference problem, i.e., the independence of expression
levels (elevel) and allele lengths (alength), the influence function is specified
via the ytrafo argument and we ask for a cquaa-type test statistic (teststat)
as follows:

R> independence_test(elevel ~ alength, data = alpha,
+ ytrafo = function(data) trafo(data, numeric_trafo = rank),
+ teststat = "quadtype")

Asymptotic General Independence Test

data: elevel by groups short, intermediate, long
T = 8.8302, df = 2, p-value = 0.01209

The results are equivalent to the results reported by kruskal.test, the ‘classi-
cal’ interface to the Kruskal-Wallis test in R

R> kruskal.test(elevel ~ alength, data = alpha)

Kruskal-Wallis rank sum test

data: elevel by alength
Kruskal-Wallis chi-squared = 8.8302, df = 2, p-value =
0.01209

However, going beyond the functionality implemented in kruskal.test would
require extensive programming but is easily possible with the coin functionality
being available. For example, ignoring the ordinal structure of the allele length
is only suboptimal, especially when we have an ordered alternative in mind.
Ordinal variables can be incorporated into the general framework via linear-
by-linear association tests (Agresti, 2002). When X is measured at K levels
associated with a score vector v € RE*1 the linear statistic reads

T, = vec <Z fyTg(Xi)h(Yi)T> .

Here, the mid-points of the intervals used to categorize the allele lengths are a
possible choice for the score vector v and the linear-by-linear association test
can be performed by attaching the scores to the variable alength:



R> independence_test(elevel ~ alength, data = alpha,
+ ytrafo = function(data) trafo(data, numeric_trafo = rank),
+ scores = list(alength = c(2, 7, 11)))

Asymptotic General Independence Test

data: elevel by
groups short < intermediate < long
T = 2.9263, p-value = 0.003430

The smaller p-value corresponds well with Figure 1, i.e., the impression that the
expression levels increase with increasing allele lengths.

Smoking and Alzheimer’s Disease. Salib and Hillier (1997) report results
of a case-control study on Alzheimer’s disease and smoking behavior of 198
patients suffering from Alzheimer’s disease and 164 controls. The data shown in
Table 1 have been re-constructed from Table 4 in Salib and Hillier (1997) and
are depicted in Figure 2. The authors conclude that ‘cigarette smoking is less
frequent in men with Alzheimer’s disease.’

Table 1: alzheimer data: Smoking and Alzheimer’s disease.

No. of cigarettes daily
None <10 1020 >20

Female

Alzheimer’s 91 7 15 21
Other dementias 55 7 16 9
Other diagnoses 80 3 25 9
Male

Alzheimer’s 35 8 15 6
Other dementias 24 1 17 35
Other diagnoses 24 2 22 11

We are interested to assess whether there is any association between smok-
ing and Alzheimer’s (or other dementia) diseases and, in a second step, how a
potential association can be described. First, the global null hypothesis of in-
dependence between smoking behavior and disease status for both females and
males, i.e., treating gender as a block factor, can be tested with a cquaqa-type
test statistic, i.e., the Cochran-Mantel-Haenszel test:

R> it_alz <- independence_test(disease smoking | gender,
+ data = alzheimer, teststat = "quadtype")
R> it_alz

Asymptotic General Independence Test
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Figure 2: alzheimer data: Association of smoking behavior and disease status
stratified by gender.

data: disease by
groups None, <10, 10-20, >20
stratified by gender

T = 23.3163, df = 6, p-value = 0.0006972

which suggests that there is a clear deviation from independence. By default,
the influence function A and the transformation g are dummy codings of the
disease status Y and the smoking behavior X, i.e., h(Y;) = (1,0,0)" and
g(X;) = (1,0,0,0)T for a non-smoking Alzheimer patient. Consequently, the
linear multivariate statistic T based on g and h is the contingency table of both
variables

R> statistic(it_alz, type = "linear")

Alzheimer's Other dementias Other diagnoses

None 126 79 104
<10 15 8 5
10-20 30 33 a7

>20 27 44 20

with conditional expectation expectation(it_alz) and conditional covariance
covariance(it_alz) which are available for standardizing the contingency ta-
ble T. The conditional distribution is approximated by its limiting x2 distribu-
tion by default.

Given that there is significant departure from independence, we further in-
vestigate the structure of association between smoking and Alzheimer’s disease.
First we assess for which gender the violation of independence occured



R> females <- alzheimer$gender == "Female"
R> pvalue(independence_test(disease ~ smoking, data
+ subset = females, teststat = "quadtype"))

alzheimer,

[1] 0.09060652

R> pvalue(independence_test(disease ~ smoking, data = alzheimer,
+ subset = !females, teststat = "quadtype"))

[1] 3.169418e-06

where it turns out that the association is due to the male patients only (see also
Figure 2). Thus, we focus on the male patients in the following. Furthermore,
a Cquad-type test statistic is not particularly useful for gaining insight into the
association structure of contingency tables because the contributions of all cells
are collapsed in such a quadratic form. Instead, we define the test statistic as
the maximum of the standardized contingency table via

R> it_alzmax <- independence_test(disease ~ smoking,
+ data = alzheimer, subset = !females, teststat = "maxtype")
R> it_alzmax

Asymptotic General Independence Test

data: disease by groups None, <10, 10-20, >20
T = 4.9504, p-value = 1.148e-05

where the underlying standardized contingency table highlights the cells with
deviations from independence

R> statistic(it_alzmax, "standardized")

Alzheimer's Other dementias Other diagnoses

None 2.5900465 -2.340275 -0.1522407
<10 2.9713093 -2.056864 -0.8446233
10-20 -0.7765307 -1.237441 2.1146396

>20 -3.6678046 4.950373 -1.5303056

This leads to the impression that heavy smokers suffer less frequently from
Alzheimer’s disease but more frequently from other dementias than expected
under independence. However, interpreting the standardized contingency table
requires knowledge about the distribution of the standardized statistics, e.g.,
via an approximation of the 95% quantile of the permutation null distribution
which is available from

R> gperm(it_alzmax, 0.95)

[1] 2.813175

or alternatively (and more conveniently) by switching to p-values adjusted for
multiple testing:



R> pvalue(it_alzmax, method = "single-step")

Alzheimer's Other dementias Other diagnoses

None 0.092374157 1.707036e-01 0.9999984
<10  0.031734006 3.066296e-01 0.9719409
10-20 0.981658513 8.419042e-01 0.2751252

>20  0.002635631 2.814171e-05 0.6615635

These results support the conclusion that the rejection of the null hypothesis of
independence is due to a large number of patients with other dementias and a
small number with Alzheimer’s disease in the heavy smoking group. In addition,
there is some evidence that, for the small group of men smoking less than ten
cigarettes per day, the reverse association is true.

Photococarcinogenicity Experiments. The effect on tumor frequency and
latency in photococarcinogenicity experiments, where carcinogenic doses of ul-
traviolet radiation (UVR) are administered, are measured by means of (at least)
three response variables: the survival time, the time to first tumor and the total
number of tumors of animals in different treatment groups. The main interest
is testing the global null of no treatment effect with respect to any of the three
responses survival time, time to first tumor or number of tumors (Molefe et al.,
2005, analyze the detection time of tumors in addition, this data is not given
here). In case the global null hypothesis can be rejected, the deviations from
the partial hypotheses are of special interest.

Molefe et al. (2005) report data of an experiment where 108 animals were
exposed to different levels of UVR exposure (group A: topical vehicle and 600
Robertson—Berger units of UVR, group B: no topical vehicle and 600 Robertson—
Berger units of UVR and group C: no topical vehicle and 1200 Robertson—Berger
units of UVR). The data are taken from Tables 1 to 3 in Molefe et al. (2005),
where a parametric test procedure is proposed. Figure 3 depicts the group
effects for all three response variables.

First, we construct a global test for the null hypothesis of independence of
treatment and all three response variables. A cpa-type test based on the stan-
dardized multivariate linear statistic and an approximation of the conditional
distribution utilizing the asymptotic distribution simply reads

R> it_ph <- independence_test(Surv(time, event) + Surv(dmin,
+ tumor) + ntumor ~ group, data = photocar)
R> it_ph

Asymptotic General Independence Test

data: Surv(time, event), Surv(dmin, tumor), ntumor by groups A, B, C
T = 7.0777, p-value = 7.378e-12

Here, the influence function A consists of the logrank scores of the survival time
and time to first tumor as well as the number of tumors, i.e., for the first animal
in the first group h(Y;) = (-1.08,-0.56,5)" and ¢g(X;) = (1,0,0)". The

10
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Figure 3: photocar data: Kaplan-Meier estimates of time to death and time to
first tumor as well as boxplots of the total number of tumors in three treatment
groups.

multivariate statistic is the sum of each of the three elements of the influence
function A in each of the groups, i.e.,

R> statistic(it_ph, type = "linear")

Surv(time, event) Surv(dmin, tumor) ntumor

A -8.894531 -9.525269 276
B -18.154654 -17.951560 274
C 27.049185 27.476828 264

It is important to note that this global test utilizes the complete covariance
structure ¥ when p-values are computed via quasi-randomized Monte-Carlo pro-
cedures in the multivariate setting (Genz, 1992). Alternatively, a test statistic
based on the quadratic form cquaq directly incorporates the covariance matrix
and leads to a very similar p-value.

The deviations from the partial null hypotheses, i.e., independence of each
single response and treatment groups, can be inspected by the standardized
linear statistic T

R> statistic(it_ph, type = "standardized")

Surv(time, event) Surv(dmin, tumor) ntumor
A -2.327338 -2.178704 0.2642120
B -4.750336 -4.106039 0.1509783
C 7.077674 6.284743 -0.4151904

or again by means of the corresponding adjusted p-values

R> pvalue(it_ph, method = "single-step")

11



Surv(time, event) Surv(dmin, tumor) ntumor

A 0.13614 0.18955 0.99989
B 0.00001 0.00034 1.00000
C 0.00000 0.00000 0.99859

Of course, the goodness of the asymptotic procedure can be checked against the
Monte-Carlo approximation which is computed by

R> it <- independence_test(Surv(time, event) + Surv(dmin,
+ tumor) + ntumor ~ group, data = photocar, distribution = approximate(50000))
R> pvalue(it, method = "single-step")

Surv(time, event) Surv(dmin, tumor) ntumor

A 0.13256 0.18718 0.99992
B 0.00000 0.00022 0.99998
C 0.00000 0.00000 0.99856

The more powerful step-down multiple testing adjusted p-values (Algorithm 2.8
in Westfall and Young, 1993) are

R> pvalue(it, method = "step-down")

Surv(time, event) Surv(dmin, tumor) ntumor

A 0.08276 0.09858 0.95366
B 0.00000 0.00014 0.88706
C 0.00000 0.00000 0.91548

Clearly, the rejection of the global null hypothesis is due to the group differences
in both survival time and time to first tumor whereas no treatment effect on
the total number of tumors can be observed.

Contaminated Fish Consumption. In the former three applications, pre-
fabricated Lego bricks—i.e., standard transformations for g and h such as dummy
codings, ranks and logrank scores—have been employed. In the third applica-
tion, we will show how the Lego system can be used to construct new bricks
and implement a newly invented test procedure.

Rosenbaum (1994) proposed to compare groups by means of a coherence
criterion and studied a dataset of subjects who ate contaminated fish for more
than three years in the ‘exposed’ group and a control group. Three response
variables are available: the mercury level of the blood, the percentage of cells
with structural abnormalities and the proportion of cells with asymmetrical or
incomplete-symmetrical chromosome aberrations (see Figure 4). The observa-
tions are partially ordered: an observation is said to be smaller than another
when all three variables are smaller. The rank score for observation i is the
number of observations that are larger (following the above criterion) than ob-
servation ¢ minus the number of observations that are smaller. The distribution
of the rank scores in both groups is to be compared and the corresponding test
is called ‘POSET-test’ (partially ordered sets test) and may be viewed as a
multivariate form of the Wilcoxon-Mann-Whitney test.

The coherence criterion can be formulated in a simple function

12
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Figure 4: mercuryfish data: Distribution of all three response variables in the
exposed group and control group.

R> coherence <- function(data) {

+ x <- t(as.matrix(data))

+ f <- function(y) sum(colSums(x < y) == nrow(x)) -
+ sum(colSums(x > y) == nrow(x))

+ matrix(apply(x, 2, f), ncol = 1)

+ 3

which is now defined as influence function h via the ytrafo argument

R> poset <- independence_test(mercury + abnormal + ccells ~
+ group, data = mercuryfish, ytrafo = coherence,
+ distribution = exact())

Once the transformations g (a zero-one coding of the exposed and control group)
and h (the coherence criterion) are defined, we enjoy the whole functionality of
the framework, including an exact two-sided p-value

R> pvalue(poset)

[1] 4.486087e-06

and density (dperm), distribution (pperm) and quantile functions (qperm) of the
conditional distribution. When only a small number of observations is available,
it might be interesting to compare the exact conditional distribution and its
approximation via the limiting distribution. For the mercuryfish data, the
relevant parts of both distribution functions are shown in Figure 5. It turns
out that using the normal approximation would be sufficient for all practical
purposes in this application.

13



o o
- QA
o —— Conditional Distribution —
Approximation
8 | R
o o
2 © 2 ©
= o = o
8 o o o
38 38
o I ° 34
o o o o
8 S
o S
8 8 |
o T T T T o T T T T
-3.0 -25 -2.0 -15 15 2.0 25 3.0
Standardized Statistic Standardized Statistic

Figure 5: mercuryfish data: Conditional distribution and asymptotic normal
approximation for the POSET test.

4 DISCUSSION

Conditioning on the observed data is a simple, yet powerful, design principle
for statistical tests. Conceptually, one only needs to choose an appropriate
test statistic and evaluate it for all admissible permutations of the data (Ernst,
2004, gives some examples). In practical set ups, an implementation of this
two-step procedure requires a certain amount of programming and computing
time. Sometimes, permutation tests are even regarded as being ‘computationally
impractical’” for larger sample sizes (Balkin and Mallows, 2001).

The permutation test framework by Strasser and Weber (1999) helps us to
take a fresh look at conditional inference procedures and makes at least two
important contributions: analytic formulae for the conditional expectation and
covariance and the limiting normal distribution of a class of multivariate lin-
ear statistics. Thus, test statistics can be defined for appropriately standard-
ized linear statistics and a fast approximation of the conditional distribution is
available, especially for large sample sizes.

It is one mission, if not the mission, of statistical computing to transform new
theoretical developments into flexible software tools for the data analyst. The
coin package is an attempt to translate the theoretical concepts of Strasser and
Weber (1999) into software tools preserving the simplicity and flexibility of the
theory as closely as possible. With this package, the rather inflexible spanners
currently in use, such as wilcox.test for the Wilcoxon-Mann-Whitney test or
mantelhaen.test for the Cochran-Mantel-Haenszel x? test in S languages and
NPAR1WAY for linear rank statistics in SAS (see the Tables in Oster, 2002, 2003,
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for an overview on procedures implemented in StatXact, LogXact, Stata, SAS
and Testimate), are extended by independence_test, a much more flexible and
adjustable spanner.

But who stands to benefit from such a software infrastructure? We argue
that an improved data analysis is possible in cases when the appropriate con-
ditional test is not available from standard software packages. Statisticians can
modify existing test procedures or even try new ideas by computing directly
on the theory. A high-level Lego system is attractive for both researchers and
software developers, because only the transformation g and influence function h
need to be newly implemented, but the burden of implementing a Monte-Carlo
procedure, or even thinking about asymptotics, is waived.

With a unifying conceptual framework in mind and a software implementa-
tion, such as coin, at hand, we are no longer limited to already published and
implemented permutation test procedures and are free to define our own trans-
formations and influence functions, can choose several forms of suitable test
statistics and utilize several methods for the computation or approximation of
the conditional distribution of the test statistic of interest. Thus, the construc-
tion of an appropriate permutation test, for both classical and new inference
problems, is only a matter of putting together adequate Lego bricks.
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