
Running Coalescent Analyses With

coalescentMCMC

Emmanuel Paradis

October 27, 2013

Coalescent analyses have emerged in the recent years as a powerful approach to
investigate the demography of populations using genetic data. The coalescent
is a random process describing the coalescent times of a genealogy with respect
to population size and mutation rate. In the majority of cases, the genealogy of
individuals within a population is unknown. So a coalescent analysis typically
consider integrating over the “likely” genealogies to make inference on the dy-
namics of the population. This uses computer-intensive methods such as Monte
Carlo simulations of Markov chains. Besides, if priors are defined on the dis-
tributions of the parameters, Bayesian inference can be done. Several methods
have been proposed for such integrations, although currently there is no con-
sensus on which method is the best or which ones are the most appropriate in
some circumstances [1].

coalescentMCMC aims to provide a general framework to run coalescent anal-
yses. In its current (and early) version, the package provides only a simple
MCMC algorithm based on Hastings’s ratio.

coalescentMCMC has three main groups of functions that have different roles:

� the function coalescentMCMC itself which runs the chain;

� some functions doing operations on tree which are called by the previous
one to move from one tree to another;

� some functions to infer demography from genealogies under various coa-
lescent models which are typically used to analyse the output of a chain
run.

The motivating idea behind coalescentMCMC is that the user can have full
control over the analysis. The options of the main function are:

coalescentMCMC(x, ntrees = 3000, burnin = 1000, frequency = 1,

tree0 = NULL, model = NULL, quiet = FALSE)

where ntrees are the number of trees to output, burnin is the number of trees
discarded before output (of trees) starts, frequency is the sampling frequency
along the Markov chain, and tree0 is the initial tree (if not provided, a UPGMA
tree from a JC69-based distance matrix is used). model is either NULL is which
case Θ is assumed to be constant, or "time" in which case a model where Θ

1

follows an exponential growth is used.1 Finally, quiet is a logical parameter
controlling whether to print an indication of the progress of the chain.

The code of the function is relatively simple:

> library(coalescentMCMC)

> body(coalescentMCMC)

{

if (is.null(tree0)) {

d <- dist.dna(x, "JC69")

tree0 <- as.phylo(hclust(d, "average"))

}

X <- phyDat(x)

n <- length(tree0$tip.label)

nodeMax <- 2 * n - 1

nOut <- ntrees

nOut2 <- ntrees * frequency + burnin

getlogLik <- function(phy, X) pml(phy, X)$logLik

TREES <- vector("list", nOut)

LL <- numeric(nOut2)

TREES[[1L]] <- tree0

lnL0 <- getlogLik(tree0, X)

LL[1L] <- lnL0

if (is.null(model)) {

np <- 1L

para.nms <- "theta"

two2n <- 2:n

K4theta <- length(two2n)

tmp <- choose(two2n, 2)

getparams <- function(phy, bt) {

x4theta <- rev(diff(c(0, sort(bt))))

sum(x4theta * tmp)/K4theta

}

f.theta <- function(t, p) p

}

else {

np <- 2L

para.nms <- c("theta0", "rho")

getparams <- function(phy, bt) {

out <- nlminb(c(0.02, 0), function(p) -dcoal.time(phy,

p[1], p[2], log = TRUE))

out$par

}

f.theta <- function(t, p) p[1] * exp(p[2] * t)

}

params <- matrix(0, nOut2, np)

i <- 2L

j <- 0L

k <- 0L

1Other models will be implemented later. See the vignette “CoalescentModels”.

2

if (!quiet) {

cat("Running the Markov chain:\n")

cat(" Number of trees to output:", ntrees, "\n")

cat(" Burn-in period:", burnin, "\n")

cat(" Sampling frequency:", frequency, "\n")

cat(" Number of generations to run:", ntrees * frequency +

burnin, "\n")

cat("Generation Nb of accepted trees\n")

}

bt0 <- branching.times(tree0)

params[1L,] <- para0 <- getparams(tree0, bt0)

nodesToSample <- (n + 2):nodeMax

while (k < nOut) {

if (!quiet)

cat("\r ", i, " ", j, " ")

target <- sample(nodesToSample, 1L)

THETA <- f.theta(bt0[target - n], para0)

tr.b <- NeighborhoodRearrangement(tree0, n, nodeMax,

target, THETA, bt0)

if (!(i%%frequency) && i > burnin) {

k <- k + 1L

TREES[[k]] <- tr.b

}

lnL.b <- getlogLik(tr.b, X)

LL[i] <- lnL.b

bt <- branching.times(tr.b)

params[i,] <- para <- getparams(tr.b, bt)

i <- i + 1L

ACCEPT <- if (is.na(lnL.b))

FALSE

else {

if (lnL.b >= lnL0)

TRUE

else rbinom(1, 1, exp(lnL.b - lnL0))

}

if (ACCEPT) {

j <- j + 1L

lnL0 <- lnL.b

tree0 <- tr.b

para0 <- para

bt0 <- bt

}

}

LL <- cbind(LL, params)

colnames(LL) <- c("logLik", para.nms)

LL <- mcmc(LL, start = 1, end = i - 1)

attr(TREES, "TipLabel") <- TREES[[1L]]$tip.label

for (i in seq_len(nOut)) TREES[[i]]$tip.label <- NULL

class(TREES) <- "multiPhylo"

j <- 1

3

list.trees <- ls(envir = .coalescentMCMCenv)

if (l <- length(list.trees))

j <- 1 + as.numeric(sub("TREES_", "", list.trees[l]))

assign(paste("TREES", j, sep = "_"), TREES, envir = .coalescentMCMCenv)

if (!quiet)

cat("\nDone.\n")

LL

}

The trees are stored in the list TREES_xxx with xxx being 1, 2, . . . , for the
successive chains run during a session (see below). The coding of the Hastings’s
ratio is clear (ACCEPT) and this part can also be tailored at will.

The above implementation uses only neighborhood rearrangement as pro-
posed in [2] calling the function NeighborhoodRearrangement at each cycle of
the chain. This can modified by using other functions described in ?treeOper-

ators.
Let us now consider a very simple analysis with the woodmouse data avail-

able in ape. For the purpose of this vignette, we run a very light analysis in
order to produce small outputs in a reasonable time (it seems that in practice
the above default values are a minimum).

> data(woodmouse)

> out <- coalescentMCMC(woodmouse, ntrees = 300, burnin = 100)

Running the Markov chain:

Number of trees to output: 300

Burn-in period: 100

Sampling frequency: 1

Number of generations to run: 400

Generation Nb of accepted trees

400 62

Done.

The output object is of class "coda", so we can visualise it with the package
of the same name (which has already been loaded):

> plot(out)

4

0 100 200 300 400

−
19

20
−

19
00

−
18

80

Iterations

Trace of logLik

−1920 −1900 −1880 −1860

0.
00

0.
02

0.
04

Density of logLik

N = 400 Bandwidth = 2.284

0 100 200 300 400

0.
01

8
0.

02
0

0.
02

2

Iterations

Trace of theta

0.018 0.020 0.022 0.024

0
10

0
20

0
30

0
40

0
Density of theta

N = 400 Bandwidth = 0.0003428

The log-likelihood was relatively stable between −1870 and −1880. The trees
are stored in a special place of the memory (an environment in R’s jargon) from
where they can be retrieved with a specific function:

> TR <- getMCMCtrees()

> TR

300 phylogenetic trees

Note that the trees generated during the burn-in period are not output, but the
corresponding values of log-likelihood and Θ are. Hence out has 400 rows.

> dim(out)

[1] 400 2

> colnames(out)

[1] "logLik" "theta"

We now run a model of time-dependent coalescent where Θ follows an expo-
nential change through time:

5

> out2 <- coalescentMCMC(woodmouse, ntrees = 300, burnin = 100, model = "time")

Running the Markov chain:

Number of trees to output: 300

Burn-in period: 100

Sampling frequency: 1

Number of generations to run: 400

Generation Nb of accepted trees

400 54

Done.

> plot(out2)

0 100 200 300 400

−
19

30
−

18
90

Iterations

Trace of logLik

−1920 −1900 −1880 −1860

0.
00

0.
03

Density of logLik

N = 400 Bandwidth = 2.361

0 100 200 300 400

0.
05

0.
15

Iterations

Trace of theta0

0.00 0.05 0.10 0.15 0.20

0
5

10

Density of theta0

N = 400 Bandwidth = 0.006677

0 100 200 300 400

−
60

0
−

20
0

Iterations

Trace of rho

−600 −400 −200 0

0.
00

0
0.

00
6

Density of rho

N = 400 Bandwidth = 15.6

The change in log-likelihood along the chain is similar to what was observed
above. The object out2 has now three columns:

> dim(out2)

[1] 400 3

> colnames(out2)

[1] "logLik" "theta0" "rho"

6

If we try to extract the trees as previously done and R is running in interactive
mode, we will be asked which list of trees to extract:

> getMCMCtrees()

Several lists of MCMC trees are stored:

1 : TREES_1

2 : TREES_2

Return which number?

Because the code of this vignette is not run interactively, we must extract the
list explicitly with get:

> TR2 <- get("TREES_2", envir = .coalescentMCMCenv)

We can now compare both coalescent models: the two hypotheses under
consideration are:

� H0: Θ is constant;

� H1: Θ changes through time following an exponential model.

We need to calculate the likelihood under both hypotheses. This can be done
with functions provided in coalescentMCMC (see ?dcoal). We use the last 100
trees of each chain.2 Because we are using a list of trees (which is a vector) and
also a vector of estimates of Θ, the function to use here is mapply. For clarity,
we extract the trees and the values of Θ̂ that we need:

> tr <- TR[-(1:200)]

> THETA <- out[-(1:300), 2]

> logLik0 <- mapply(dcoal, phy = tr, theta = THETA, log = TRUE)

> summary(logLik0)

Min. 1st Qu. Median Mean 3rd Qu. Max.

82.11 83.44 83.79 83.76 84.06 85.71

We can now repeat this operation for the second model:

> tr2 <- TR2[-(1:200)]

> THETA0 <- out2[-(1:300), 2]

> RHO <- out2[-(1:300), 3]

> logLik1 <- mapply(dcoal.time, phy = tr2, theta = THETA0, rho = RHO, log = TRUE)

> summary(logLik1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

89.29 90.30 91.06 90.92 91.43 92.21

A conditional histogram shows the two distributions:

2These calculations are quite fast, even with 1000 trees, but we use here a subset of the
trees to illustrate how we select some of them which might be useful when running a longer
Markov chain.

7

> print(histogram(~c(logLik0, logLik1) | gl(2, 100, labels = c("H0", "H1"))))

c(logLik0, logLik1)

P
er

ce
nt

 o
f T

ot
al

0

20

40

60

82 84 86 88 90 92

H0

82 84 86 88 90 92

H1

Since the increase in log-likelihood for the second model is about 8, the LRT com-
paring both models is χ2

1 ≈ 16 which is highly significant (P ≈ 6 × 10−5). This
suggests that the population of woodmice (Apodemus sylvaticus) from where
these sequences have been sampled has expanded (reminding that in coales-
cent models the time scale is reversed so a negative value of ρ means that the
population has expanded).

Finally, we produce estimates of the parameters weighted by the likelihoods
of the trees:

> treeloglik <- out2[-(1:300), 1]

> (theta0ML <- weighted.mean(THETA0, treeloglik))

[1] 0.1004052

> (rhoML <- weighted.mean(RHO, treeloglik))

[1] -495.206

We can represent the temporal variation in Θ predicted by this model (remember
that the time scale is the one of molecular change):

8

> x <- seq(0, 0.01, 0.0001)

> y <- theta0ML * exp(rhoML * x)

> plot(-x, y, "l", xlab = "Time", ylab = expression(Theta))

−0.010 −0.008 −0.006 −0.004 −0.002 0.000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Time

Θ

Other things that could be done with simple R commands include:

� Compute confidence intervals around Θ̂0 and ρ̂ (alternatively, posterior
distributions of these parameters if a Bayesian sampling is done);

� Re-run the chain(s) with different initial trees, for instance to run branch-
ing chains taking a tree from TR or TR2.

References

[1] J.˜Felsenstein. Trees of genes in populations. In O.˜Gascuel and M.˜Steel,
editors, Reconstructing Evolution: New Mathematical and Computational
Advances, pages 3–29. Oxford University Press, Oxford, 2007.

[2] M.˜K. Kuhner, J.˜Yamato, and J.˜Felsenstein. Estimating effective popu-
lation size and mutation rate from sequence data using Metropolis-Hastings
sampling. Genetics, 140:1421–1430, 1995.

9

