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Foreword

The “Climatol” R contributed package is mostly devoted to the problem of homogenizing clima-
tological series, that is to say, remove the perturbations produced by changes in the conditions
of observation or in the nearby environment to allow the series to reflect only (as far as possible)
the climatic variations.

The R standard documentation of the package provides descriptions of the functions and their
parameters, and users should refer to it whenever needed. This guide, on the other hand, has
been written as a complement, trying to focus more on explaining the methodology underlying
the algorithms of the package, how to call its functions, and how to interpret and use their
results.

This guide is structured in two parts: a Quick start (in the following few pages) for those
anxious to begin homogenizing their data, and an Extended guide where the different aspects of
the package are treated more thoroughly.

Most examples of this guide can be reproduced with data files contained in climatol-dat.zip,
downloadable from http://webs.ono.com/climatol/climatol-dat.zip, which contains real series
from a Mediterranean area, although the names and coordinates of the stations are fictitious.
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Quick start

First we need to prepare the input data in two plain text files with adequate formats. In one of
them you must provide the coordinates and names of the stations, containing a line of the form

X Y Z CODE NAME

for each station, where the coordinates X and Y may be in km (from e.g., an UTM projection)
or in geographical degrees (longitude and latitude, in this order) with their fractional part in
decimals (not in the degrees, minutes and seconds form). The other parameters are the altitude
Z in m, an identification CODE of the station, and the NAME of the station itself, that must be
enclosed in quotes if it contains more than one word. (It is advisable to put all names between
quotes to avoid errors). The name of this file must be VAR_FIRSTY-LASTY.est, where VAR is
an abbreviation of the climatic variable being analyzed, and FIRSTY and LASTY are the first and
last years of the studied period.

The data must be arranged in another single file containing station data blocks in the same order
as they appear in the station file. The file base name will be that of the station file, using the
extension dat.

Example: Suppose you are going to homogenize monthly average minimum temperatures from
1956 to 2005, and you choose Tmin as a short name for that variable. The stations file would be
Tmin_1956-2005.est, and could begin, as in the accompanying example data, with:

27.0 53.9 456 S03 "La Perla"
31.8 26.5 123 S08 "El Palmeral"
49.2 30.0 154 S11 "Miraflores"
43.4 29.6 156 S13 "Torremar"
... (etc)

And the data file should be named Tmin_1956-2005.dat, and their first lines could be:

NA NA NA NA NA NA NA NA NA NA NA NA
-0.4 1.8 5.5 6.5 15.1 17.4 16.7 16.4 12.2 6.0 2.6 2.3
1.5 4.0 6.5 8.7 12.4 12.1 20.3 NA 14.7 11.0 3.2 0.5
... (etc)

This would be the data for the first station of your network1, in chronological order: January
to December of 1956, the same for 1957 in the second line, 1958 in the third line, etc. In this
example, data from 1956 and August 1958 are missing, and are replaced by NA (Not Available),
which is the standard missing data code in R (though others may be used). When all the data
from the first station are listed, data from the second station follow, an so on until all station data
are reported. It is important to note that all station must report data for every month of the study
period (1956-2005 in our example), and hence the need of including missing codes to fill any

1Actually, these are not the first lines of our example data, which do not have any missing data in the first three
lines. That is why they have been replaced by these other in the text, in order to illustrate how to proceed when
missing data are present, which is the usual case.
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missing data. For convenience, 12 values (a whole year) have been placed in each line, but this
is not compulsory; data may be placed in a free space separated format with any number (even
variable) of data items in each line, because they will be read sequentially. (Important note: no
month must be simultaneously void of data in all the stations of the file, since this would result
in an abnormal process termination).

All you have to do to homogenize your data is to start R in your working directory (where your
data and station files are located), load the homogeneity functions, either with the command

library(climatol)

if you made a regular installation of the package, or with

source("depurdat.R")

if you have this file2 in your working directory, and issue the automatic homogenization com-
mand, that in our example would be:

homogen("Tmin", 1956, 2005)

This command accepts other optional parameters, the more important being the following:

nm Number of data per year in each station (12 by default: monthly values. Set to nm=1 if you
are analyzing annual data, nm=4 for seasonal data, etc).

deg Set to TRUE if coordinates are in geographical degrees, or left in its default FALSE value if
they are in km (the distance unit used internally in the package).

std Type of normalization. By default, data will be studentized using both the mean and the
standard deviation, but if your variable has a natural zero (e.g., precipitation), std=2 can
be preferable (data will be normalized just as ratios to the mean values). Another option
is std=1, for only applying differences to the mean values.

rtrans Root transformation to apply to the data: 2 for square root, 3 for cubic root, etc
(fractional numbers are allowed). Useful if your variable distribution is far from normal,
as with wind speeds or precipitations from arid regions).

na.strings Character string to be treated as a missing value. It defaults to the R standard
"NA", but can be set to any other string as, e.g.: na.strings="-999.0".

Another example to homogenize seasonal precipitations (four data per year) for the period 1961-
2005, with station coordinates in geographical degrees, applying a cubic root transformation to
the data (no example file provided):

homogen("SsPrp", 1961, 2005, nm=4, deg=TRUE, std=2, rtrans=3)

The command of the first example would generate the following files (in the same working
directory):

Tmin_1956-2005.esh Station file after the homogenization. It has the same structure
of the input file Tmin_1956-2005.est, but with additional columns (see the extended

2The file depurdat.R holds the homogenization functions of the package
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guide) and, probably, lines (when the process detects an abrupt shift in the mean, the se-
ries will be split, creating a new one with the same coordinates and adding an incremental
number to the name and code of the station).

Tmin_1956-2005.dah Homogenized data file with missing data filled, analogous to the
input data file Tmin_1956-2005.dat.

Tmin_1956-2005.txt Log file of the process, with all messages issued to the screen (in-
cluding the final summaries).

Tmin_1956-2005.pdf File with a (potentially long) collection of diagnostic graphics gen-
erated during the process.

The log and graphic files may suggest to re-run the process with different parametrizations
(see the extended guide for an explanation), while the homogenized data files may be post-
processed with the function dahstat. For example, if we want a listing of average values for
the period 1971-2000 from the above homogenized temperatures, we can get it in a file named
Tmin_1971-2000.med with the command:

dahstat("Tmin", 1956, 2005, 1971, 2000)

As you can see, the parameters are the name of the variable, the first and last years of the study
period, and the first and last years of the period for which we want the means to be computed
(that can be omitted if the period is the same). Other parameters of the function are:

out Type of output (the file name will have the corresponding extension):
"med" for means of the data (the default).
"mdn" for medians.
"max" for maximum values.
"min" for minimum values.
"std" for standard deviations.
"q" for quantiles (see the prob parameter).
"tnd" for trends.
Any unrecognized option will just read the homogenized data, allowing you to apply your
own analysis on them.

vala Annual value computed in the listing. Can be set to 0 (no annual value will be com-
puted), 1 (sum of the monthly or other sub-annual data), 2 (mean of the data; the default),
3 (maximum) or 4 (minimum).

prob Probability for the computation of the quantiles (if option out="q" is used. Default
value: 0.5, which is the same as the median).

eshcol Columns of the homogenized station file "*.esh" to be included in the output file.
Its default value is 4, indicating that only the code of the station (the fourth column) will
precede the computed statistics.

The output files will have the base name with an extension equal to the chosen out option, with
the exception of the quantiles, which will have an extension qPP, where PP will be replaced by
the probability set with the prob option (in %).
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Therefore, if we want to obtain 1971-2000 monthly normals from the previously homogenized
minimum temperatures, we could issue the following command:

dahstat("Tmin", 1956, 2005, 1971, 2000)

But if we try to compute the trends for the whole period of study 1956-2005, including the
coordinates of the stations (columns 1 and 2 in the Tmin_1956-2005.esh output file) after the
station codes, we should do:

dahstat("Tmin", 1956, 2005, out="tnd", vala=1, eshcol=c(4,1,2)) 3

and in this way we would obtain the list of the trends in a text file called Tmin_1956-2005.tnd
that, by including the site coordinates, would be suitable to produce a map (either within R or
importing it into a GIS).

(End of the quick guide)

3Note the use of the concatenation R function c to provide a vector of numbers.
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1. Introduction

As the reader most probably knows, meteorological stations are not only recording the local cli-
mate variations, but rather their measurements are also affected by changes in instrumentation,
methods of observation, relocations and changes in the environment (e.g. urban growth or land
use changes). Hence, we call homogenization to the statistical process that tries to remove this
unwanted perturbations and let the climatological series to reveal climate variations only.

This problem has been recognized since many decades ago. Some old methods relayed on tests
to check the non stationarity of a single climatological series. This absolute methods must
be avoided, since they assume a climate stability that has proved unrealistic. The alternative
is to use relative homogenization methods, in which the stationarity test are applied to series
of ratios or differences between the problem station and one or more well correlated series
from neighbor stations. Peterson et al. (1998) and Aguilar et al. (2003) provide reviews of
the different approaches developed by climatologists so far, while the next section explains the
strategy followed in this package.

2. Methodology

2.1. Type II regression

As in many other methods, homogeneity tests are applied here on a difference series between
the problem station and a reference series constructed as an (optionally) weighted average of
series from nearby stations. But unlike most of them, the selection of the these stations is based
on proximity only, disregarding the correlation criterion, in order to be able to use the nearest
stations even if they have a too short (or none) common period of observation for correlations to
be safely computed. Therefore, while the use of correlations is usually constrained to selected
long series, we are able to use as much information as possible from our climatological network.
This implies, however, that the region under study should be climatically homogeneous4, since
the presence of sharp geographical boundaries can lead to the use of nearby badly correlated
stations to compute the reference series. In this case, the region should be subdivided and the
homogeneity process independently applied to every sub-region.

This approach was inspired by the method used by Paulhus and Kohler (1952) to fill missing
daily precipitation data, consisting in a spatial interpolation of the rate to normal precipitation
of neighbor stations. This proportion method is extended in the climatol package with options
to use differences and full studentization to normalize the data. Proportions (or ratios) to nor-
mal climatological values are appropriate for precipitation and other zero-limited variables with
L-shape probability distributions, while differences to normals (or studentizations, if this dif-
ferences are further divided by the standard deviation) are most suited to temperature and other
(near) normally distributed variables.

From the statistical point of view, this is equivalent to apply a type II linear regression model,
instead of the far more known type I. The latter is normally computed by a least squares ad-
justment, minimizing the deviations between the points (observations) to the regression line in

4Or, at least, that the climate varies smoothly throughout the studied region.
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the Y axis direction (vertically, as if figure 1-left). The underlying assumption is that the inde-
pendent variable X is either controlled by the investigator or measured with neglectable errors
(Sokal and Rohlf, 1969) . But this is not the case when adjusting regression lines to pairs of
series of a climatological network, where the errors are a priory similar in all stations. In this
case, the deviations to minimize should be computed perpendicularly to the regression line, as
in figure 1-right.
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Figure 1: Deviations minimized by Ordinary Least Squares (type I regression, left) and Orthog-
onal Regression (type II regression, right).

There is a least squares analytical expression for computing this type II orthogonal regression
line (Daget, 1979), but there are a few alternatives that provide a very close approximation. The
simplest is called reduced major axis which, if we name x and y the standardized versions of
the dependent and independent variable (x = (X −mX)/sX and y = (Y −mY )/sY , where m and
s stand for the mean and standard deviation respectively), has the form:

ŷ = x

(Or ŷ = −x when the relation is inverse, which is not the case when dealing with the same
variable in a climatically homogeneous region).

A characteristic of this type II regression is that the variance of the estimated variable is the
same as that of the original variable, since this line does not tend to the horizontal when the
coefficient of determination (r2, equal to the fraction of explained variance) tends to zero. It
can be argued that, when this fraction is lower than one, the extra variance provided by the type
II regression with respect to the Ordinary Least Squares (OLS) counterpart is spurious. But we
expect high values of r2 if the observational network is dense enough, and on the other hand we
will avoid the undesired effect of a reduced variance when the assessment of the variability of
the series is the final goal of the climatic study. In addition, this approach provides a means to
not only adjust for changes in the average of a series, but for changes in variance also5.

5Although changes in the variance of the series are not searched in this package.
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2.2. Data estimates

Once the original data are normalized, we estimate every term of each series as a weighted
average of a prescribed number of the nearest available data. The weights to be applied to the
reference data can be all the same (plain average) or be computed as an inverse function of
the distance d between the observing sites. The function originally chosen for this was 1/(1+
d2/a), where the parameter a allows the investigator to modulate the relative weight of nearby
stations to the more distant ones, but it is more conveniently formulated as 1/(1+d2/h2), since
in this way the new parameter h becomes the distance at which the weight is half that of a station
placed in the same location of the data being estimated6. In figure 2 this function is plotted for
different values of h. (The parameter h is called weight distance, wd, in the parameter list of the
homogenization function of this package).
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Figure 2: Different shapes of the weighting function according to the weight distance h (param-
eter wd of the homogen function).

But the first problem we must face is that, unless the series are complete, we cannot compute
their means and standard deviations for the whole study period. We must then begin by com-
puting this parameters from the available data only, use the estimated series (after undoing nor-
malization) to fill the missing data, recompute the means and standard deviations, re-normalize
the data, and obtain new estimates of the series. This process is repeated until the maximum
change in a mean is less than a chosen amount (0.005 units by default).

6Thanks to Victor Venema for this suggestion.
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2.3. Outlier and sharp shift detection and correction

After having estimated all the data, for every original series we can compute a series of anoma-
lies (differences between the normalized original and estimated data), and apply to them tests
for the detection of:

1. Outliers: The series of anomalies is standardized, and anomalies greater than 5 (by de-
fault) standard deviations will result in the deletion of their corresponding original data.

2. Shifts in the mean: The Standard Normal Homogeneity Test (SNHT, by Alexandersson,
1986) is applied to the anomaly series in two stages:

a) On windows of 120 terms moved forward in steps of 60 terms (default values).

b) On the whole series.

The maximum SNHT test values (called tV in this package) and their locations for every series
are retained, and the series with the greatest value, if higher than the default threshold, is split at
the point where this maximum has been computed. Values after this break point are transferred
to a new series (with the same coordinates) and deleted from the original series.

Ideally, after the first split of a series, the whole process should be repeated, since that inhomo-
geneity may have influenced the homogeneity assessment of its nearby series. But this can lead
to a very long process when dealing with a big number of stations with many inhomogeneities,
and therefore a tolerance factor is provided to allow several splits at a time.

When all inhomogeneities detected over the prescribed threshold in the stepped SNHT test have
been removed through the split process, the SNHT is applied again to the whole series, possibly
generating more breaks in the series.

The stepped test has been implemented to prevent multiple shifts in the mean from yielding
misleadingly low SNHT results, while the application to the whole series is more powerful
for detecting smaller shifts that may have passed inadvertently to the stepped test. Anyway,
the default threshold of SNHT for the whole series has been set greater than for the stepped
application, to avoid the series been split due to a smooth trend instead of an abrupt shift in the
mean (although steep local trends will be detected and treated as if they were shifts).

After all inhomogeneities over the set thresholds have been eliminated, a final stage is per-
formed, devoted entirely to missing data recalculation (including the data removed by the out-
liers and shifts detection stages). This applies to all the series, either original (not split series or
first fragments of the split series) or derived (new series created by the split process). Despite
the number of reference data, the last missing data filling of the fragmented series is computed
using only the reference of the other fragments.
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3. Application

3.1. Preparing the data

Climatological and station coordinates data must be provided in the way explained in the quick
guide in order to be properly read by the homogenization function. Alternatively, you can read
them with your own R functions, allowing you to read them from files with a different structure
or to take advantage of the R procedures to access Relational Data Bases. The only precaution
is that your data must end in the R memory space in the two objects:

dat Numerical matrix containing the data, with dimensions nd, ne (where nd and ne stand
for number of data per station and number of stations, respectively). Missing data must
be assigned the standard R NA value.

est.c Data frame with five columns X Y Z Code Name, containing the coordinates (X and Y
may be expressed either in geographic degrees or in km, and Z in m), codes and names of
the stations. The ordering of these lines must be consistent with that of the data blocks in
the dat object.

3.2. Homogenizing the series

The homogenisation function of this package is called homogen, and must be provided, at least,
with three parameters:

varcli Acronym of the name of the climatic variable under study.

anyi Initial year of the study period.

anyf Final year of the study period.

This three parameters have no default values, and they will be used by the function to build the
base name of the input and output files of the process, as explained in the quick guide. The
other (optional) parameters accepted in the call to the function are the following:

nm Number of data per year in each station (12 by default: monthly values. Set to nm=1 if you
are analyzing annual data, nm=4 for seasonal data, etc).

nref Maximum number of reference data to be used in the estimation of each data. As ex-
plained in the methodology section, all data are estimated as if they were all missing
(in order to compute the anomalies), as a weighted average of the nearest data7. This
parameter sets the maximum number of data to be used, if more are available. (10 by
default).

7Note that we are talking about nearest data and not nearest stations, since the available data will likely be
changing along the study period.



6

dz.max Threshold of outlier tolerance. By default, anomalies greater than 5 standard devia-
tions (of the anomaly series itself) will be rejected (conservative figure).

wd Distance (in km) at which data will have half the weight of a station located at the same site
of the series been estimated. The default values are 0 for the first two stages (meaning
that all the reference data will have the same weight), and 100 for the last stage of final
missing data re-computation. You can provide a vector of three values, one for each stage,
as in wd=c(0, 200, 50). Any additional value will be disregarded, while the last value
will be repeated if the vector has less than three elements.

tVt Threshold value of the stepped SNHT window test (25 by default).

tVf Tolerance factor to split several series at a time. The default is 0.02, meaning that a 2%
will be allowed for every reference data. (E.g.: if the maximum SNHT test value in a
series is 30 and 10 references were used to compute the anomalies, the series will be split
if the maximum test of the reference series is lower than 30*(1+0.02*10)=36. (Set tVf=0
to disable a split if any reference series has already been split at the same iteration).

swa Size of the step forward to be applied to the windowed application of SNHT. The default
value is 60, meaning that the test will be applied to the first 2*60 available terms of the
series, and then this 120 window will be skipped 60 terms forward for another test, and
so forth until the end of the series is reached. This default value is suitable to monthly
series, but too big for annual and possibly to low for daily series.

snhtt Threshold value for the SNHT test when applied to the complete series. Defaults to 50
(a conservative value), and can be set to 0 to skip this test.

mxdif Maximum data difference in consecutive iterations. The iterative computation of means
(and, optionally, standard deviations) of the series will stop when the maximum difference
of any data is at most equal to this parameter, set by default to 0.05.

force Boolean parameter to force the split of series even when only one reference station is
available. Defaults to FALSE.

a Constant to be added to the data just after reading them from the input file. Provided, in
combination with the following b parameter, as a means to apply a linear transformation
to the data. E.g., if the original data are in a different unit than the desired working unit.
(Defaults to 0).

b Factor to be applied to the data (1 by default).

wz Factor to apply to the station altitudes before computing the matrix of euclidean distances.
By default it has a value of 0.001, to give to the vertical coordinate (in m) the same
weight than to the horizontal coordinates (in km).

deg Set to TRUE if the input coordinates are in geographical degrees, or left in its default FALSE
value if they are in km (the distance units used internally by the package).

rtrans Root transformation to apply to the data: 2 for square root, 3 for cubic root, etc.
(Fractional numbers are allowed; useful if your variable distribution is far from normal,
as with wind speeds or precipitations from arid regions).
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std Type of normalization. By default (3), both the mean and the standard deviation will be
applied, but if your variable has a natural zero (as is the case with precipitation), std=2
can be preferable (data will be normalized just as ratios to the mean values). Another
option is std=1, for only applying differences to the mean values.

ndec Number of decimal digits to which the homogenized data must be rounded (1 by default).

mndat Minimum number of data for a split fragment to become a new series. If leaved to its
0 default value, it will be set to half the value of the swa parameter when applied to daily
data, and to the value of nm otherwise, with an absolute minimum of 5. (If this value is
too low, the means and standard deviations of the series will be very poorly estimated,
and the same will happen to the reconstruction of that series).

gp Graphic parameter. Set it to:

0, to prevent any graphic output.

1, to have only descriptive graphics of the input data (no homogenization will be
performed).

2, to produce also the diagnostic graphics of anomalies.

3 (the default), to get also the graphics of running annual means and applied correc-
tions.

4: as with 3, but running annual totals (instead of means) will be plotted. (To be
preferred when working with precipitation data).

leer 8 Set to FALSE if you read your data with your own R routines.

na.strings Character string to be treated as a missing value. It defaults to the R standard
"NA", but can be set to any other string as, e.g., na.strings="-999.0", or even a vector
of strings, as in na.strings=c("-999", "-999.0", "-999.0").

nclust Maximum number of stations for the cluster analysis. By default, if the number of
input series is greater than 100, only a random sample of this size will be used for these
descriptive initial graphics.

maxite Maximum number of iterations when computing the means of the series. Defaults to
50, to avoid a too long processing time when convergence is very slow.

ini Initial date. Void by default, if set (with format ’YYYY-MM-DD’) it will be assumed that
the series contain daily data (see section 7 for a discussion on the limitations of such an
application).

vmin Minimum possible value (lower limit) of the studied variable. Unset by default, but note
that vmin=0 will be applied if std is set to 2 (e.g., in precipitation or wind speed analysis).

vmax Maximum possible value (upper limit) of the studied variable. Unset by default, but
useful to homogenize, e.g., relative humidity or relative sunshine hours (set vmax=100
and vmin=0 if these data are expressed as percentages).

8Spanish for to read
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verb Verbosity. TRUE by default, may be set to FALSE to avoid the long output sent to the
console. (It will be sent to the log file anyway, as explained in the following section).

As explained in the quick guide, the most trivial homogenization example with this function is:

homogen("Tmin", 1956, 2005)

You can reproduce this example after putting the appropriate data and station files in your R
working directory. These files, named Tmin_1956-2005.dat and Tmin_1956-2005.est, are
archived in climatol-dat.zip, available from http://webs.ono.com/climatol/climatol.html.
The outputs of this example will be explained in the following section.

4. Outputs

The example application command homogen("Tmin", 1956, 2005) generates four output
files, stored in the working directory:

Tmin_1956-2005.txt A text file that logs all the processing output to the console.

Tmin_1956-2005.pdf A PDF file with a collection of diagnostic graphics.

Tmin_1956-2005.dah A text file containing the homogenized data (with missing data
filled). It has the same structure as the input data file Tmin_1956-2005.dat.

Tmin_1956-2005.esh A text file with the coordinates and names of the stations of the
homogenized data file.

4.1. *.txt file

The log text file is meant to be self-explanatory. It begins by recording how the function was
called, with all the parameter values (including the unmodified defaults), for future reference.

Then the convergent iterative computation of means and missing data filling follows, displaying
the maximum mean difference to the previous iteration and identifying the code of the corre-
sponding station. Outliers rejected during this process appear in lines as the following:

S63(7) 1966 7: 21.1 -> 14.3 (stan=6.42)

These lines begin with the code of the station and, between parenthesis, its rank in the station
list input file. Then, the year and month of the outlier follow, and, after a colon, the value of the
original observation, an arrow, and the suggested correct value. At the end of the line, between
parenthesis also, the standardized anomaly (standard deviation of the anomaly of the normalized
observation) is given. Note that the suggested correct values appearing in this outlier rejection
lines are only provisional estimations, since the final estimation of the missing values (including
the rejected outliers) will have been computed at the final stage of the process.

After the iterative computations of series averages (and standard deviations, if the default std=3
setting is unchanged), the shift analysis results are presented. For every series, identified by its
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ordinal number, the maximum value of the SNHT test (tV) is shown. And when all series have
undergone their tests, the one (or more) that scored the maximum value is split, and the record
of this process is reflected in this file in lines like, e.g.:

M56(10) breaks at 1976 7 (95.1)

The code and ordinal number of the station appears as in the outlier rejection lines, followed
by the year and month of the split point, and the value of tV, within parenthesis. The given
break point here is always the first term after the shift, and from this term until the last one of
the series are moved to a new series attributed to a new station, with identical coordinates as the
original series and code and name formed by appending an increasing number to the primary
ones.

These blocks of iterative computation of means (with possible outlier removals) and break anal-
ysis is repeated several times as the process goes through stages 1 (stepped forward window
SNHT tests) and 2 (classical whole series SNHT tests), and a final stage 3 is undergone to
compute the final estimation of missing data (this time without shift analysis).

The log file ends with a set of final computations, including:

ACmx Maximum absolute auto-correlations. The R acm auto-correlation function is applied
to the anomaly series, and the maximum absolute value of all lags is retained for every
series. High auto correlation values may give an indication of lack of randomness, and
attention should be given to those series.

SNHT Standard Normal Homogeneity Test of the final series of anomalies. This is to evaluate
the remaining inhomogeneities of the output series of the process.

RMSE Root Mean Squared Error of the estimated data. This is computed form the differences
between the observed and estimated data, when both are available. It serves to give an
idea of the errors involved in the estimation of the missing data, and may help to choose
the best parameters when different applications of the homogen function are performed.
On the other hand, high RMSE values may indicate either a bad quality of the original
series or a singularity of the site of that station, in the sense that it could be placed in a
location with a special micro-climate that is not affecting their neighbors.

PD Percentage of original Data. When a series is split in two or more fragments, this value helps
in identifying which one is retaining most of the original data (the longest fragment).

Summaries of these four magnitudes are given first, and then their values are displayed for every
series (primaries and derived).

4.2. *.pdf file

A potentially long (depending on the gp setting) series of diagnostic graphics are also produced
by this function. The first figures are dedicated to a description of the input data: overall number
of available data (figure 3), box-plots (monthly if applicable, as the figure 4 January example),
and a histogram (figure 5). Big outliers or any major problems in the input data revealed by
these graphics may suggest a corrective action prior to repeating the homogenization process.
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The following figure is a plot of correlation coefficients versus distance (figure 6). The corre-
lation coefficients are computed from the first differences of the series to avoid the impact of
inhomogeneities, and all available pairs of observations have been used. Only computed corre-
lations of 1 and -1 have been removed from the correlation matrix, since they must come from
series having only two pairs of common observations, but be aware that some of this correla-
tions may have been computed from as few as three data points. Although this coefficients are
not going to be used in the homogenization process, this plot is useful to assess the smoothness
of space-climate variations, or otherwise the existence of possible factors that compromise this
correlation-distance relationship. In the example of figure 6, high and low correlations co-exist
at short distances, indicating the impact of the different topography of the sites on the minimum
temperatures in calm and clear sky nights.
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Figure 3: Overall number of available data.

A cluster analysis is then performed, based on the correlation matrix, that serves to produce
two more figures: A dendrogram, where you can see the stations grouped by similarity of their
data regimes, and a map locating the sites of the stations, identified by their ordinal numbers
and in different colors according to their clusters. This is intended as a first approximation to a
climatic classification of the stations, although the number of clusters, automatically chosen by
the dashed red horizontal line in the middle of the dendrogram, will probably be not the best. If
the clusters are very different (are connected by high dissimilarity distances in the dendrogram)
and their spatial location depicts clearly delimited areas, the climate of the study area may
be subject to strong discontinuities, and hence the investigator should consider doing separate
homogenizations for each climatic subarea.
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Figure 6: Correlation–distance plot.
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Figure 7: Dendrogram built from the correlation matrix.
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Figure 8: Map of the stations, colored according to their clusters.

After these descriptive figures, we enter those describing the analysis of the anomaly series, as
if figure 9, with anomalies plotted as vertical blue bars. When the maximum value of the shift
in the mean test is over the prescribed threshold, the location where the series is split is marked
by a vertical red dashed line, and a number at the top shows the (floor rounded) value of the test.
In the lower part of the figure, the minimum distance to the nearest reference data is graphed in
green, in a logarithmic scale.

All split series are shown in a similar figure, allowing a quick visual inspection of the homog-
enization process and a subjective consideration about its performance. The first splits will
probably be very clear (as in figure 9), while the final ones could be arguable, especially if the
test threshold, tVt, was set too low. In this case, re-running the process with a higher threshold
would be advisable.

After all the split anomaly graphs of the first stage, summarizing graphics are presented, show-
ing the maximum shift test values of the resulting split series (figure 10, with colored bars
turning from green to red when the values increase), and a histogram of all these values (fig-
ure 11). Both figures show the distribution of the maximum shift test values, allowing to judge
if the higher values are showing series with prominent inhomogeneities or rather they are only
the right tail of the shift tests distribution.

This block of anomaly series shift tests and splits is repeated for stage 2, where the SNHT test
is applied to the whole series, with the bar and histogram summaries of the maximum values of
the test in the resulting series at the end of the stage. Two other summarizing graphic are then
appended: a histogram of the number of splits per station (figure 12), and a bar graph of number
of splits per year (figure 13). An accumulation of many splits in the same year could point at
changes in observational practices in a significant part of the network9.

9Changes should never be simultaneously applied to all the network, since no reference data would be left to
assess the effect of the changes.
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Figure 9: Analysis of the anomalies, marking the most significant break point.
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Figure 10: Remaining maximum shift test values of the resulting series after the splitting pro-
cess. (Some stations display no bar because they have a too short period of observation for the
stepped window SNHT test to be applied).
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Figure 13: Number of splits per year applied through the homogenization.

As mentioned before, the third stage of the homogenization process is devoted to the final miss-
ing data estimation, including not only the original missing data, but also the rejected outliers
and the data moved to a new series after a sharp shift detection and series splitting. This final
stage generates two new blocks of figures: anomaly graphics, similar to those originated in
stages 1 and 2, and final series and corrections applied.

Figure 14 shows one example of the final anomaly graphics, in which vertical dashed lines mark
the locations of the maximum SNHT test values (the stepped one, in green, only if the series
have enough data, 2*swa at least, for its application). A regression line is drawn in blue if the
trend of the anomalies is significant at the 0.05 level.

After the anomaly graphs of every final series (original or split), new graphs are produced for
every original series showing, in the upper part, the running annual means (or totals, if gp=4
is set), and in the lower part, the corrections applied for every reconstruction (see example in
figure 15).

The last graphics include histograms of normalized anomalies (with frequency bars outside the
prescribed outlier threshold filled in red), and of the maximum values of the shift tests (tVx and
SNHT). Note that these may yield values higher than their corresponding thresholds if, as in
the default values, the weight distance wd is lower in the third missing value recalculation stage
than in the previous shift detection and correction phases.

The very last graphic of the PDF output file is a plot of RMSE-SNHT points (figure 16) where
the quality (or singularity) of every reconstructed series can be inspected.
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Figure 14: Anomalies of the final series, with maximum SNHT locations and general trend (if
significant).
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Figure 15: Original (in black) and reconstructed running annual series (top), and corrections
applied to each fragment (bottom).
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Figure 16: Plot showing the SNHT and RMSE of every final series (original or fragmented).

4.3. *.esh and *.dah files

The *.esh and *.dah files are the equivalents of the input files *.est and *.dat, but holding
the results of the homogenization. However, the stations file *.esh will have additional infor-
mation, as we can see in the first lines of the file Tmin_1956-2005.esh output in our example
exercise:

27 53.9 456 "S03" "La Perla" 79 1 0 12
31.8 26.5 123 "S08" "El Palmeral" 11 2 0 8.4
49.2 30 154 "S11" "Miraflores" 31 3 0 5.1

In each line, the following items are related (the first five are the same than in the *.est input
file):

1 Longitude, X.

2 Latitude, Y.

3 Altitude, Z.

4 Code of the station, Cod.

5 Name of the station, Name.
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6 Percentage of original data, PD.

7 Index of the original station in the input data, io.

8 Binary flag marking whether the station was operating at the end of the study period (1) or
not (0), op.

9 Maximum SNHT value, SNHT.

X and Y will be expressed in the same units (km or degrees) as in the input file. As to the index
of original station (io), its purpose is to identify which fragments belong to the same original
series. E.g., the eighth station in our exercise, Esmeraldas, has been split twice. Therefore, three
fragments appear in the Tmin_1956-2005.esh file (for which completely reconstructed series
are available in Tmin_1956-2005.dah):

31.6 56.2 498 "S40" "Esmeraldas" 48 8 0 21.1
31.6 56.2 498 "S40-2" "Esmeraldas-2" 7 8 0 5.5
31.6 56.2 498 "S40-3" "Esmeraldas-3" 8 8 0 3.1

From these lines (not consecutive in the file) we can see that they all belong to the same original
series because: a) They share the same coordinates; b) Their codes and names are the same,
except for a numerical suffix that has been appended to provide a way to differentiate them; and
c) their io value is the same (8). But note that the numerical suffixes are in no way informing
about the chronological order of the fragments in the original series, since they are created by
order of shift test importance. In our example, if we search for the words S40 and breaks in
the Tmin_1956-2005.txt log file, we find the following two lines, that indicate that the first
split (originating the S40-2 series) happened in March 2000, while the second split took place
earlier (in March 1996), hence giving birth to the S40-3 series:

S40(8) breaks at 2000 3 (47.2)
S40(8) breaks at 1996 3 (28.5)

5. Discussion and suggestions

If you need quickly homogenized values for your project, you will be tempted to use the ho-
mogenization function as a black box, but it is advisable to revise the output files to see if the
parameters used, whether set by the user or with their default values, are fit to your particular
climatic network. Take into account that the optimal values of the parameters will vary ac-
cording to the climatic element under study, its spatial variability, and the temporal and spatial
density of the observations, and hence no universal default values can be provided.

Moreover, the chosen parameters can be optimal or not depending on the final purpose of the
series analysis. E.g.: If you want to obtain climatic normals, the variance adjustments will
have no importance, while they can be crucial if deriving extreme value return periods from the
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series. In the latter case, you can limit the variance diminution of the weighted estimates by
setting a short weighting distance in the third stage (e.g.: wd=c(0,200,30)), or totally avoid it
by using only one reference data in this last data re-computation stage (nref=c(10, 10, 1)).

Therefore, you should look at the diagnostic graphics and see if there are remaining inhomo-
geneities that should be corrected, in which case the shift correction thresholds tVt and/or
snhtt should be lowered, or if too low values of these thresholds have produced an exces-
sive fragmentation of the series. Critical values of SNHT can be found in the literature (e.g.,
Khaliq and Ouarda, 2007), and reference values are also discussed in the annex at the end of
this document.

Similarly, depending on the kurtosis of the studied variable, too many (or too few) outliers
may have been deleted. The default value, 5 standard deviations, is rather conservative. You
may adjust it to your needs, and even set different values for each of the three stages of the
process. E.g., dz.max=c(6, 3.5, 9) would remove only the more outstanding outliers in the
first stage, and would be more drastic in the second, while avoiding any outlier removal in the
last stage (unless very big outliers appear, which could only happen if the number of references
has been very much reduced in this stage).

Do not forget to set deg=TRUE if your coordinates are in degrees, as well as to choose the appro-
priate normalization type, preferring std=2 for zero limited climatic variables (as precipitation
or wind speed) and applying a root transformation if their histograms show a clear L-shaped
distribution. Note that std=1 will apply constant corrections to the data, and therefore no sea-
sonal differences in the inhomogeneities will be accounted for, nor any variance adjustment will
take place.

If you are homogenizing a reduced number of series, it is advisable to set tVf=0, to avoid too
many splits at a time. In these cases, you may face a situation in which, at some time in the
period of study (more likely at the beginning, normally with less observing stations), you have
data only in one or two series. One data item is the absolute minimum at any time step for the
homogenization process to be able to proceed, but in this points, due to the lack of references, no
outlier nor shift can be detected, and the corresponding missing data in all other series, whether
near or far away, will be filled with the only available value. On the other hand, at the time
steps where only two stations have observations, the outlier and shift tests can be performed,
but if the values are greater than the prescribed thresholds, no decision can be made about which
of the two series is the one to be pinned with the inhomogeneous label. Therefore, no outlier
deletion nor split is made in these cases, which are merely reported in the log output file with
the annotations:

For outliers: ... Only 1 reference! (Unchanged)
For shifts: ... could break at ..., but it has only one reference

(Dots would be replaced by the relevant information about the involved station and date of the
suspect data).

In these cases, the only way to decide which of the two suspect shifts is the real one relays on
metadata. The history of the stations may give light about which of the stations was relocated
or suffered any change that could account for that shift in the mean of the observations. If this
information is available, we could then manually split the inhomogeneous series and rerun the
homogenization process.
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The importance of keeping records of all kind of changes affecting a station or its surroundings
can never be sufficiently stressed, and several homogenization methods relay heavily on them
(Aguilar et al., 2003). Unfortunately, metadata are often incomplete or entirely lacking, and
therefore this package is not using them, although they can be useful to check the results of the
process.

Another possibility when trying to homogenize a few series and having only one or two avail-
able in some sub-period is to complement the observational series with others derived from
reanalysis products in nearby grid points, but if your series begin before mid-XXth-Century
these reanalysis may be difficult to obtain.

In summary, it can be a good practice to try new homogenizations with different parameters and
check which one is more satisfactory. To avoid overwriting your output files at every trial, you
can rename them with the function outrename, that will append a suffix to their base name.
E.g., if we want to keep the previous results as Tmin_1956-2005-old.*, we would use the
command:

outrename("Tmin", 1956, 2005, "old")

Once you have tuned the application of homogen to your particular dataset with suitable pa-
rameters, you can keep them for future homogenizations of the same dataset as, e.g., if you
are managing a data base in which new data are been included regularly. In these cases, re-
homogenizing the dataset once a year is advisable, since the new data may confirm or reject
suspect inhomogeneities near the end of the series.

6. Post-processing the output

After having obtained satisfactorily homogenized series, you will want to apply your own anal-
ysis to them to obtain statistical values and graphics showing temporal or spatial variations of
the studied climatic element. To facilitate some of the more common statistical computations,
the package includes the function dahstat, that can be called with the following parameters
(default values within parenthesis), of which only the first three do not have default values (and
hence must always be provided):

varcli Acronym of the name of the climatic variable under study.

anyi First year of the study period.

anyf Last year of the study period.

anyip First year of the period to compute (anyi).

anyfp Last year of the period to compute (anyf).

nm Number of data per year in each station (12).

ndec Number of desired decimal digits of the output (1).

vala Annual value to compute (2). Can be set to 0 (no annual value), 1 (sum of the monthly or
other sub-annual data), 2 (mean of the data; the default), 3 (maximum) or 4 (minimum).
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mnpd Minimum percentage of original data (0).

mnsh Minimum SNHT (0).

out Type of output (the file name will have the corresponding extension):
"med" for means of the data (the default).
"mdn" for medians.
"max" for maximum values.
"min" for minimum values.
"std" for standard deviations.
"q" for quantiles (see the prob parameter).
"tnd" for trends.
Any unrecognized option will just read the homogenized data, allowing you to apply your
own analysis on them.

prob Probability for the computation of the quantiles (if option out="q" is used. 0.5 by
default, which yields the same output than out="mdn").

func Only compute statistics on series of stations functioning at the end of the period of study
(FALSE).

pernum Number of years on which to express computed trends (100).

eshcol Columns of the homogenized station file to be included in the output file (4).

sep String to be used for separating the output data (" ").

eol Line termination style (defaults to the new line code "\n").

Parameters mnpd, mnsh and func act as filters to produce results only for series that have those
minimum percentages of original data and SNHT values, and to select only those stations work-
ing at the end of the period studied. No selection is performed by default, listing the desired
statistic for all the reconstructed series.

By default, values are separated by spaces in the listings, but you can change this with the sep
parameter. E.g., you can get semicolon separated values by setting sep=’;’. (Remember that
in R you can delimitate character strings either with single or double quotes).

The output files will have the base name with an extension equal to the chosen out option, with
the exception of the quantiles, which will have an extension qPP, where PP will be replaced by
the probability set with the prob option (in %).

Therefore, to obtain 1971-2000 monthly normals from the previously homogenized minimum
temperatures, we would do:

dahstat("Tmin", 1956, 2005, 1971, 2000)

But if we want to compute the trends for the whole period of study 1956-2005, expressed in
units per 10 years (instead of per century) with two decimals, and including the coordinates of
the stations (columns 1 and 2 in the Tmin_1956-2005.esh output file) after the station codes,
we should do:



23

dahstat("Tmin",1956,2005,out="tnd",pernum=10,vala=1,ndec=2,eshcol=c(4,1,2))10

In this way we would obtain the list of the trends in a text file called Tmin_1956-2005.tnd,
that could be imported by a GIS to produce a trend map. Alternatively, we could generate that
map withing R, with the help of other packages (Bivand et al., 2008). Example of the beginning
of that output file:

"Code" "X" "Y" "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec" "Annual"
"S03" 27 53.9 0.04 0.01 0.05 -0.07 0.13 0.19 0.08 0.17 -0.21 0.1 -0.1 0.12 0.53
"S08" 31.8 26.5 -0.02 -0.01 0.15 0.06 0.17 0.21 0.05 0.13 -0.15 0.12 -0.04 0.08 0.75
"S11" 49.2 30 -0.01 0.05 0.08 0.05 0.24 0.23 0.11 0.12 -0.19 0.1 -0.09 0.07 0.76
...

7. What about daily (or sub-daily) data?

Increased concern has aroused during the last years about the need to homogenize daily data.
This is a very difficult task, since the detection of shifts in the mean of a series is basically
a signal/noise problem, and daily values are generally too noisy for a successful detection.
Therefore, while work is being done in the quest of techniques to approach this challenging
homogenization, this package should not be applied to adjust daily series for changes in the
mean, unless that signal to noise ratio is high enough, either because the break is very big or the
noise is very low.

One real example of very low noise was found when investigating a shift in the mean of a
thermometric station located at an airport: the runway sensors of air temperature provided a
very close reference to the problem climatological records, allowing to detect the date of a
badly performed maintenance operation that resulted in a 0.9◦C shift in the temperature. Due to
the existence of this close reference, the detection of the break was made on the differences of
the 10-minutes series, while it would have been very problematic otherwise even with the daily
series.

The main problem when trying to homogenize such sub-daily series resides in the lack of syn-
chronization of the measures of most (or all) climatic elements, since the passage of fronts,
moving thunderstorms or convective cells will have a different timing throughout a region,
transmitting this lack of synchronization to the meteorological observations of the different ob-
servatories. This may often happen even in daily precipitation data, when a rain shower around
the observing time is differently assigned in two consecutive days depending on when the pre-
cipitation reached the gauge stations.

But, although the correction of shifts in the mean of daily series is generally not advised, it is
best to perform the quality control of the data on these kind of series rather than on the aggre-
gated, monthly data. Note that a 10◦C error when reading or transcribing a daily maximum
temperature becomes an error of only 0.17◦C in the monthly mean temperature. Therefore,
whenever possible, outlier detection and correction must be done on the original measurements,
weather daily (the usual case in the cooperative stations) or at shorter intervals (normally at the
Automatic Weather Stations), although in this latter case the aforementioned lack of synchro-
nization may preclude the availability of reference stations.

10The c concatenation function is the standard R way to provide a vector of numbers.
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To avoid conflicting file names between daily and monthly data, the former are distinguished in
this package by appending the suffix -d to the acronym of the variable. E.g., while we have
been working with monthly values located at the file Tmin_1956-2005.dat, the file containing
the corresponding daily values would be called Tmin-d_1956-2005.dat (and the needed sta-
tions file Tmin-d_1956-2005.est would be a copy of Tmin_1956-2005.est). The call to the
homogen function would be in this case:

homogen("Tmin", 1956, 2005, nm=0, tVt=0, ini="2007-01-01")

The output graphics in Tmin-d_1956-2005.pdf may reveal some big shifts in the mean that
could be worth removing. In this case, a new application of homogen can be performed, setting
an appropriate value of tVt (and possibly snhtt) instead of the zero value set to prevent any
break analysis. Also important will be to set a big window swa for the stepped SNHT, since
the persistence of some circulation types will induce highly auto-correlated daily anomalies, an
effect more rarely seen when dealing with monthly values.

After having obtained daily values with missing data filled by homogen, the user may want to
derive their corresponding monthly values. The function dd2m is provided for this daily data
to monthly conversion, which has many parameters in common with the dahstat function:
varcli, anyi, anyf, anyip, anyfp and ndec. The rest of parameters governing dd2m are
already familiar to us because they are equal or similar to others already seen:

ini Initial date, with no default value here. Must be provided, with format ’YYYY-MM-DD’, to
allow proper attribution of the daily data to their months, since daily data need not begin
by January the first.

valm Monthly value to compute: 1 (sum), 2 (mean, the default), 3 (maximum), or 4 (mini-
mum).

nmin Minimum number of available data in a month to compute the monthly value (15 by
default).

na.strings Missing data code in the original daily data (defaults to the R standard "NA").

Therefore, we would apply this function to the “homogenized” (probably only with the missing
data filled) daily data of our example in this way:

dd2m("Tmin", 1956, 2005, ini=’2007-01-01’) 11

The output file would be Tmin-m_1956-2005.dah. Note that now the variable suffix -d has
changed to -m, to indicate that this file contains monthly data computed from the daily data file,
and to avoid overwriting any existing monthly file named Tmin_1956-2005.dah. This will be
the only output of dd2m, and the user may want to manually include this monthly series into
a bigger dataset. If needed, the corresponding station coordinates and names may be taken
directly from the file Tmin-d_1956-2005.est, since the monthly data will be allocated in the
same station ordering.

11Double or single quotation are equivalent in R.
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8. Other climatol functions

This package includes two additional functions that have no relation with homogenization, but
provide tools for producing wind-rose and Walter&Lieth climatic graphs. Examples for both
functions are provided in the following subsections.

8.1. Wind-rose graphs

This function is called rosavent12, and accepts the following parameters:

frec Data frame containing the wind frequencies.

fnum Number of reference circles to plot (4 by default).

fint Frequency steps (in %) of the reference circles (5 by default).

flab Parameter indicating which circles must be labelled: 1 (outer circle only), 2 (all circles,
the default), other (do not label any circle).

ang Angle along which circles will be labelled (3*pi/16).

col Colors to fill the frequency polygons (rainbow(10,.5,.92,start=.33,end=.2)).

margen Margins vector for the plot (to be passed to par, see the R help of graphic parameters.
(Defaults to c(0, 0, 4, 0)).

key Set to FALSE if you do not want a legend of the wind-rose, that will otherwise be plotted
if more than one row of frequencies (speed intervals) are supplied.

uni Speed units for the legend header (’m/s’).

... Other graphic parameters that you may want to set (e.g., the main title of the figure, etc).

Example: Suppose we have the following frequencies in a data frame called windfr (that we
may have read from a file or computed by other means):

N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW
0-3 59 48 75 90 71 15 10 11 14 20 22 22 24 15 19 33
3-6 3 6 29 42 11 3 4 3 9 50 67 28 14 13 15 5
6-9 1 3 16 17 2 0 0 0 2 16 33 17 6 5 9 2

Then, with the following command we would obtain the graphic of figure 17:

rosavent(windfr, 4, 4, ang=-3*pi/16, main="Annual windrose")

There are no restrictions respect to the number of columns of the data frame, as long as they
begin by the North frequencies. (Column headers are disregarded by the function).

12A contraction of the Catalan for wind-rose.
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Figure 17: Example of a wind rose obtained with the rosavent function.

8.2. Walter&Lieth climograms

Climate diagrams have long been used as a means to synthesize the climate of a place, and the
botanists Bagnouls and Gaussen had the idea of plotting the monthly values of temperature and
precipitation with a scale 1:2 in order to allow a quick appreciation of the wet months (those for
which the precipitation graph goes over that of the temperature). They called this ombrothermic
diagram (Bagnouls and Gaussen, 1957). Soon after, Walter and Lieth improved it by adding
supplementary climatic information, plotting the freeze periods and shrinking the precipitation
scale when it surpassed 100 mm to allow a worldwide application of this diagram, no matter
how rainy a site can be (Walter and Lieth, 1960).

The function diagwl has been provided to generate this kind of climatic diagram from a data
frame containing the monthly averages of precipitation and daily maximum, daily minimum
and monthly minimum temperatures. The parameters of this function are (default values within
parenthesis):

dat Monthly climatic data for which the diagram will be plotted.

est Name of the climatological station ("").
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alt Altitude of the climatological station (NA).

per Period on which the averages have been computed ("").

margen Margins vector for the plot (c(4,4,5,4)).

mlab Month labels for the X axis: "en" for English, "es" for Spanish, or otherwise numeric
labels will be used ("").

pcol Color pen for precipitation ("#005ac8").

tcol Color pen for temperature ("#e81800").

pfcol Fill color for probable frosts ("#79e6e8").

sfcol Fill color for sure frosts ("#09a0d1").

shem Set to TRUE for southern hemisphere stations (FALSE).

p3line Set to TRUE to draw a supplementary precipitation line referenced to three times the
temperature13 (FALSE).

... Other graphic parameters that you may want to set.

As an example of application, let us suppose that our climatic monthly averages, located in a
data frame called datcli, are the following:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Prec. 97.4 69.3 85.5 71.1 48.9 25.1 8.1 37.2 81.6 144.8 110.6 126.5
Max.t. 15.4 16.1 17.2 19.7 23.9 27.9 31.3 31.4 26.5 22.9 18.2 15.8
Min.t. -0.1 -0.4 1.9 4.9 8.3 11.9 14.8 15.5 13.4 9.7 4.6 2.2
Ab.m.t. -5.1 -7.0 -3.5 -1.7 3.4 8.2 11.6 12.2 9.0 3.0 -1.7 -3.6

To generate the climogram of figure 18, we would call the function in this way:

diagwl(datcli,est="Example station",alt=100,per="1961-90",mlab="en")

You can see the plot of the precipitation and temperature monthly averages, plus annotations of
annual averages of both elements (in the upper part) and monthly averages of the daily max-
imum and minimum temperatures of the warmest and coldest months respectively (at the left
margin). Frost likelihood is shown with flat rectangles just under the 0◦C axis. When the av-
erage daily minimum is zero or negative, we can be sure about the occurrence of frosts, and
the rectangle of that month is filled with a darker blue (by default). Otherwise, if it is the ab-
solute monthly miminum that is zero or negative, the rectangle is filled with a lighter blue to
indicate the probability of having frosts in that month. The blue vertical pattern depicts the
humid months, while the dotted red one shows when the aridity prevails and, in both cases, the
corresponding areas give an idea of how intense is the water surplus or shortage.

13As suggested by Bogdan Rosca
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Figure 18: Example of a Walter&Lieth diagram obtained with the diagwl function.
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10. Annex: Threshold values for the SNHT shift detection

Although there are some published critical values of Alexandersson’s SNHT test, Monte Carlo
simulations were made here especially designed in accordance with the way this test is applied
in the climatol package:

White noise series of 600 terms were generated with the R function rnorm to simulate the
anomaly series of a homogeneous station in a homogeneous network with 50 years of monthly
data. For each of this series, shifts of 0.0 (no shift), 0.5, 1.0, 1.5 and 2.0 standard deviation were
applied in the middle (at term 301), and the SNHT test was computed for windows of 2*swa
terms and 10 sizes of forward steps of swa = 6, 12, 24, 48, 60, 90, 120, 180, 240 and 300 terms.
For every SNHT application, the maximum value of the test and the location in the series were
recorded, and since 2000 white noise series were simulated, 100000 results were obtained in
total.

In the first place, we will analyze the results of the homogeneous series (those to which no
shift was imposed). By studying the right tail of the cumulative distribution of the maximum
SNHT values, we can get threshold values to avoid false break detection with confidence levels
of 90%, 95%, 99%, 99.5% and 99.9%. Figure 19 shows those thresholds, for these confidence
levels and for the 10 different swa stepped forward windows of 2*swa term sizes. Randomness
is to be blamed for the irregularities of the graphs, but the overall figures are not expected to
change significantly if a much bigger number of simulations were performed. It is curious how
the plots present a maximum for middle sized windows, since SNHT critical levels reported in
the literature show an increase that tend to the horizontal as the sample size grows. But here
only for swa=300 is the test applied only once and, the more times the test is computed on the
same series in the stepped forward windows scheme, the higher the maximum value reached by
the test.
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Figure 19: Threshold values (tV) of ten swa stepped SNHT tests on white noise series for five
probabilities of avoiding false break detection.

The next thing we may want to know is how good are these tV threshold values in correctly
detecting the shifts in the series. To answer this question, the number of tV’s higher than the
previously obtained thresholds was computed, and they were qualified as correct hits when the
location of the shift had an error lower than 12 terms14, and as false hits otherwise. Both were
separately accounted for every one of the 10 swa values, 4 shifts and 5 confidence levels.

Figure 20 summarizes the hit rates results, showing that 0.5 standard deviation (sd) shifts are
quite difficult to detect, even for the largest sample size, for which the hit rate index lies around
63% for all five confidence levels of avoiding false break detections. The shifts of 1 sd are more
reliably detected: 95% when the test is applied to the whole series (swa=300), and more than
90% even for samples of 120 terms (swa=60), as far as we allow a 10% probability of detecting
false breaks (confidence level of 0.90). The higher shifts (of 1.5 and 2.0 sd) are almost totally
detected for stepped windows of around 100 terms or more (from swa=48 onwards).

As for the false breaks (figure 21), with the larger sample sizes the probability of detecting the
0.5 sd breaks at a wrong position is as high as around 35%, while with the smaller sample sizes
this probability falls to less than 1% if the test threshold (tVt) is set high enough (confidence
levels greater than 0.99). In the simulations of 1.0 sd shifts this wrong location probability
lies around 5 to 6% in the majority of cases, and for greater shift magnitudes becomes almost
negligible (except for the smaller sample sizes in combination with low confidence levels).

14A year, if we think of monthly series
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Figure 20: Hit rates for different shift magnitudes, confidence levels of avoiding false breaks,
and stepped sample sizes of 2*swa terms (in different line styles).

Therefore, the greater challenges are met when trying to detect shifts up to 1 standard deviation
of the series, because in these situations the lower probability of detection is associated with
higher risks of locating the breaks in wrong positions. Figure 22 shows a synthetic “goodness
index” computed as the product of the hit rates and the complements of the false hit rates. For
0.5 sd shifts, there is a neat ceiling at 0.4, while for shifts of 1 sd this index reaches 0.9 for the
bigger sample sizes.
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Figure 21: False hit rates for different shift magnitudes, confidence levels of avoiding false
breaks, and stepped sample sizes of 2*swa terms (in different line styles).

The default value of swa in the homogen function has been set to 60 (dashed cyan line in these
figures), as a compromise between a good performance in break detection and power of dis-
crimination when more than one break is present in the series (a common situation). And the
SNTH application to the whole series in the second stage of the homogenization process will
help in detecting those breaks missed by the stepped window procedure in the first stage.

Important last remark: These tVt threshold values have been derived from synthetic white
noise series. But in the real world, the anomaly series will unavoidably show some degree
of auto-correlation and local or general trends, depending on the type of climatic variable, its
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spatial variability, the density of the observing network, and the kind of data (annual, seasonal,
monthly, daily, ...). That is why the default values of tVt and snhtt in the homogen function
have been set considerably higher than those obtained in these Monte Carlo simulations, and
that is why it is advisable to adjust them empirically, with the help of the graphic diagnostic
output of a first exploratory application, to tune the performance of the homogenization to your
particular needs.
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Figure 22: Goodness index for shifts of 0.5 (top) and 1.0 (bottom) standard deviations.


