
cloudRmpi Manual

May 2012, Version 1.2

Barnet Wagman bw@norbl.com

cloudRmpi is means for doing parallel processing in R, using MPI on a cloud-based network.
It currently supports the use of Amazon's EC2 cloud computer service. cloudRmpi provides a
mechanism to launch and manage a cloud-based network and to access an R session on the
network's master MPI node. cloudRmpi should work with any MPI based R package (it has
been tested with Rmpi, npRmpi, and snow).

Contents

1. Overview
2. Requirements/Prelims
3. How to use cloudRmpi

1. Creating a network
2. Using the network

1. rreval
2. RStudio
3. ssh

3. Using EBS for persistent storage
4. Choosing an instance type
5. Costs
6. Security
7. Dependencies
8. Machine Images
9. Architecture

10. Handling problems

1. Overview

'Cloud' computing services provide a relatively low cost way of doing parallel processing. The
cloudRmpi package provides a means for doing parallel processing in R using these kinds of
facilities. It currently supports the creation and use of networks running Open MPI on
Amazon's cloud computer service, EC2. We hope to add support for other vendors' cloud
computing services in the near future.

There are two main elements in the cloudRmpi package: an application for creating and
managing EC2 networks (that support Open MPI and R), and functions for accessing an R
session on the master node of the network.

The network manager is a java application, launched from within R with the
ppe.launchNetworkManager() function (see How to use cloudRmpi, below). ('ppe' stands
for 'parallel processing with EC2. The network manager has also been released in a non-R
package, ppe-ompi.)

A network launched with the cloudRmpi network manager contains one host that is designated
the Open MPI master node. That master node runs an R session that is accessible remotely
using functions in the rreval package or via RStudio Server. Using these interfaces is covered in
How to use cloudRmpi, section 1.2, below.

Note that public cloud computing services like EC2 are commercial products. See the Costs
section below for a discussion of the costs involved in using cloudRmpi.

2. Requirements/Prelims

Besides installing the cloudRmpi package in R, there are few other requirements.

1. Java (>= 1.6)

mailto:bw@norble.com
http://norbl.com/ppe-ompi/ppe-ompi.html
http://rstudio.org/

The Java interpreter must be in your execution path. To test whether you have an
accessible copy of Java, at a command line type

java -version

If Java is installed, you should get something like

java version "1.6.0_26"
Java(TM) SE Runtime Environment (build 1.6.0_26-b03)
Java HotSpot(TM) 64-Bit Server VM (build 20.1-b02, mixed mode)

(Why Java? See the Architecture section below.)

2. An AWS account.

3. Once you have an account

1. Register for the EC2 service; you can do this via AWS Account Management.

2. Create and download an EC2 RSA keypair using the AWS Management Console
(EC2 tab, NETWORK & SECURITY -> Key Pair). You will need the key pair
file and the keypair name the first time you use cloudRmpi.

3. Get the following strings from your Amazon account Security Credentials page.

Account number
Access Key ID
Secret Access Key

The 'Access Key ID' and 'Secret Access Key' are in the 'Access Credentials'
section, in the 'Access Keys' tab. You will need these strings the first time you use
cloudRmpi.

3. How to use cloudRmpi

3.1 Creating a network

3.1.1 Launch the EC2 network manager

In a local R session

library(cloudRmpi)

Launch the network manager:

ppe.launchNetworkManager()

The first time time you launch the network manager

(a) Required parameters

You'll need to supply some values that are required to launch EC2 instances. From the
top menu bar, use Edit -> EC2 parameters, i.e.

This brings up the "Required Ec2 Parameters" entry window:

http://aws.amazon.com/
https://aws-portal.amazon.com/gp/aws/manageYourAccount/
https://console.aws.amazon.com/ec2/home
https://aws-portal.amazon.com/gp/aws/developer/account/index.html?ie=UTF8&action=access-key

These values will be stored in a configuration file named .ppe-config that will be
created in your home directory. You can change these values using the Edit -> EC2
Parameters menu item in the main network manager window or by editing the file
directly.

(b) Optional billing authorization

We charge $0.03 per hour per instance for use of our most recent machine images
(AMIs). This is billed through Amazon but requires separate authorization. For details
and to authorize billing, select Account -> Authorize instance billing from top
menu bar of the main network manager window.

(c) Optional AWS client parameters

If you access the internet though a proxy server, you may need to set some Amazon
client configuration parameters before you can launch EC2 instances. You can set any of
these parameters via Edit -> AWS client parameters in top menu bar of the main
network manager window. See Amazon's documentation for details on these
parameters. If in doubt, we suggest that you first trying to create a network without
setting any of these parameters.

3.1.2 Specify and create a network

Select an instance type
For most purposes (other than testing), you'll probably want to choose cc1.4xlarge or
cc2.8xlarge because they can be run in a cluster placement group. See Choosing an
Instance Type for more information. If you choose one of these instance types, the application
manager will launch your instances in a cluster placement group.

http://docs.amazonwebservices.com/AWSSdkDocsJava/latest/DeveloperGuide/section-client-configuration.html
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/hpc-applications/

Choose a machine image (AMI)
AMIs that are not compatible with the selected instance type are disabled.

Specify the availability zone.
If you've choosen an instance type that supports clusters, select 'Use any zone'; your instances
will be launched in cluster group and a cluster group always runs in a single zone. Otherwise,
specifying a zone insures that your instances are not spread across multiple zones (which may or
may not be worth something re communications). However, if you are using an Amazon Elastic
Block Store (EBS) for persistent storage, you must launch your instances in the availability zone
where the EBS volume resides. An EBS volume can only be attached to an instance in its
availability zone. (An AMI resides in a region and can be launched in any availability zone within
that region.)

Specify the security group
If 'Default' is selected, cloudRmpi will create an appropriate one-time security group. See
Security for details.

Specify the keypair
Normally, select the keypair that you specified in the "RSA keypair name" field of the "Required
Ec2 Parameters" entry form.

Spot instances
If you want to use spot instances, specify a spot price. (Make sure that you understand the
limitations of spot instances.) Note that as of 2011, all instance types are available as spots.

Network name
cloudRmpi will automatically generate a unique network name (you can change it).

Slots per host
The number of slots per host is automatically generated based on the instance type selected
(you can change it). This value is used to create the ompi hostfile.

Specify the number of instances

When you hit 'Continue' you'll have a chance to check the network's specification before it's
launched.

3.2 Using the network

http://aws.amazon.com/amis/
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://aws.amazon.com/ebs/
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://aws.amazon.com/ec2/spot-instances/

The network is ready for use when its status is "running":

Note that Amazon tools (such as the Amazon Management Console) will show your instances
with status 'running' before the EC2 network manager does. AWS's monitoring lists instances
as 'running' as soon as they are launched, even before the operating system has finished booting.
After launching a network, the network manager waits for the operating system to boot and then
performs some configuration. It does not show the network's status as 'running' until all
instances are booted and configured.

Occasionally an instance will not launch successfully. You may want to use the Amazon
Management Console to monitor this - watch for instances that get 'stuck' with "Status Checks"
equal to "initializing ...". If an instance does not respond, after ten minutes you'll be given the
option of terminating it and proceeding.

There are three mechanisms for using R on the network: rreval, RStudio Server, and a
command line R session in ssh.

3.2.1 Remote R Evaluator (rreval)

rreval is a means for evaluating R expressions on a remote system from within a local R
session.

Connect to an R session running on the master node of the network:

ppe.startClient()

('ppe' stands for 'parallel processing on EC2').

(On a few occasions, ppe.startClient() has returned java.net.SocketException:
Connection reset ..., which indicates a transmission error. If this happens, just try
ppe.startClient() again.)

Once you're connected, you can evaluate expressions. E.g.

re(1+1)

will return the value 2. An expression like

re(a <- seq(1,100)^2)

will create an object named 'a' in the remote R session and return the value of the expression.

To retrieve an expression from the remote session

re(a)

or to assign it locally

aa <- re(a)

To upload an object

z <- sin(pi)
upo(z)

(To move large objects, you may want to use the scp transfer functions, scpUpload() and
scpDownload(); see the package documentation for details. Note that your R session is
owned by user ec2-user and initially the R session's working directory is /home/ec2-user.)

You can evaluate any expression in the remote session, including things like

re(library(npRmpi))
re(ls())

https://aws.amazon.com/console/
http://rstudio.org/
http://norbl.com/rreval/rreval.html

It is perfectly acceptable to upload functions, e.g.

fn <- function(x) { quantile(x,seq(0,1,0.1)) }
upo(fn)

Errors will be handled gracefully, e.g.

re(lss())

yields the error message

<simpleError in eval(expr, envir, enclos): could not find function
"lss">

Note that all expression evaluations and assignments in the remote R session are performed in
.GlobalEnv (the top level of the scope hierarchy). Of course you can explicitly specify other
environments (e.g. re(assign(x="a",value=1234,envir=some.other.envir))).

When your done using the network, close the connection with

ppe.closeClient()

and, more importantly, terminate the network using the application manager

Remember that Amazon will be charging you for your EC2 instances until you terminate them.
You can also terminate your network with ppe.terminateNetwork() or with the Amazon
Management Console.

3.2.2 RStudio Server

RStudio is an IDE-like interface for R. The server version, which is used through a browser, is
available on some cloudRmpi AMIs.

To connect to an R session on the master node of an EC2 network via RStudio:

ppe.connectToRStudio()

This functions creates a connection to the master node via ssh port forwarding (using your RSA
key for authorization). It then launches your default browser displaying an RStudio server
session:

https://aws.amazon.com/console/
http://rstudio.org/
http://norbl.s3-website-us-east-1.amazonaws.com/Machine_image

Login with Username=rsu, password=rsu.

Despite appearances, this is actually quite secure. Access to the remote host is via ssh, using
your RSA keypair for authorization. (This is the standard method used for controlling access to
EC2 instances - see Security for details). The RStudio login is superflous (but it proved
impossible to disable). After login, your browser will display an RStudio R session

Note that in the RStudio session, you are logged in as user 'rsu' and initially the working
directory is /home/rsu. Due to constraints imposed by the ssh and RStudio login mechanisms,
as user rsu you will not be able to access the /home/ec2-user, the home dirctory of user 'ec2-

user'. All ssh access to the system is really via ec2-user. If you want connect to the system via a
standard ssh session, you must do so as ec2-user.

Both RStudio and the ppe network manager provide shell access to the host. Once you have
shell access you can use su or sudo - neither require passwords.

When you done using the network, close the connection with

ppe.disconnectRStudio()

and, more importantly, terminate the network using the application manager

Remember that Amazon will be charging you for your EC2 instances until you terminate them.
You can also terminate your network with ppe.terminateNetwork() or with the Amazon
Management Console.

3.2.3 ssh

You can access your EC2 network via ssh. EC2 instances are accessible using your RSA key
(but not via password). E.g.

ssh -i your_keypair_file.pem ec2-user@ec2-123-123-123-123.compute-
1.amazon.com

where ec2-123-123-123-123.compute-1.amazon.com is the URL of the network's
master node (which of course will be different every time you create a network.) You can get
the master node's URL from the network manager or with the R function
ppe.getMasterNodeURL(...). See the cloudRmpi package documentation for details.

Once you've ssh'd into the master node you can start a standard R session from the command
line.

3.3 Using EBS for persistent storage

When a EC2 instance is terminated, anything that was written the to disk is lost. However, you
can attach persisent disk space to an EC2 instance using what AWS terms an Amazon Elastic
Block Store (EBS). The operating system sees an EBS as device (like a hard drive). ppe-
ompi provides support for using EBS.

You can create an EBS volume with the AWS Management Console (EC2 tab -> Navigation
sidebar Elastic Block Store: Volumes). You do not need to have any instances running to
create volumes.

To use an EBS volume with a specific EC2 instance, you must 'attach' it to the volume and then
mount it (like any other Unix volume). You can get a list of your EBS volumes and their
statuses from the EC2 network manager i.e.

You can attach the volume using an instance popup menu e.g.

https://aws.amazon.com/console/
http://aws.amazon.com/ebs/
https://console.aws.amazon.com/

(You can also list and attach volumes using the AWS Management Console.)

To make an EBS volume accessible, you'll need to use Linux commands. You can ssh to your
instance e.g.

ssh -i your_keypair_file.pem ec2-user@ec2-174-129-172-112.compute-
1.amazon.com

or you can use an ssh shell that is built into ppe-ompi.

A newly created volume does not have a files system. After attaching it to an instance, you'll
need to use the standard Linux utility mkfs, e.g.

sudo mkfs -t ext3 /def/sdf

And of course you need to mount the device

sudo mount /def/sdf /home/ec2-user/your-mount-point

See Amazon's documentation for details.

Note that cloudRmpi AMIs are configured to allow the use of sudo and su without a
password.

Note that an EBS volume resides in what Amazon terms an availability zone, and can only be
attached to an EC2 instance running in that zone. So if you intend to attach an EBS volume to
an instance in a ppe-ompi network, you must launch the network in the EBS volume's zone (see
Specify and create a network, above). An AMI resides in a 'region', which contains multiple
availability zones, and all ppe-ompi AMIs reside in the us-east-1 region. So to use an EBS
volume with ppe-ompi, it must be created in one of the us-east-1 zones.

4. Choosing an instance type

Amazon's EC2 service supplies computers with various processor types and memory
configurations, which it terms instances. While you can use cloudRmpi with any instance type,
there is a substantial advantage to using instance types cc1.4xlarge or cc2.8xlarge for
parallel processing. Each of these instance types can be launched in a cluster placement group,
which guarantees a specified bandwidth between instances. Other instance types cannot
(except for the gpu cluster instance type).

When cloudRmpi launches a network of instances that can run in a cluster, those instances are
always put into a placement group. This provides the fastest network communications available
from AWS. According to Amazon, cluster placement groups are intended for hpc.

5. Costs

There are no sunk costs when using EC2 (or in creating or maintaining an AWS account);
charges are strictly based on usage. The main costs are the hourly instance charges, which vary
with the instance type. AWS also charges for data transfers in and out of EC2 instances (see
the "Data Transfer" section of Amazon EC2 Pricing), although transfer charges are usually small
compared to instance charges. There is no charge for data tranfers between instances in the
same 'region'. In addition, we now charge $0.03/instance/hour for use of our newer machine
images (AMIs).

6. Security

Since EC2 is a web base service, security is inevitably a concern. Following is a brief
description of security associated with cloudRmpi.

The cloudRmpi network manager launches and manages instances using the AWS SDK for
Java, which generates commands in the underlying EC2 api, composed of REST and SOAP

http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/ebs-using-volumes.html
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/hpc-applications/
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/sdkforjava/

commands. By default, all commands are transmitted using SSL. Commands must include the
user's AWS 'Access Key ID' and 'Secret Access Key'. cloudRmpi reads these strings from the
configuration file .ppe-conf in the user's home directory. This file is en claire, so it is
important that it not be publicly accessible. On Unix systems, this file's permission bits should
be set to 0600 (e.g. chmod 0600 .ppe-config).

EC2 instances are launched within what AWS terms a security group, which is equivalent to a
firewall. By default, cloudRmpi creates a one-time security group and launches instances into
that group. The default security group has the following configuration:

From port To port Protocol Accessible from
22 22 tcp All ip addresses
1 21 tcp Group members only
23 65535 tcp Group members only
1 65535 udp Group members only
16020 16020 tcp All ip addresses

In other words, instances within the network have unrestricted access to each other (which is
neccessary for Open MPI), but are only accessible from the rest of the world via ssh (port 22).
16020 is used to send messages to a monitor program running on an EC2 instance.

Each EC2 instance is associated the an RSA key. The public portion of this key must be
registered with AWS before instances can be launched; it's name is specified as part of instance
requests. After instances are launched, cloudRmpi uses the private key to access the instances
(via ssh), to perform some setup. cloudRmpi gets the key name and the path to the keypair file
from .ppe-conf. Obviously is it is important to keep the configuration file and the key pair file
secure. The private key exists only on the user's local system. Amazon provides a utility for
creating an RSA keypair and recording the public key, but it does not keep a copy of the
private key.

cloudRmpi instances are configured to support ssh login using the RSA key only. There are no
passwords. (This is standard practice with EC2 instances.) Each instance has a user named
ec2-user. The only way to access a node in a cloudRmpi network is via ssh, e.g.

ssh -i your-rsa-keypair-file.pem ec2-user@ec2-123-456-789-
123.compute-1.amazon.com

and similarly with scp.

When you use rreval, communications between your local R session and the R session on the
master node of the EC2 network go through a pair of java apps, one on the local system and
the other on the network master node (see Architecture for details). These java apps perform
socket level communication via ssh port forwarding. So when you use functions like re() or
upo() to perform operations in the remote R session, communications is via ssh.

When you use RStudio, communications is also via ssh port forwarding. A java app (launched
by the cloudRmpi package function ppe.connectToRStudio()) establishes ssh port
forwarding to the master node. Your browser then accesses the remote RStudio server via
http://localhost:8787.

7. Dependencies

cloudRmpi depends on two R packages, digest and rreval. It also uses the following third-
party packages:

AWS SDK for Java Note that the AWS sdk distribution itself contains third party
software (see inst/third-party/aws-java-sdk-1.3.3/third-party in the
cloudRmpi distribution for details).
Ganymed SSH-2 for Java
GNU Trove: High performance collections for Java.
Apache Http Components Core
Amazon FPS Java Library
RStudio Server Note that the cloudRmpi package does not actually contain any part of
RStudio. RStudio Server is installed on some cloudRmpi AMIs. RStudio's "object
code" is "conveyed" when you use it. This is consistent with RStudio's license, GNU
Affero GPL, Version 3.

See the the third-party directory in the cloudRmpi package for these packages' licenses
and links for obtaining them.

We have previously released the network management application in the ppe-ompi project
(which is released under GPL 3.0).

8. Machine images

http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/using-network-security.html#concepts-security
http://norbl.com/rreval/rreval.html
http://rstudio.org/
http://aws.amazon.com/sdkforjava/
http://www.ganymed.ethz.ch/ssh2/
http://trove.starlight-systems.com/
http://hc.apache.org/httpcomponents-core-ga/index.html
http://aws.amazon.com/code/Amazon-FPS/5090796688019801
http://rstudio.org/
http://norbl.com/ppe-ompi.html

8. Machine images

An EC2 network consists of one or more hosts (termed instances by Amazon) running
virtualized operating systems termed an Amazon Machine Images (AMIs). In addition to the
operating system, an AMI can contain application software and can be configured to launch
applications when booted.

Amazon Machine Images (AMIs) with Open MPI and R installed are listed here.

To use a cluster placement group, you must use an image with hmv virtualization. Otherwise
you can use a paravirtual image (see Choosing an instance type).

These images are configured to start an R session and launch the server function rreServer()
when booted. I.e. they are ready to be to accept a connection from ppe.startClient() as
soon as the boot process is complete. AMIs that contain RStudio Server are configured to
launch it at boot time as well.

9. Architecture

cloudRmpi has two main components: the network manager and a client-server mechanism for
evaluating expressions in an R session running on the network's master MPI node.

Network Manager

The network manager is java app that is launched on the local system by the function
ppe.launchNetworkManager(). Communications between the R session and the network
manager are via a socket. The network manager is always launched on the same system as the
local R client. Communications between the R session and the network manager are en clair.

The network manage creates a network of EC2 instances using the AWS SDK for Java which
sends command to AWS via using SSL. As part of the request for instances that it submits to
AWS, it creates a one time security group (see Security for details).

After submitting a request for instances, the network manager continually monitors the status of
the request and the status of the instances once they are launched. Once all instances are
available, it performs the following configuration related operations:

Designates one instance as the MPI master node, and the rest as slaves.
Creates a one time RSA keypair and installs it on the master. The public portion is
installed on the slaves. NOTE that this keypair is used for communications between
nodes only and is completely distinct from the user's keypair. The user's keypair is used
for launching instances and for access to the network. The private key of your keypair
resides on your local system and is never transferred anywhere.
Creates an ompi host file, ~ec2-user/ompi-hostfile on the master.
Disables hyperthreading on all instances.

Remote evaluation, client-server communications

The rreval package can be used to access an R session on the master MPI node of the EC2
network. cloudRmpi has some functions (such as ppe.startClient()) that are essentially
wrappers for rreval functions; they make using rreval on with an EC2 network more
convenient, but the underlying code is the same.

rreval is a means for using R on a remote system from within a local R session. Any R
expression can be evaluated on the remote server. All non-graphical results are returned to the
local R session: this includes the results of remote evaluations and (nearly) all textual output,
including errors and warnings.

Expressions are evaluated by an R session on the MPI master node that is running the rreval
server. When a local R session connects to a server, the local client has exclusive use of the
remote R session until it disconnects; i.e. an R server handles only one client at a time.

Communication between the client and server is performed by a pair of java apps,
rreval.RReClientApp a n d rreval.RReServerApp. The local R session sends a
command to the rreval.RReClientApp. After performing error checks, the command is
sent to rreval.RReServerApp which runs on the remote system. It in turn passes the
command to the rreval server. The results of evaluation are returned by this path in reverse.

The two java apps communicate via ssh port forwarding, so communication between them
should be secure. Note that communications between an R session and a java app are en
clair. These are local socket communications so security should not an issue.

As of cloudRmpi 1.2, some AMIs also have RStudio Server installed, which is a browser
accessible IDE-type interface to R. cloudRmpi has functions for connecting to an instance of

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/amis/
http://aws.amazon.com/amis/
http://norbl.s3-website-us-east-1.amazonaws.com/Machine_images_cloudrmpi.html
http://aws.amazon.com/ec2/hpc-applications/
http://aws.amazon.com/sdkforjava/
http://norbl.com/rreval/rreval.html
http://rstudio.org/

RStudio Server running on the master node of an EC2 network via ssh port forwarding.
See Using the network: RStudio Server and Security for details.

10. Handling problems

Handling errors in a parallel processing environment can be messy, and R parallel processing
packages are no exception. For example, if you use the npRmpi function

mpi.bcast.cmd(bw.hit <- npcdensbw(y ~
x,data=obs),caller.execute=TRUE)

without first broadcasting obs (i.e. mpi.bcast.Robj2slave(obs)), the call to npcdensbw
will hang and there's no way to interrupt it.

Although it sounds crude, the best way we've found to handle this kind of situation is to simply
reboot all the instances in the network. The network manager has a command to reboot an
entire network:

Of course you will loose everything in your remote R session. We usually make liberal use of
re(save.image()). When you reboot a EC2 instance, anything you've written to disk is
preserved (which is not the case when you terminate an instance). It's not a terribly elegant
solution, but it's the best we've come up with so far.

	cloudRmpi Manual
	May 2012, Version 1.2
	Barnet Wagman bw@norbl.com
	1. Overview
	2. Requirements/Prelims
	3. How to use cloudRmpi
	3.1 Creating a network
	3.2 Using the network
	3.2.2 RStudio Server
	3.2.3 ssh

	4. Choosing an instance type
	5. Costs
	6. Security
	7. Dependencies
	8. Machine images
	9. Architecture
	Network Manager
	Remote evaluation, client-server communications

	10. Handling problems

