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Abstract

Background: The quantitative real-time polymerase chain reaction (qPCR) and isothermal amplifi-
cation are standard methods for quantification of nucleic acids. Numerous real-time read-out technologies
with different technical foundation have been developed. However, the amplification curve analysis consists
of cascaded steps, which are carried out similarly in all technologies. Despite the continuous interest in am-
plification based techniques, there are only few transparent tools for amplification data pre-processing. It is
a major setback especially during development of new instruments, when the precise control on raw data is
indispensable.

Results and Conclusion: R package for pre-processing and quality analysis of amplification curve data
from conventional quantitative polymerase chain reactions (qPCR) and quantitative isothermal amplification
(qIA). This supplement provides further details and examples for the chipPCR package. The package contains
several data sets, which were generated by helicase dependent amplification (HDA) or polymerase chain
reaction (PCR) under various temperature conditions and detection systems, such as hydrolysis probes and
intercalating dyes. Examples for their usage are presented herein. We have developed chipPCR, which is
a versatile software tailored for the pre-processing of amplification curve data. Its utility is elaborated on
both real and simulated data sets. The structure of the packages is open for integration to Web based and
standalone shiny applications. The R package along codes used for creation of figures used in publication is
freely available.

1 Setting up a work environment
The vignette can be viewed from R using command: vignette(” chipPCR”).
Further details of the experimental set-up for the data sets are described in the manual of the chipPCR
package.
Before the start of any analysis, a user must must choose data set, as shown in example below.
require (chipPCR)

require(xtable)

print (xtable(head(C60.amp[, 1L:5]), caption = "First five cycles of imported data."))

Index Vim.0.1 Vim.0.2 Vim.1.1 Vim.1.2

1 0 0.00 0.00 -0.03 -0.03
2 1 0.00 0.00 -0.03 -0.03
3 2 0.00 -0.00 -0.02 -0.02
4 3 -0.00 -0.00 -0.01 -0.01
) 4 -0.00 -0.00 0.01 0.01
6 5 -0.00 -0.00 0.05 0.05

Table S1: First five cycles of imported data.

All datasets used in following examples can be loaded in the same manner. They atre also automatically
avaible after loading whole package.



2 Inspection and analysis of amplification curve data

The following section briefly describes function from the chipPCR to visualize and analyze amplification curve
data. In particular, the functions MFIaggr and plotCurves were developed for a rapid and convenient inspection
of raw data.

2.1 MFlaggr

MFIaggr is a powerful analytical and graphical tool for fast multiple comparison of the cycle dependent signal
dispersion and distribution. This function enables the analysis of specific parts of the curve data as defined
by the llul parameter. llul defines the lower and upper data limit (cycles) for a region of interest (ROI).
The function returns an object with the columns “Cycle”, “Location” (Mean, Median), “Deviation” (Standard
Deviation, Median Absolute Deviation) and “Coefficient of Variation”. Using the option rob = TRUE the
median and the median absolute deviation (MAD) are calculated instead of the mean and standard deviation.
MFTaggr has the parameter llul to define the lower and upper data limit (cycle) for a ROI. Inoked by @stats
reports MFIaggr further information such as inter quartile range (IQR), medcouple (robust measure of skewness),
skewness (Pearson’s second skewness coefficient), signal-to-noise ratio (SNR), variance-to-mean ratio (VRM),
number of missing values (NAs), results from a linear fit of the ROI (intercept, slope, r.squared) and the Breusch—
Pagan test to test for heteroscedasticity in a linear regression model.

In our example we analyzed the raw fluorescence from 96 replicates ("VIMCFX96_60” data set) of a qPCR
experiment for the human gene Vimentin. The MFIaggr plot shows that the analysis of all cycles is non-normal
distributed (Figure S1).

plot (MFIaggr (VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol (VIMCFX96_60)],
11ul = c(1, 40)), CV = FALSE)

MFTaggr can be used to analyze the heteroskedasticity in a given data set. Heteroskedasticity (“hetero” =
different, “skedasis” = dispersion) is present if the variance (error term) is not constant. In case the variance
is constant data are considered to be homoskedastic. If the error terms do not have constant variance, they are
said to be homoskedastic. Analysis of the heteroskedasticity can give some insight into the characteristics of
a system. In the following example we compared the VIMCFX96_60 and VIMCFX96_69 data sets. Both data
set were obtained from the same qPCR run in a Bio-Rad CFX96. However, data from the VIMCFX96_60 data
set were obtained during the annealing phase at 60 degree Celsius and data from the VIMCFX96_60 data set
were measured during the elongation phase at 69 degree Celsius. The heteroskedasticity increased expectedly
during the amplification reaction. The variance in the elongation phase (Figure S1C and D) was lower than in
the annealing phase (Figure S1A and B). The heteroskedasticity was significant in during the (Figure S1A) first
15 cycles at 60 degree Celsius.

par(mfrow = c(2, 2), bty = "n")

hsk.test <- function(x, y, 1lul = c(1, 15), main = "") {
res <- MFIaggr(x, y, 1lul = 1lul)
head(res)

plot(res[, 1], res[, 3]1°2, xlab = "Cycle", ylab = "Variance of refMFI",
xlim = 11lul, ylim = c(min(res[11lul[1]:11ul([2], 3]1°2),
max (res[1lul[1]:11ul[2], 3]°2)), main = main, pch = 19,
type = "b")
abline(v = 1lul, col = "grey", lty = 2, lwd = 2)
legend("top", pasteO("Breusch-Pagan test p-value: \n", format(summary(res,
print = FALSE) [14], digits = 2)), bty = "n")

}

hsk.test (VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol(VIMCFX96_60)1,
11lul = c(1, 15), main = "ROI Cycle 1 to 15\nAnnealing phase")
mtext ("A", cex = 2, side = 3, adj = 0)

hsk.test (VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol(VIMCFX96_60)],
11ul = c(1, 40), main = "ROI Cycle 1 to 40\nAnnealing phase")
mtext ("B", cex = 2, side = 3, adj = 0)
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Figure S1: Signal analysis using the VIMCFX96_60 data set (96-well plate cycler (Bio-Rad CFX96)). All cycles
(ROI: 1 - 40) were analyzed by the MFIaggr function. The density plot (right upper panel) and quantile-quantile
analysis (right lower panel) show no normal distribution. Due to the sigmoidal curve structure is the density
function bimodal.



hsk.test (VIMCFX96_69[, 1], VIMCFX96_69[, 2:ncol(VIMCFX96_69)],
11ul = c(1, 15), main = "ROI Cycle 1 to 15\nElongation phase")
mtext ("C", cex = 2, side = 3, adj = 0)

hsk.test (VIMCFX96_69[, 1], VIMCFX96_69[, 2:ncol(VIMCFX96_69)],
11ul = c(1, 40), main = "ROI Cycle 1 to 40\nElongation phase")
mtext ("D", cex = 2, side = 3, adj = 0)
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Figure S2: Use of MFIaggr to test for heteroskedasticity using the Breusch-Pagan test. The data were aggregated
with the MFIlaggr function and assigned to the object res. The standard deviation was transformed to the
variance. The plot shows the cycle dependent variance measured at 60 degree Celsius (annealing phase; A, B)
and 69 degree Celsius (elongation phase, C, D). First cycles 1 to 10 of 96 qPCR replicate amplification curves
were analyzed. Next the cycles 1 to 40 of the same amplification curve data were analyzed. The Breusch-Pagan

confirmed the heteroskedasticity in the amplification curve data. The VIMCFX96_60 and VIMCFX96_69 data
sets were used.



2.2 Data overview - plotCurves

plotCurves visualizes many curves on one plot in separate cells allowing quick experiment assessment (Figure S3).
In addition, plotCurves has an option to run an unsupervised CPP pre-processing step on the raw data. This
will smooth the data (Savitzky-Golay Smoothing), remove missing values (spline interpolation by default) and
perform a background subtraction (base-lining to zero).

Warnings in following code chunks were supressed.

y <- VIMCFX96_60[, 2L:9]

yle(10, 22, 3, 25, 26, 15, 27, 23, 4), c(5, 7, 4, 2, 1)] <- NA

plotCurves (VIMCFX96_60[, 1], y, nrow = 2, type = "1", CPP = TRUE)
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Figure S3: The plotCurves function. Plots many curves on one plot in separate cells allowing quick assessment.
Missing values were artificially introduced at random position to selected curves of the VIMCFX96_60 data set
(solid black line). A colored box (topleft of each plot) indicates the sample name and if the data contain missing
values. The red rug indicates the position of the missing values. The red lined shows the amplification curve
after unsupervised pre-processesing (using an instance of CPP).



2.3 Imputation of missing values in amplification curve data - fixNA

Amplification data of experimental systems may contain missing values (NA). The NAs may be caused by detector
problems, acquisition error or other assorted problems. There are different ways to handle missing values. One
approach is to ignore NAs, which is generally acceptable. However, in case of further calculation it is often
necessary to handle cases of missing values in a way that the next calculation steps can be performed. Missing
values can be eliminated by a imputation. Imputation encompasses various approaches. This includes to calculate
a location parameter (e.g., mean, median) or other significant values (e.g., minimum, maximum, modus) of a data
column. However, in non-linear processes such as amplification processes its is better to estimate the missing
values from a trend. The function fixNA was empirically tested and relies on a linear trend estimation based
on the approx function. This approach is useful but may be problematic on the phases other then background
or plateau phases of an amplification reaction. The parameter spline on fixNA enables a trend estimation on
splines and may be more appropriate in most scenarios. Other smoothing functions such as the Savitzky-Golay
smoothing filter have the intrinsic capability to remove missing values [4, 18]. The function fixNA imputes missing
values in a single column of data. The imputation is based on a linear approximation by default. However, the
data can also be estimated from an approximation by splines.

Background - raw data Background - fixed NA ¢pD2 - raw data c¢pD2 - fixed NA

Linear phase - 1 NA  4606.43 4 186 4606.53 + 186 18.20 £ 0.145 18.20 £ 0.145
Exponential phase - 1 NA  7555.31 4 468 7555.28 £ 468 18.20 £ 0.145 18.20 £ 0.145
Plateau phase - 1 NA  11736.60 + 1032 11736.82 £ 1032 18.20 £ 0.145 18.20 £ 0.145
Linear phase - 3 NA  4606.43 + 186 4607.05 + 186 18.20 £ 0.145 18.20 £ 0.145
Exponential phase - 3 NA  7555.31 &+ 468 7555.15 £ 468 18.20 £ 0.145 18.19 £ 0.148
Plateau phase - 3 NA  11736.60 = 1032 11736.86 £ 1033 18.20 £ 0.145 18.20 £ 0.145

Cy0 - raw data Cy0 - fixed NA  NRMSE

Linear phase - 1 NA  11.73 +1.06 11.73 £ 1.06 0.00012 4+ 0.000133
Exponential phase - 1 NA  11.73 + 1.06 11.73 £ 1.06 0.00018 + 0.000176
Plateau phase - 1 NA  11.73 £+ 1.06 11.73 £ 1.06 0.00026 £ 0.000237
Linear phase - 3 NA  11.73 £1.06 11.73 £1.06 0.00033 + 0.00031
Exponential phase - 3 NA  11.73 +£1.06 11.71 £1.06 0.00078 £ 0.000601
Plateau phase - 3 NA  11.73 £1.06 11.73 £ 1.06 0.00072 % 0.000475

Table S2: Results of fixNA data imputation.

res <- AmpSim(cyc = 1:40)

res.NA <- res
res.NA[18, 2] <- NA

abliner <- function(xl = 17.5, x2 = 18.5, y1 = 0.09, y2 = 0.14) {
abline(v = c(x1, x2), col = "red")
abline(h = c(yl, y2), col = "red")

}

par(las = 0, mfrow = c(2, 2), bty = "n")

plot(res, xlab = "Cycles", ylab = "refMFI",
main = "Without NA")

abliner()

mtext ("A", cex = 1.2, side = 3, adj = 0, font = 2)

res.NA.linear <- fixNA(res.NA[, 1], res.NA[, 2], spline = FALSE,
verbose = FALSE)

type = "b", pch = 20,



plot(res.NA, xlab = "Cycles", ylab = "refMFI", type = "b", pch = 20,
main = "With NA during transition")

abliner ()

mtext("B", cex = 1.2, side = 3, adj = 0, font = 2)

res.NA.spline <- fixNA(res.NA[, 1], res.NA[, 2], spline = TRUE,
verbose = FALSE)

plot(res.NA.linear, xlab = "Cycles", ylab = "refMFI", type = "b",
pch = 20, main = "Linear imputed\n NA")

abliner ()

mtext ("C", cex = 1.2, side = 3, adj = 0, font = 2)

plot(res.NA.spline, xlab = "Cycles", ylab = "refMFI", type = "b",
pch = 20, main = "Spline imputed\n NA")

abliner ()

mtext ("D", cex = 1.2, side = 3, adj = 0, font = 2)

par (mfrow = c(1, 1))
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Figure S4: Imputation of missing values in amplification curve data. (4) Raw data were generated using the
AmpSim simulation function. (B) A missing value was introduced in the transition phase. The missing value
was imputed either by (C) linear approximation or (D) a cubic spline approximation. The spline approximation
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3 Normalization of amplification curve data

normalizer is a function to normalize any data set. It is possible to chose from different methods (see Details).
The function is useful if the data from an experiment have considerable variation regarding the background and
plateau signal.

The parameter quL is a user defined quantile, which is used for the quantile normalization.

e A quantile normalization herein refers to an approach, which is less prone to outliers than a normalization
based on the minimum and the maximum of an amplification curve.

e minmax does a normalization between 0 and 1 (see [13] for explanation).
e max does a normalization to the maximum value (MFI/max(MFTI)).

e lugn does a quantile normalization based on a symmetric proportion as defined by the quL parameter (e.g.,
qnL = 0.03 equals 3 and 97 percent quantiles).

e zscore performs a z-score normalization with a mean of 0 and a standard deviation of 1.

par(mfrow = c(2, 3), las = 0, bty = "n", oma = c(0.5, 0.5, 0.5,
0.5))
tmp <- VIMCFX96_60

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 6000), xlab = "Cycle",
ylab = "RFU", main = "Raw data")
mtext ("A", cex = 1.2, side = 3, adj = 0, font = 2)
lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], x))
abline (1lm(rowMeans (tmp[2:10, 2L:ncol(tmp)]) ~ tmp[2:10, 1]),
col = 2)

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 3300), xlab = "Cycle",
ylab = "RFU", main = "Baselined data")

mtext ("B", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmpl[,
1], x, method.norm = "none")$y))

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 1.15), xlab = "Cycle",
ylab = "RFU", main = "MinMax-Normalization")

mtext ("C", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmpl[,
1], x, method.norm = "minmax")$y))

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 1.15), xlab = "Cycle",
ylab = "RFU", main = "Max-Normalization")

mtext ("D", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmpl[,
1], x, , method.norm = "max")$y))

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 1.15), xlab = "Cycle",
ylab = "RFU", main = "lugn-Normalization")

mtext ("E", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmpl[,
1], x, method.norm = "lugn", gnL = 0.03)$y))

plot(NA, NA, xlim = c(1, 40), ylim = c(-1.5, 1.5), xlab = "Cycle",
ylab = "RFU", main = "zscore-Normalization")

mtext ("F", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmpl[,
1], x, method.norm = "zscore")$y))

12
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Figure S5: Comparison of the normalization functions from CPP. The VIMCFX96_60 data set (96-well plate
cycler, Bio-Rad CFX96, EvaGreen detection) was used. (A) Raw data of all amplification curves. The signals
are superimposed to circa 2200 RFU and the inter-sample baseline and plateau shift is high. Note the positive
trend (—, fitted with an ordinary least squares method) in the background range of cycles 1 to 15. All subsequent
plots were processed with the CPP function. By default, the curves are base-lined, smoothed (Savitzky-Golay
smoother) and the slop corrected by a linear regression (trans = TRUE). (B) base-lined raw data, (C) Min-Mazx
normalization, (D) Mazx normalization, (E) lugn-normalization with a cut off 3% and (F) zscore-normalization.
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4 Compute linear model coefficients - Background subtraction based
on linear models

Im.coefs is a wrapper around functions performing normal (linear least squares) and robust linear regression. If
the robust linear regression is impossible, Im.coefs will perform linear regression using the least squares method.
This function can be used to calculate the background of an amplification curve. The coefficients of the analysis
can be used for a trend based correction of the entire data set.

par(bty = "n")
plot (VIMCFX96_69[, 1], VIMCFX96_69[, 2], type = "1", xlab = "Cycle",
ylab = "Fluorescence")
rect(1, 0, 10, 5000)
method <- c("lmrob", "rq", "least", "rfit")
for (i in 1:4) {
tmp <- 1m.coefs(VIMCFX96_69[1:10, 1], VIMCFX96_69[1:10, 2],
method.reg = method[i])
text(9, 3200 - i * 100, paste(method[i], ":", "m: ", round(tmp[1,
11, 4), "n: ", round(tmp[2, 1], 3)))
abline(a = tmp[l, 1], b = tmp[2, 1], col =i + 1, lwd = 1.5)
}
legend("right", c("Data", "lmrob", "rq", "least", "rfit"), lty = 1,
col = 1:5, cex = 0.95)

14
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5 Quantitative description of amplification reactions

5.1 The inder function - an interpolating five-point stencil

The output of inder includes the first derivative maximum (FDM) and second derivative maximum (SDM),
which are commonly used in qPCR experiments. Figure S15 shows a typical result of the inder function. Following
we show three examples explain properties of inder and to illustrate applications of the function in combination
with other functions.

Function inder calculates numeric derivatives on smoothed data, which results in data points not observable
in reality. The rounder function averages such result to the real values of cycle number.

Warnings in following code chunks were supressed.

isPCR <- AmpSim(cyc = 1:40)

res <- inder(isPCR)

rd <- rounder(res)

head(res)

#H# X y dly d2y
## [1,] 1.000 0.05 -4.351e-13 8.698e-13
## [2,] 1.245 0.05 -2.217e-13 8.704e-13
## [3,] 1.491 0.05 -8.206e-15 8.702e-13
## [4,] 1.736 0.05 2.087e-13 8.842e-13
## [5,] 1.981 0.05 4.223e-13 7.731e-13
## [6,] 2.226 0.05 4.929e-13 -2.901e-13
summary (res)

## Smoothing method: spline

## First derivative maximum: 20
## Second derivative maximum: 19
## Second derivative minimum: 21
## Second derivative center: 20

head (rd)

## cyc y dly d2y
## [1,] 1 0.05 -2.217e-13 8.701e-13
## [2,] 2 0.05 3.472e-13 -5.632e-14
## [3,] 3 0.05 -1.083e-12 -4.553e-13
## [4,] 4 0.05 3.945e-12 2.505e-12
## [5,] 5 0.05 -1.449e-11 -1.173e-11
## [6,] 6 0.05 5.390e-11 5.562e-11

Figure S15 illustrates the most important parameters of the inder function. We used the AmpSim function
to simulate an ideal “noise-free” amplification curve with the default setting to calculated the second derivative
maximum (SDM) with inder. If logy is TRUE than a semi-decadic log scale graph (corresponds to the linear
phase) to illustrate the exponential dynamic of the qPCR amplification is used. The parameter logy is FALSE
by default. To the best of our knowledge, is inder the first tool in R, which allows user to numerically derive his
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data without fitting them to any function or combination of functions. The universality of stencil approach can
find an application even in problems not related to the analysis of amplification curve.

inder is a helper function, which can be part of other routines. Recently, we added this approach to the diffQ
function of the MBmca for improved predictions. diff@ function is part of a routine to calculate the melting
points of nucleic acids [13].The FDM and SDM are peak values to determine the Cq.

Quantification cycle calculation by the inder function

The presence of noise may cause many false estimates for the FDM and SDM. To minimize this problem, it is
possible to smooth the first derivative of the amplification curve. Many methods integrated the moving average
as first pre-processing step (e.g., [19]). The moving average filter is linear filter, which replaces sequentially data
points with the average of the neighbor data points. The average is calculated from a defined span (“window”)
of odd count (e.g., 3, 5). The “average” herein may refer to the arithmetic mean, the median, the geometric or
the exponential mean. The smoother function uses exclusively the arithmetic mean. Moving average is intuitive
and easy to implement but it lags behind a trend and ignores rapid changes. For example, the 3- and 5-window
moving average (running mean) filters are useful to pre-process data, but always leads to a forerun of few cycles.
This is in particular problematic in the exponential phase. Splines apply non-parametric regression by local
cubic polynomials between knot points [9]. Other examples for smoothers include Savitzky-Golay smoothing
filter, Friedman’s SuperSmoother, and the Weighted Whittaker smoother (see the smoother function for details).

Provided that the smoother is properly adjusted, it is possible to detect only the significant peaks while
small or to narrow peaks are ignored. smoother is used by other functions of chipPCR like CPP. The example
for Figure S16 illustrates the use of the diff@Q and diffQ2 function from the MBmca and the integration of the
inder function. In contrast to the original publication [13] is the inder function in diff@ and diffQ2 used for a
precise peak location while the approximate SDM is calculated from the derivative of a quadratic function at
the approximate SDM.

The inder function in combination with a 5-parameter curve fit function

In the previous example we used smoothing and the inder method to calculate the SDM. But, smoothing
may alter peak signal considerably. For example, peak height reduction and peak width increase are a common
problem. An alternative technique to determine the F'DM of SDM is by fitting the raw data. In the next example
we used the drm function from the dre package [12] to fit a five-parameter log-logistic function (S-shaped). The
inder function was used to calculate the SDM of the predicted models (Figure S17).
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5.2 Threshold cycle method

th.cyc function can also be used to calculate the quantification cycle. This function was implemented primarily
for the analysis of amplification from qIA but also for qPCR. We implement a symmetrically approximation
algorithm based on linear and quadratic least squares regression.

th.cyc is a function to calculate the number of cycles at which the fluorescence exceeds a defined thresh-
old, called the threshold cycle (Ct) (Figure S7). According to the MIQE guidelines the Ct is referred to as
quantification cycle (Cq). The calculated Cq is a relative value, which depends on the template copy number,
instrument, reagents, amplification efficiency and probe technology. Low Cqgs correlate with high quantities tem-
plate copy numbers. Real-time technologies enable the quantification of nucleic acids by calculation of specific
curve parameters like the quantification point (Cq) and the amplification efficiency (AE) based on the kinetics
of the amplification curve. The Cq represents the number of cycles (time for qIA) needed to reach a defined
fluorescence signal level in the exponential phase of the amplification curve. The Cq can be determined from a
fixed threshold value or by various analytical algorithm as described elsewhere [14, 16, 22].

The Threshold Cycle (Ct) (Cq according to MIQE, see [3]) is the cycle number at which the fluorescence
exceeds significantly a point above the baseline and defined threshold in a particular samples. Thus the Ct is the
cycle when sufficient numbers of amplicons have accumulated. The th.cyc calculates the intersection of the user
defined Ct value (r) and a linear regression or quadratic polynomial in the range of the user defined Ct value. In
contrast to other methods is does th.cyc have no requirement to fit a ”complex” non linear model to the entire
data set but rather focuses on the specific area. The polynomial is calculated from four neighbor values at the
fluorescence threshold.

Warnings in following code chunks were supressed.

x <- VIMCFX96_69[, 1]
y <- VIMCFX96_69[, 2]

par(mfrow = c(2, 1), las = 0, bty = "n")

plot(x, y, xlab = "Cycle", ylab = "Fluo", main = "Linear regression",
pch = 19)

mtext ("A", cex = 1.3, side = 3, adj = 0)

res <- th.cyc(x, y, r = 2400, linear = TRUE)

lines(res@input, col = 2, lwd = 2)

abline(h = res[2], col = 3)

abline(v = res[1], col = 4)
legend ("topleft", paste("Cq (Ct) = ", round(res([1], 3)))

plot(x, y, xlab = "Cycle", ylab = "Fluo", main = "Quadratic regression",
pch = 19)
mtext ("B", cex = 1.3, side = 3, adj = 0)

res <- th.cyc(x, y, r = 2400, linear = FALSE)
lines(res@input, col = 2, lwd = 2)

abline(h

res[2], col = 3)

abline(v = res[1], col = 4)
legend ("topleft", paste("Cq (Ct) = ", round(res([1], 3)))
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Figure S7: Working principle of th.cyc. The function provides two modes (A) is the linear regression. B)
Quadratic regression) for the calculation of the Cq. In both cases is the highest R squared value determining
how many left and right neighbors above and the below the used defined threshold level are use.
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5.2.1 Application of the th.cyc and CPP function on ccPCR data

# Application of the th.cyc method to determine the Cq from a

# continuous amplification reaction.

par(las = 0, bty = "n", oma = c(0.5, 0.5, 0.5, 0.5))

plot(NA, NA, xlim = c(0, 80), ylim = c(0, 1200), xlab = "Time (min)",
ylab = "Voltage [micro V]", main = "ccPCR - Raw Data")

# Threshold level 'r' (50 micro Volts)

for (i in c(1, 3, 5, 7)) {
y.tmp <- capillaryPCR[, i + 1] - mean(capillaryPCR[1L:150,

i+ 1])

Ct.tmp <- th.cyc(capillaryPCR[, i], y.tmp, r = 50, linear = FALSE)
abline(v = Ct.tmp[1])
text(Ct.tmp[1] * 1.1, 1200, paste(round(Ct.tmp[1], 1), "\nmin"))
lines(capillaryPCR[, i], y.tmp, type = "b", pch = 20 - i)
points(Ct.tmp@input, col = "red", pch = 19)

}

abline(h = 50)

legend("topleft", c("Run 1", "Run 2", "Run 3", "Control"), pch = c(19,
17, 15, 13), 1lwd = 1.3, bty = "n")
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Figure S8: Application of th.cyc for the analysis of ccPCR data. Data from a ccPCR were analyzed using the
th.cyc function using the linear regression mode. The threshold level (r = 50) was identical for all data. The Cq
(Ct) are given in minutes. The range used for the calculation of the Cq is indicated in red. Negative curves are
automatically excluded from the analysis if the 90% percentile is lower or equal to the threshold level (7).
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5.2.2 Application of the th.cyc and CPP function for Helicase Dependent Amplification

A Helicase Dependent Amplification (HDA) of Vimentin (Vim) was performed. The VideoScan Platform [17]
was used to monitor the amplification. The HDA was performed at 65 degree Celsius. Three concentrations of
input DNA (D1, D2, D3) were used (Figure S9).

To perform an isothermal amplification in VideoScan, standard conditions for the IsoAmp(R) III Universal
tHDA Kit (Biohelix) were used. Primers and templates are described in [17]. The reaction was composed of
reaction mix A) 10 uL A. bidest, 1.25 pL 10xbuffer, 0.75 pL primer(150 nM final), 0.5 uL template plasmid.
Preincubation: This mixture was incubated for 2 min at 95 degree. Celsius and immediately placed on ice.
Reaction mix B) 5 uL A. bidest., 1.25 pL 10x buffer, 2 uL NaCl, 1.25 uL MgSO4, 1.75 uL. dNTPs, 0.25 uL
EvaGreen, 1 pL enzyme mix. The mix was covered with 50 uL mineral oil. The fluorescence measurement in
VideoScan HCU started directly after adding buffer B at 65 degree Celsius. A 1x (D1), a 1:10 dilution (D2) and
a 1:100 (D3) dilution were tested. Temperature profile (after Preincubation): - 60 seconds at 65 degree Celsius
- 11 seconds at 55 degree Celsius & Measurement

Warnings in following code chunks were supressed.

par(mfrow = c(2, 1), bty = "n")

plot(NA, NA, xlim = c(0, 5000), ylim = c(0, 1), xlab = "Time (sec)",
ylab = "Fluorescence", main = "HDA - Raw data")

mtext ("A", cex = 2, side = 3, adj = 0)

lines(C85[, 2], C85[, 3], type = "b", col = 2, pch = 20)

lines(C85[, 4], C85[, 5], type = "b", col = 4, pch = 20)

lines(C85[, 6], C85[, 7], type = "b", col = 6, pch = 20)

legend ("topleft", c("D1, 1x", "D2, 1:10", "D3, 1:100"), col = c(2,
4, 6), pch = rep(20, 3))

plot(NA, NA, xlim = c(0, 2000), ylim = c(0, 0.4), xlab = "Time (sec)",
ylab = "Fluorescence", main = "HDA - Pre-processed data")

mtext ("B", cex = 2, side = 3, adj = 0)

legend("topleft", c("D1, 1x", "D2, 1:10", "D3, 1:100"), col = c(2,
4, 6), pch = rep(20, 3))

# Define the parameters for the pre-processesing by CPP and
# the th.cyc function. smoothing method
sm <- "mova"

# manual range for background
br <- c(2, 10)

# time range for analysis
xr <- 3L:200

# method for baseline normalization
lrg <- "least"

# threshold level for the th.cyc function
r <- 0.05
# Calculate tn a loop the Cq values (Cycle threshold method)
# and add the calculated time (in minutes) to the plot.
for (i in c(2, 4, 6)) {
y.tmp <- CPP(C85[xr, i], C85[xr, i + 1], method = sm, bg.range = br,
trans = TRUE)$y.norm
Ct.tmp <- th.cyc(C85[xr, i], y.tmp, r = r, linear = FALSE)
abline(v = Ct.tmp[1], col = "grey")
lines(C85([xr, i], y.tmp, col = i, lwd = 2)
points(Ct.tmp@input, col = "red", pch = 19)
text(Ct.tmp[1] * 1.1, 0.36, paste(round(Ct.tmp[1]/60, 1),
"\nmin"))

}

# Show the fluorescence wvalue, which defines the threshold.
abline(h = r, 1ty = 2)
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Figure S9: Helicase Dependent Amplification (HDA) of Vimentin (Vim). The VideoScan Platform was used to
monitor the amplification. The HDA was performed at 65 degree Celsius. Three concentrations of input DNA
(D1, D2, D3) were used. The amplification curves were smoothed by a moving average (windowsize 3) and
base-lined by a a robust linear regression by computing MM-type regression estimator. The th.cyc function was
used to determine the time required to reach the threshold level of 0.05 ().
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5.3 Amplification efficiency

Various influences alter amplification reactions. The amplification efficiency is controlled by a complex interaction
of the intrinsic and extrinsic factors like reaction conditions, substrate consumption, primer dimmer formation
and molecule specific reaction rates [8]. Some probe systems are percevied as bias-introducing. Therefore, qPCR
reaction should be corrected based on the amplification efficiency [24, 15]. The amplification efficiency (AE)
can be estimated from individual samples or a set of samples to compensate the presence of inhibitors and
noise. Indirect methods use fitted mathematical models or estimate the AE from absolute fluorescence values
[23, 6, 1, 20, 2, 7]. The gpcR has many functions included, which can be used for the indirect estimation of the
AE. However, most commonly used is the ”direct method” [6, 21]. Herein, the AE is estimated from dilution
series of a template. The AE of a qPCR reaction is calculated from the slope of the standard curve (Equation S1).

10(=1/m)
E= — % 100 (1)

The function effcalc is used for the automatic calculation of the AE of a dilution series (Figure S10). An object
of the class list contains the “Concentration”, Cqgs, deviation of the Cqgs, ”Coeflicient of Variance” sequentially
in the columns, the amplification efficiency (%) according to Equation S1, the results of the linear regression and
the correlation test (Pearson) (Table SS3). The effcalc has several options to enhance the plot. For example, it
is possible to indicate the confidence interval (default CI = 95 %). Further options are described in the manual.

require (MBmca)

par (mfrow = c(1, 2))

plot(NA, NA, xlim = c(1, 45), ylim = c(0.01, 1.1), xlab = "Cycles",
ylab = "Fluorescence", main = "")

mtext ("A", cex = 1.1, side = 3, adj = 0, font = 2)

Cq.t <- rep(seq(15, 34, 3.5), 3)

dilution <- rep(10~(2:-4), 3)

ma.out <- matrix(data = NA, nrow = 45, ncol = length(Cq.t))

Cq.out <- vector()

for (i in 1L:18) {
ma.out[1:45, i] <- AmpSim(cyc = c(1:45), b.eff = -50, bl = 0.001,
ampl = 1, Cq = Cq.t[i], noise = TRUE, nnl = 0.02)[, 2]
lines(1:45, ma.out[, il)
tmpP <- mcaSmoother(1:45, ma.out[, i])
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# Calculate the pseudo Second Derivative Mazimum (SDM) (Cq)
# using the diff@2 function from the MBmca package.

Cq.tmp <- diffQ2(tmpP, inder = TRUE)$xTm1.2.D2[1]

abline(v = Cq.tmp)

Cq.out <- c(Cq.out, Cq.tmp)

}

## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 6.11 13 11.92
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 8.478 15.62 13.85
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 5.237 23 24.77
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 10.12 19.46 16.86
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 5.388 31 33.46
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 5.844 22.54 20.75
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 9.405 15 13.13
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 5.696 27 24.91
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 8.492 15.62 13.85
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 5.965 18.69 17.18
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 5.778 22.54 20.77
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 10.59 21 18.07
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 5.691 33.31 30.73
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 6.512 13 11.86
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 8.611 15.62 13.82
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 5.079 22 23.64
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 10.01 19.46 16.89
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 9.649 15 13.08
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 5.828 22.54 20.75
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 7.253 26.38 23.81
## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 5.182 36 38.74

# Assign the calculated Cqs to the corresponding
# concentrations.
tmp <- data.frame(dilution[1:6], Cq.out[1:6], Cq.out[7:12], Cq.out[13:18])

# Determine the amplification efficiency by using the effcalc
# function.

plot(effcalc(tmp[, 1], tmp[, 2:4]), CI = TRUE)

mtext ("B", cex = 1.1, side = 3, adj = 0, font = 2)

Next we used effcalc to analyze the C54 data set from the chipPCR package. Herein, a qPCR, Experiment
for the amplification of MLC-2v using the VideoScan heating/cooling-unit was performed. To calculate the Cq
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Figure S10: Amplification standard curve simulation and regression analysis. (4) AmpSim was used to synthesize
a qPCR experiment of six dilutions (three replicates per dilution) standard samples. The Cqs were determined by
the SDM method (solid black vertical lines). (B) effcalc was used to automatically perform a linear regression.
The regression curve (—) was plotted as the decadic logarithm of input concentration versus the Cq. The 95%
confidence interval is shown be the light-blue solid lines.
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it was necessary to pre-process the amplifcation curve data. One amplifcation curve contained a missing value
(Figure S11 A) wich was remove by the spline method in CPP. In addition, the data were baselined (linear model,
robus MM-estimator) and smoothed by Savitzky-Golay Smoothing (Figure S11 B). The final analysis with the
effcalc function showed that the amplification efficiency is circa 87.3 % for the gene MLC-2v in the VideoScan
HCU (Figure S11 C). However, since only few measure points were tested in this experiment it just save to say
that the hardware of the HCU works reliably.

require (MBmca)

par(las = 0, bty = "n", oma = c(0.5, 0.5, 0.5, 0.5))

par(fig = c(0, 0.5, 0, 1), new = TRUE)

plot(NA, NA, xlim = c(1, 55), ylim = c(0, 0.7), xlab = "Cycle",
ylab = "refMFI", main = "Raw data")

just_line <- apply(C54[, c(2:4)], 2, function(y) lines(C54[,
11, y))

mtext ("A", cex = 1.2, side = 3, adj = 0, font = 2)

par(fig = c(0.5, 1, 0.5, 1), new = TRUE)

plot(NA, NA, xlim = c(1, 55), ylim = c(0, 0.55), xlab = "Cycle",
ylab = "refMFI", main = "pre-processed data")

mtext ("B", cex = 1.2, side = 3, adj = 0, font = 2)

D1 <- cbind(C54[1:35, 1], CPP(C54[1:35, 1], C54[1:35, 2], trans = TRUE,

bg.range = c(1, 8))[["y.norm"]])
D2 <- cbind(C54[1:45, 1], CPP(C54[1:45, 1], C54[1:45, 3], trans = TRUE) [["y.norm"]])
D3 <- cbind(Cb4[1:55, 1], CPP(C54[1:55, 1], C54[1:55, 4], trans = TRUE) [["y.norm"]])

lines(D1, col = 1)
lines(D2, col = 2)
lines(D3, col = 3)

dilution <- c(1, 0.001, 1e-06)
Cq.D1 <- diffQ2(D1, inder = TRUE) [["xTm1.2.D2"]1][1]

## Approxzimate and calculated Tm varri. This is an expected behaviour
## but the calculation should be confirmed with a plot (see exzamples of diff@Q).

## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 15.64 3 3.746

## The distribution of the curve data indicates moise.

## The data should be visually inspected with a plot (see examples of diff@).
## Approxzimate and calculated Tm varri. This is an expected behaviour

## but the calculation should be confirmed with a plot (see exzamples of diff@).

## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 12.14 12.31 10.36

## The distribution of the curve data indicates noise.
## The data should be visually inspected with a plot (see examples of diff@).
## The distribution of the curve data indicates moise.
## The data should be visually inspected with a plot (see examples of diff@).

Cq.D2 <- diffQ2(D2, inder = TRUE) [["xTm1.2.D2"]] [1]

## Approxzimate and calculated Tm varri. This is an expected behaviour
## but the calculation should be confirmed with a plot (see ezamples of diffQ).

## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 16.42 16 12.67

## The distribution of the curve data indicates noise.

## The data should be visually inspected with a plot (see examples of diff@).
## Approzimate and calculated Tm varri. This ©s an expected behaviour

## but the calculation should be confirmed with a plot (see examples of diff@).
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## Relative Deviation (%) Approximate Tm Calculated Tm
## 1 6.534 20 21.94

Cq.D3 <- diffQ2(D3, inder = TRUE) [["xTm1.2.D2"1][1]

## The Tm calculation (fit, adj. R squared ~ 0.849, NRMSE ~ 0.088) is not optimal presumably due
to noisy data.
## Check raw melting curve (see exzamples of diffQ).

res.dil <- data.frame(dilution, rbind(Cq.D1, Cq.D2, Cq.D3))
par(fig = ¢(0.5, 1, 0, 0.5), new = TRUE)
plot(effcalc(res.dill, 1], res.dil[, 2]))

Concentration Location (Mean) Deviation (SD)  Coefficient of Variance (RSD [%])

1 0.00 10.36 0.00 0.00
2 -3.00 21.94 0.00 0.00
3 -6.00 35.15 0.00 0.00

Table S3: Output of the effcalc function.

In another example we used effcalc function to analyze the C60.amp data set from the chipPCR package.
All data of the human genes Vimentin (Figure S12 A) and MLC-2v (Figure S12 B) were amplified in an Roche
Light Cycler 1.5 and detected by the HRM dye EvaGreen in independent experiments. As shown in the code
and Figure S12 it is possible to obtain a complete analysis with few commands. The amplification efficiencies for
both qPCRs was higher than 94 % (Figure S12 C and D, Table S3).

colors <- rep(rainbow(7), each = 2)
par(mfrow = c(2, 2))

plot(NA, NA, xlim = c(0, 44), ylim = c(0, 6), xlab = "Cycles",
ylab = "RFU")

legend(0, 6, colnames(C60.amp[, 4L:17]), ncol
pch = 19, bty = "n"

mtext ("A", cex = 1.2, side = 3, adj = 0, font

SDM.vim <- sapply(4L:17, function(i) {
lines(C60.amp[, 1], C60.amp[, i], col = colors[i - 3])
SDM <- summary(inder(C60.amp[, 11, C60.amp[, il), print = FALSE) [2]

2, col = colors[1:14],

2)

9,

plot(NA, NA, xlim = c(0, 44), ylim = c(0, 4), xlab = "Cycles",
ylab = "RFU")
legend(0, 4, colnames(C60.amp[, 18L:31]), ncol = 2, col = colors[1:14],
pch = 19, bty = "n"
mtext ("B", cex = 1.2, side = 3, adj = 0, font = 2)
SDM.mlc2v <- sapply(18L:31, function(i) {
lines(C60.amp[, 1], C60.amp[, i], col = colors[i - 17])
SDM <- summary(inder (C60.amp[, 1], C60.amp[, i]), print = FALSE) [2]

19,

# create vector of dtllutions
dil <- sort(rep(10°(OL:-6), 2), TRUE)

res <- cbind(dil, SDM.vim, SDM.mlc2v)

plot(effcalc(res[, 11, res[, 21))
mtext ("C", cex = 1.2, side = 3, adj

0, font = 2)

plot(effcalc(res[, 1], res[, 31))
mtext("D", cex = 1.2, side = 3, adj = 0, font = 2)
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Figure S11: Calculation of the amplification efficiency. Data of a VideoScan HCU dilution experiment (C54 data
set) were analyzed. (A) Visualization of the raw data. One of the three dilutions contains a missing value due
to a sensor error. (B, top panel) The CPP function was used to baseline, to remove the missing value (-) and to
smooth (—, —, ) the raw data. (B, bottom panel). The Cqs (SDM) of the pre-processed data were calculated by
diffQ2 (see main text) and analyzed with effcalc. The amplification efficiency approximately at 87.3 %.
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6 AmpSim - a function to simulate amplification curves

The function AmpSim is a simulator for amplification reactions. Use cases include teaching, algorithm testing
or the comparison of an experimental system to the predicted (”optimal“) model. AmpSim uses a 5-parameter
model (Equation S2).

ampl — bl @)
1+ exp (b.ef f * (log cyc — log Cq))

It is an intrinsic property of AmpSim to generate unique results if the noise parameter is set TRUE. This
is due the use of the rnorm (stats) function to simulate noise. If data need to be replicated identically use
set.seed(123) to alter the random number generator (RNG) state. For example, the amplification curves of
Figure S10 A are generated with the same starting parameter of AmpSim but noise was added. AmpSim.gui is a
shiny GUI (graphical user interface) implementation for AmpSim. The code example below is an exmple how-to
invoke the AmpSim.gui. Further details on shiny are described in in the main document. AmpSim was also
used to illustrate the inder function (Figure S15), the fixNA function (Figure S4) and the use of the smoother
(Figure ?7) function.

fluo = bl +

require(shiny)

runApp(paste(find.package("chipPCR") [1], "/AmpSim.gui", sep = ""))

runGist ("https://gist.github.com/michbur/eldef41598f1d0cle2e6")

AmpSim has several parameters, which can be used to simulate an amplification curve. b.ef f and Cq are
most connected with another. Thus changing one of them will change both values. Cq can be used to define
an approximate Cq value. The expression ”approximate Cq value“ is used because the calculated Cq value will
vary depending on the preferred Cq quantification method (e.g., Second Derivative Maximum (SDM) method,
threshold method). AmpSim can be used to simulate data with noise (based on rnorm, stats), signal-to-noise
ratios, photo-bleaching and other influences on a qPCR reaction. The following example illustrates the use of
AmpSim (Figure S13).

Warnings in following code chunks were supressed.

par(las = 0, bty = "n", oma = c(0.5, 0.5, 0.5, 0.5))

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 1.1), xlab = "Cycle",
ylab = "RFU")

colors <- rainbow(8)

sim <- sapply(1L:8, function(i) {
Cq.tmp <- 25 + rnorm(1) * 5

tmp <- AmpSim(1:40, Cq = Cq.tmp, noise = TRUE, nnl = 0.03)
lines(tmp, col = colors[i], lwd = 2)
text(3, 1 - i/10, paste("Cq ", round(Cq.tmp, 2)), col = colors[i])
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Figure S13: The amplification curves were generated with the AmpSim function. All Cgs are unique due to the
use of random value, which were added to the starting Cq of 25. The parameter noise = 0.03 adds some scatter
to the amplification curve data.
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7 Proposed workflow

Warnings in following code chunks were supressed.

layout (matrix(c(1, 2, 3, 3), 2, 2, byrow = TRUE), respect = TRUE)
par(las = 0, bty = "n", oma = c(0.5, 0.5, 0.5, 0.5))

th.cyc.raw <- apply(VIMCFX96_60[, -1], 2, function(i) {

th.cyc(VIMCFX96_60[, 1], i, r = 2575)[1, 1]
19)

res.CPP <- apply(VIMCFX96_60[, -1], 2, function(i) {
CPP(VIMCFX96_60[, 1], i, trans = TRUE, method.norm = "minmax") [["y.norm"]]
b

th.cyc.CPP <- apply(res.CPP, 2, function(i) {
th.cyc(VIMCFX96_60[, 11, i, r = 0.1)[1, 1]

9,
matplot (VIMCFX96_60[, -1], type = "1", pch = 19, col = 1, 1ty = 1,
xlab = "Cycle", ylab = "Raw fluorescence", main = "Raw")
abline(h = 2575, 1ty = 2)
mtext ("A", cex = 1.2, side = 3, adj = 0, font = 2)
matplot(res.CPP, type = "1", pch = 19, col = 1, 1ty = 1, xlab = "Cycle",

ylab = "Fluorescence", main = "CPP")
abline(h = 0.1, 1ty = 2)
mtext ("B", cex = 1.2, side = 3, adj = 0, font

2)
boxplot(data.frame(Raw = th.cyc.raw, CPP = th.cyc.CPP), ylab = "Cq (Ct)",

notch = TRUE)
mtext ("C", cex = 1.2, side = 3, adj = 0, font = 2)
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Figure S14: Application of the CPP and th.cyc functions. A) The raw data of the VIMCFX96_60 data set
were plotted without pre-processing. B) All amplification curve data were pre-processed with the CPP function.
The parameter trans was set to TRUE, which lead to a linear trend correction and base-lining. By default a
Savitsky-Golay filter was used to smooth the data. The data were normalized between 0 and 1 (method.norm =’
minmaz’). C) All Cgs were calculated with th.cyc function. The Cq for the raw data was 17.25 + 0.5 (at
r =2575) and 17.1 £ 0.1 (at » = 0.1) for the pre-processed data. Our results indicate that the dispersion of the
Cq values was slightly lower.
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8 Auxillary functions

# Use AmpSim to generate an amplification curve with 40
# cycles and an approzimate Cq of 20 and assign it to the
# object 1sPCR. 1sPCR ©s an object of the class

# 'data. frame'.

isPCR <- AmpSim(cyc = 1:40, Cq = 20)

# Invoke the inder function for the object ©sPCR to

# interpolate the derivatives of the simulated data as object
# res. The Nip parameter was set to 5. This leads to smoother
# curves. res 1s an object of the class 'der'.

res <- inder(isPCR, Nip = 5)

# Plot the object res and add descriptions to the elements.
par(las = 0, bty = "n", oma = c(0.5, 0.5, 0.5, 0.5))

plot(isPCR, xlab = "Cycle", ylab = "RFU", ylim = c(-0.15, 1),
main = "", type = "b", pch = 20, lwd = 2)

colors <- rainbow(4)

# Add graphical elements for the dervatives and the

# calculated Cq values FDM, SDM, SDm and SDC.

"blue", lwd = 2)
"red", lwd = 2)

lines(res[, "x"], res[, "dly"], col
lines(res[, "x"], res[, "d2y"], col

# Fetch the Cq values from res with the summary function
summ <- summary(res, print = FALSE)

abline(v = summ, col = colors, lwd = 2)

text (15, 0.3, paste("FDM ~ ", round(summ["FDM"], 2)), cex = 1.1,
col = colors[1])

text (15, 0.2, paste("SDM ~ ", round(summ["SDM"], 2)), cex = 1.1,
col = colors[2])

text (15, -0.1, paste("SDm ~ ", round(summ["SDm"], 2)), cex = 1.1,
col = colors[3])

text (15, 0.7, paste("SDC ~ ", round(summ["SDC"], 2)), cex = 1.1,
col = colors[4])

legend(1.1, 0.9, c("raw", "first derivative", "second derivative"),
col = c(1, 4, 2), 1ty = c(2, 1, 1), bty = "n")

# Summary of the object res.
summ

## FDM SDM SDm  SDC
## 19.81 19.03 20.99 19.99

# Plot all data from C127EGHP and calculate the SDM (Second
# Derivative Mazimum) values with the diff@2() function

# (Note: the inder parameter is set as TRUE) first plot the
# samples detected with EvaGreen and next the samples

# detected with the Hydrolysis probe

pointer <- function(x, pos = 1, w = 5, stat = TRUE) {
xx <- pos + rep(seq(-0.1, 0.1, length.out = w), ceiling(length(x)/w))
yy <- sort(x)
points(xx[1:length(yy)], yy, pch = 19)
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Figure S15: Cycle of quantification by the second derivative maximum method. Raw data (e) were generated
using the AmpSim simulation function (see example main text). The inflection point is the point where the
slope is maximum and the curvature is zero. The first derivative of the amplification curve has a first derivative
maximum (FDM) at the inflection point. The second derivative maximum method (SDM) needs to differentiate
a curve to the second order prior to quantification. The second derivative exhibits a zero-crossing at the FDM.
The function y = f(z) is numerically derived by five-point stencil. This method do not require any assumptions
regarding the function f. The function inder calculates the approximate SDM. The SDM might in addition be
useful for isothermal amplification processes. The SDM is calculated from a derived cubic spline. Similarly the
first approximate derivative maximum (FDM), second derivative minimum (SDm), and approximate second
derivative center (SDC, geometric mean of SDM and SDm) are available. FDM, SDm and SDC values can
be used to further characterize the amplification process.
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if (stat == TRUE)
x.median <- median(x, na.rm = T)

x.mad <- mad(x, na.rm = T) * 2

param <- c(length = 0, code = 3, pch = 15, cex = 1.2)

arrows (xx[1] * 0.98, x.median, tail(xx, 1) * 1.02, x.median,
param, lwd = 3)

arrows(xx[1] * 1.01, x.median + x.mad, tail(xx, 1) * 0.99,

x.median + x.mad, param, lwd = 2, lty = 2)

arrows(xx[1] * 1.01, x.median - x.mad, tail(xx, 1) * 0.99,

X

x.median - x.mad, param, lwd = 2, lty = 2)
}
amp.liner <- function(range, input, colors = "black") {
sapply(range, function(i) {
lines(input[, 2], input[, i], col = colors, pch = 19)
tmpP <- mcaSmoother(input[, 2], input[, i])
SDM <- diffQ2(tmpP, inder = TRUE) [["xTm1.2.D2"]1][1]
abline(v = SDM)
SDM
19
}

layout (matrix(c(1, 3, 2, 3), 2, 2, byrow = TRUE), respect = TRUE)

par(las = 0, bty = "n")

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 10), xlab = "Cycle",
ylab = "Fluorescence", main = "EvaGreen")

mtext ("A", cex = 1.1, side = 3, adj = 0, font = 2)

EG <- amp.liner(range = 3L:34, input = C127EGHP)

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 10), xlab = "Cycle",
ylab = "Fluorescence", main = "Hydrolysis probe")
mtext ("B", cex = 1.1, side = 3, adj = 0, font = 2)

HP <- amp.liner(range = 35L:66, input = C127EGHP)

plot(NA, NA, xlim = c(0.8, 2.2), ylim = c(13, 14), xaxt = "n",
xlab = "", ylab = "Cq (SDM, diffQ2)")

text(c(1.05, 2), c(13.05, 13.05), c("EG", "HP"), cex = 1.2)

mtext ("C", cex = 1.1, side = 3, adj = 0, font = 2)

pointer(EG, pos = 1, w = 8)

pointer(HP, pos = 2, w = 8)

fit.amp <- function(cyc, fluo, plot = FALSE) {

ampl <- quantile(fluo, 0.999)
bl <- quantile(fluo, 0.001)
Cq <- round(mean(cyc))

b.eff <- 1

fit <- nls(fluo ~ bl + ampl/(1 + exp(-(cyc - Cq)/b.eff)),
start = 1list(Cq = Cq, b.eff = b.eff, ampl = ampl, bl = bl))

res.pred <- data.frame(cyc, predict(fit))
res <- inder(res.pred[, 1], res.pred[, 2])
if (plot) {

lines(res[, 1], res[, 41)
}

# SDM
summary (res) [2]
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Figure S16: Plot all data from C127EGHP and calculate the SDM (Second Derivative Maximum) values with
the diffQ2 function. (A) Plot the samples detected with EvaGreen and (B) shows the same samples detected
with the Hydrolysis probe for MLC-2v. (C) Stripchart of the Cq values (o) with the median (-) and the median
absolute deviation (——). This result indicates, that the variance of the derived from the detection with hydrolysis
probes is higher than the samples detected with EvaGreen. Note: the inder parameter is set as TRUE.
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}

tmp <- C126EG595
out <- apply(tmpl, -11, 2, function(x) fit.amp(tmp[, 1], %))
layout (matrix(c(1, 2, 1, 3), 2, 2, byrow = TRUE))

plot(NA, NA, xlim = c(1, 40), ylim = c(min(tmp[, 2L:97]), max(tmpl[,
2L:97]1)), xlab = "Cycle", ylab = "Raw fluorescence")
mtext ("A", cex = 1.2, side = 3, adj = 0, font = 2)
for (i in 2L:97) {
lines(tmp[, 1], tmp[, i], col
"red", "black"), lwd = 2)

ifelse(out[i - 1] < 15.5,

}

abline(v = out)

plot(NA, NA, xlab = "Cycle", ylab = "RFU''(Cycle)", main = "",
xlim = c(0, 40), ylim = c(-850, 850))

invisible(apply (tmp[, -11, 2, function(x) {
fit.amp(tmp[, 1], x, plot = TRUE)

)

mtext ("B", cex = 1.2, side = 3, adj = 0, font = 2)

hist(out, xlab = "Cq (SDM)", main = "", breaks = seq(14.8, 15.8,
0.05), col = rainbow(96))

abline(v = 15.5, 1ty = 2)
mtext ("C", cex 1.2, side = 3, adj = 0, font = 2)

40



o
o_
rg)
©
8 o
o >
g S
o)
L
nd
o
S |
re)
I
3
8 I I I I I
8“’ 0 10 20 30 40
[
]
3 Cycle
o
o)
=)
fr=
o
2 3
S
xr S5
o C
o _ 1 _
o0} 1
1
|
o 1
© 7 \
3 3 !
g : -
o _|
— 2 < :
m 1
S 1
L |
Q |
1
1
1
Hl
o - p— !

[ I I I I |
148 150 152 154 156 158

Cycle Cq (SDM)

Figure S17: Amplification curve profiles from the Bio-Rad iQ5 thermo cycler for the human gene HPRT1. (A)
The C126EG595 data set was used with 96 replicates of equal starting numbers of template molecules. Vertical
lines represent the Cq (SDM method) determined with inder method on amplification curves fitted with a 5-
parameter curve function. Curves with Cqs less than 14.5 are indicated in red (-). (B) Second derivatives of the
amplification curves. Note that after differentiation all inter sample baseline and plateau shifts are similar. (C)
Histogram (class width = 0.05 Cq) of the Cq values (SDM). Cqgs were mainly at circa 15.7 (N = 80) while some
amplification curves had a Cq less than 15.5 (N = 16).
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9 bg.max - a function to estimate the start and end of an amplifica-
tion reaction

The following paragraphs describe methods from the literature to detect the background range of amplification
curves. Background range herein refers to a level of fluorescence measured before any specific amplification is
detectable. The raw data (e.g., fluorescence intensity) measured after each step (cycle or time point) follow a
non-linear progress. Currently none of them is implemented as R function. The easiest way to classify them is
the extend of assumptions made before applying of a method.

The simplest approach is to treat the background fluorescence as a value constant during whole amplification
reaction. In this case the noise could be approximated as the mean or median of fluorescence values in lag
phase [5] or their standard deviations [10]. The more sophisticated way of approximating constant background
fluorescence requires optimizing its value to achieve linearity of the model fit on the semi logarithmic plot in
log-linear phase [5]. The later procedure is greatly enhanced by performing further computations only on a subset
of consecutive measurements for which calculated efficiencies have the lowest variance. Other methods loosen the
assumption that background fluorescence is a constant value and instead describe it as a function of the cycle
number. For example the algorithm used in SoFar [25] fits a nonlinear saturation function to measurement points
before the start of the exponential growth phase. Parameters of the saturation function are chosen to minimize
the sum of squared residuals of the fitted function. Then the value of saturation function is calculated for all
data points and subtracted from measured values giving corrected values of fluorescence, which are used in next
calculations.

Some approaches make even less assumptions regarding the form of the background noise. The taking-
difference linear regression method has a premise that changes of fluorescence between subsequent cycles are
exclusively caused by the amplification of the product [11]. The corrected values are calculated by simply
subtracting the fluorescence value in the former cycle from fluorescence in the latter. Of course in this case
the real fluorescence value in first cycle is unknown, so the number of cycles that can be used in following
computations is reduced by one.

The Real-Time PCR Miner algorithm is also nearly assumption-free ([26]). The main principle is that back-
ground fluorescence is similar in the small groups of subsequent measurements. So the first step of the algorithm
is division of subsequent measurement points belonging to the exponential phase of amplification in at least four-
element groups. For each set of points is calculated a pair of the estimate of the efficiency and the significance
of model representing relation between the fluorescence value and the cycle number. The estimates paired with
the highest significance are the most influential in the computation of the final efficiency.

To find the beginning of the lag phase and end of plateau phase is important for the goodness-of-fit for both
exponential-phase-only and S-shaped models. There are two strategies. The first narrows the area of the search
to the neighborhood of their theoretical values determined by a fitted model of the amplification reaction. To this
group belongs SoFar (Wilhelm et al. (2003) [25]). The algorithm looks for the start and the end of the exponential
phase near the second derivatives of the function representing the relation between logarithm of the fluorescence
and the cycle number. The available correction guarantees that the start of amplification has higher value than
background noise. The very similar procedure is implemented in Real-Time PCR Miner [26], where background
noise is also used as parameter in implemented models to calculate theoretical the start of the amplification
process. The end of amplification process is detected by calculating the third derivative of implemented S-shaped
model. The second approach does not require theoretical values. A very intuitive solution, designated take-off
point, by Tichopad et al. (2003) [23] describes the lag phase using a linear function. Random deviations are
taken into account as standardized residuals. The method starts with a fitting of a linear function to first three
measurement points. If none of residuals is considered an outlier with a statistical test, the algorithm fits a
new linear model to the first four measurement points and so on. The procedure stops when two last points are
designated as outliers. The first of aforementioned outliers is considered the end of lag phase. It is worth noting
that this algorithm is versatile enough to also detect the beginning of the plateau phase.

The algorithm of bg.max is based on the assumption that the signal difference of successive cycles in the linear
ground phase is approximately constant. After transition in the early exponential phase the signal changes dras-
tically. First data are smoothed by Friedman’s ’super smoother’ (as found in supsmu. Thereof the approximate
first and second derivative are calculated by a five-point stencil inder. The difference of cycles at the maxima
of the first and second approximate derivative and a correction factor are used to estimate the range before the
exponential phase. This simple function finds the background range without modeling the function. The start
of the background range is defined be a “fixed” value. Since many signals tend to overshot in the first cycles
a default value of 2 (for qPCR) is chosen. bg.max tries also to estimate the end of an amplification reaction
(Figure S18). Application of this function is for example a rational basis for trimming of unneeded data.

par(las = 0, mfrow = c(2, 1), bty = "n", oma = c(0.5, 0.5, 0.5,
0.5))
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res <- AmpSim(cyc = 1:40, Cq = 25)

plot(res, xlim = c(1, 40), ylim = c(-0.1, 1), xlab = "Cycles",
ylab "refMFI", main = "Background Range Estimation\n in Absence of Noise",
type = "b", pch = 20)

background <- bg.max(res[, 1], res[, 2])

mtext ("A", cex = 2, side = 3, adj = 0, font = 2)

points(background[, 3], col = "red", type = "b", pch = 20)
points(background[, 4], col = "blue", type = "b", pch = 20)

abline(v = background@bg.start)

text (background@bg.start, 0.2, "Background start", pos = 4)

abline(v = background@bg.stop, col = "blue")

text (background@bg.stop, 0.25, "Background stop", pos = 4, col = "blue")

abline(v = background@amp.stop, col = "green")
text (background@amp.stop, 0.3, "Plateau transition", pos = 4,
col = "green")
legend(4, 1, c("Raw data", "First derivative", "Second derivative"),

pch = rep(20, 3), col = c(1, 2, 4), bty = "n")

res <- AmpSim(cyc = 1:40, Cq = 25, noise = TRUE)

plot(res, xlim = c(1, 40), ylim = c(-0.1, 1), xlab = "Cycles",
ylab "refMFI", main = "Background Range Estimation\n in Presence of Noise",
type = "b", pch = 20)

mtext ("B", cex = 2, side = 3, adj = 0, font = 2)

background <- bg.max(res[, 1], res[, 2])

points(background[, 3], col = "red", type = "b", pch = 20)
points(background[, 4], col = "blue", type = "b", pch = 20)

abline(v = background@bg.start)

text (background@bg.start, 0.2, "Background start", pos = 4)

abline(v = background@bg.stop, col = "blue")

text (background@bg.stop, 0.25, "Background stop", pos = 4, col = "blue")

abline(v = background@amp.stop, col = "green")
text (background@amp.stop, 0.3, "Plateau transition", pos = 4,
col = "green")
legend(4, 1, c("Raw data", "First derivative", "Second derivative"),

pch = rep(20, 3), col = c(1, 2, 4), bty = "n")
par (mfrow = c(1, 1))

We used to the bg.max algorithm to analyze amplification curve data from an capillary convective PCR
(capillaryPCR chipPCR data set). The data were used as raw data (Figure S19 A) and pre-processed data
(Figure S19 B) using the CPP function. For both cases it was possible to recieve results, which can be used for
further processing. We observed no significant difference between the raw and pre-processed data.

# Set parameter for the plot.
par (mfrow = c(2, 1), las = 0, bty = "n")

# Use of bg.max for time-dependent measurements.

# Amplification curves from the capillaryPCR data set were

# processed in a loop. The results of bg.mazx are added to the
# plot.

colors <- rainbow(8)

plot(NA, NA, xlim = c(0, 75), ylim = c(-200, 1300), xlab = "Time (min)",
ylab = "Voltage (micro V)", main = "ccPCR - Raw data")
mtext("A", cex = 1.5, side = 3, adj = 0)
for (i in c(1, 3, 5, 7)) {
x <- capillaryPCR[1L:750, i]
y <- capillaryPCR[1:750, i + 1]
res.bg <- summary(bg.max(x, y))
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lines(x, y, type = "b", pch = 20, col = colors[i], cex = 0.5)
lines(c(res.bgl[2], res.bgl2], res.bgl4], res.bgl4]), c(-150,
-50, -150, -50), col = colors([i], lwd = 1.5)
text (10, 1200 - i * 50, paste("bg.start: ", res.bg[1], ", bg.stop: ",
res.bg[2], ", amp.stop: ", res.bg[4]), col = colors[i],
cex = 0.6)

}

plot(NA, NA, xlim = c(0, 75), ylim = c(-200, 1300), xlab = "Time (min)",
ylab = "Voltage (micro V)", main = "ccPCR - Pre-processed")
mtext ("B", cex = 1.5, side = 3, adj = 0)
for (i in c(1, 3, 5, 7)) {
x <- capillaryPCR[1L:750, i]
y <- CPP(capillaryPCR[1L:750, il], capillaryPCR[1:750, i +
1], method = "mova", trans = TRUE, bg.range = c(1, 105),
bg.outliers = TRUE) [["y.norm"]]
res.bg <- summary(bg.max(x, y))
lines(x, y, type = "b", pch = 20, col = colors[i], cex = 0.5)
lines(c(res.bgl[2], res.bgl2], res.bgl4], res.bgl4]), c(-150,
-50, -150, -50), col = colors[i], lwd = 1.5)
text (10, 1200 - i * 50, paste("bg.start: ", res.bgl[1], ", bg.stop: ",
res.bg[2], ", amp.stop: ", res.bg[4]), col = colors[il,
cex = 0.6)
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Figure S19: Application of the bg.max function. Amplification curve data from a capillary convective PCR, were
used (A) as raw data and (B) pre-processed (smoothed (moving average, window size 3), base-lined and trend
corrected (robust MM-estimator)) with the CPP function. The output of the was used by bg.max to detected
the start and the end of the amplification reaction. The start and end were reliably estimated (range between
“bg.stop” and “amp.stop”). There was no significant difference between raw data and pre-processed data.
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10 humanrater

The function humanrater is an interactive function, which can be used to rate a curve for a certain characteristic.
humanrater draws individual graphs of a curve and prompts an input field for the user. This function can be
used to compare the human rating and the rating of a machine.
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11 Data sets

1. Data set: capillaryPCR:

Data set type: capillary convective PCR (ccPCR)

Description: The capillary convective PCR (ccPCR) is a modified device of the ccPCR system proposed
by Chou et al. 2013.

Number of variables: 1844

Number of measurements: 10

2. Data set: C60.amp:

Data set type: standard qPCR - commercial thermo cyclers

Description: gPCR Experiment for the Amplification of MLC-2v and Vimentin (as decadic dilutions)
Using the Roche Light Cycler 1.5.

Number of variables: 45

Number of measurements: 33

3. Data set: C60.melt:

Data set type: standard qPCR - commercial thermo cyclers

Description: Melt Curves MLC-2v and Vimentin for the qPCR experiment C60.amp using the Roche
Light Cycler 1.5

Number of variables: 128

Number of measurements: 65

4. Data set: C126EG595:

Data set type: standard qPCR - commercial thermo cyclers

Description: A Quantitive PCR (qPCR) with the DNA binding dye (EvaGreen) (Mao et al. 2007)
was performed in the Bio-Rad iQ5 thermo cycler. The cycle-dependent increase of the fluorescence
was quantified at the elongation step (59.5 deg Celsius).

Number of variables: 40

Number of measurements: 97

5. Data set: C126EG685:

Data set type: standard qPCR - commercial thermo cyclers

Description: A Quantitive PCR (qPCR) with the DNA binding dye (EvaGreen) (Mao et al. 2007)
was performed in the Bio-Rad iQ5 thermo cycler. The cycle-dependent increase of the fluorescence
was quantified at the elongation step (68.5 deg Celsius).

Number of variables: 40

Number of measurements: 97

6. Data set: C127TEGHP:

Data set type: standard qPCR - commercial thermo cyclers

Description: Quantitive PCR (qPCR) with a hydrolysis probe (Cy5/BHQ2) and DNA binding dye
(EvaGreen) (Mao et al. 2007) performed in the Roche Light Cycler 1.5 thermo cycler.

Number of variables: 40

Number of measurements: 66

7. Data set: VIMCFX96.60: Human vimentin amplifcation curve data (measured during annealing phase at
60 deg Celsius) for 96 replicate samples in a Bio-Rad CFX96 thermo cycler. standard gPCR - commercial
thermo cyclers 40 97

Data set type: standard qPCR - commercial thermo cyclers

Description: Human vimentin amplifcation curve data (measured during annealing phase at 60 deg
Celsius) for 96 replicate samples in a Bio-Rad CFX96 thermo cycler.

Number of variables: 40
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10.

11.

12.

13.

14.

e Number of measurements: 97

Data set: VIMCFX96.69: Human vimentin amplifcation curve data (measured during elongatio phase at
69 deg Celsius) for 96 replicate samples in a Bio-Rad CFX96 thermo cycler. standard qPCR - commercial
thermo cyclers 40 97

e Data set type: standard qPCR - commercial thermo cyclers

e Description: Human vimentin amplifcation curve data (measured during elongatio phase at 69 deg
Celsius) for 96 replicate samples in a Bio-Rad CFX96 thermo cycler.

e Number of variables: 40

e Number of measurements: 97
Data set: VIMCFX96.meltcurve: Human vimentin melting curve data for 96 replicate samples in a Bio-Rad
CFX96 thermo cycler. standard qPCR - commercial thermo cyclers 81 97

e Data set type: standard qPCR - commercial thermo cyclers

e Description: Human vimentin melting curve data for 96 replicate samples in a Bio-Rad CFX96 thermo
cycler.

e Number of variables: 81

e Number of measurements: 97
Data set: VIMiQ5.595: Human vimentin amplifcation curve data (measured during annealing phase at
59.5 deg Celsius) for 96 replicate samples in a Bio-Rad iQ5 thermo cycler. standard gPCR - commercial
thermo cyclers 40 97

e Data set type: standard qPCR - commercial thermo cyclers

e Description: Human vimentin amplifcation curve data (measured during annealing phase at 59.5 deg
Celsius) for 96 replicate samples in a Bio-Rad iQ5 thermo cycler.

e Number of variables: 40

e Number of measurements: 97
Data set: VIMiQ5.685: Human vimentin amplifcation curve data (measured during elongatio phase at 68.5
deg Celsius) for 96 replicate samples in a Bio-Rad iQ5 thermo cycler. standard PCR - commercial thermo
cyclers 40 97

e Data set type: standard qPCR - commercial thermo cyclers

e Description: Human vimentin amplifcation curve data (measured during elongatio phase at 68.5 deg
Celsius) for 96 replicate samples in a Bio-Rad iQ5 thermo cycler.

e Number of variables: 40

e Number of measurements: 97
Data set: VIMiQb5.melt: Human vimentin melting curve data for 96 replicate samples in a Bio-Rad iQ5
thermo cycler. standard gPCR - commercial thermo cyclers 81 97

e Data set type: standard qPCR - commercial thermo cyclers

e Description: Human vimentin melting curve data for 96 replicate samples in a Bio-Rad iQ5 thermo
cycler.

e Number of variables: 81

e Number of measurements: 97
Data set: Ch4:

e Data set type: standard qPCR - experimental thermo cyclers

e Description: qPCR Experiment in the VideoScan heating/cooling-unit for the amplification using
different concentrations of MLC-2v input cDNA quantities.

e Number of variables: 56

e Number of measurements: 4
Data set: CD74:

e Data set type: standard qPCR - experimental thermo cyclers
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e Description: Quantitive PCR with a hydrolysis probe and DNA binding dye (EvaGreen) for MLC-2v
measured at 59.5 degree Celsius (annealing temperature), 68.5 degree Celsius (elongation temperature)
and at 30 degree Celsius.

e Number of variables: 60

e Number of measurements: 19
15. Data set: Eff625:

e Data set type: simulations

e Description: Highly replicate number amplification curves with an approximate amplification efficiency
of 62.5 percent at cycle number 18. The data were derived from a simulation such as the AmpSim
function.

e Number of variables: 40

e Number of measurements: 1000
16. Data set: Eff750:

e Data set type: simulations

e Description: Highly replicate number amplification curves with an approximate amplification efficiency
of 75 percent at cycle number 18. The data were derived from a simulation such as the AmpSim
function.

e Number of variables: 40

e Number of measurements: 1000
17. Data set: Eff875:

e Data set type: simulations

e Description: Highly replicate number amplification curves with an approximate amplification efficiency
of 87.5 percent at cycle number 18. The data were derived from a simulation such as the AmpSim
function.

e Number of variables: 40

e Number of measurements: 1000
18. Data set: Eff1000:

e Data set type: simulations

e Description: Highly replicate number amplification curves with an approximate amplification efficiency
of 100 percent at cycle number 18. The data were derived from a simulation such as the AmpSim
function.

e Number of variables: 40

e Number of measurements: 1000
19. Data set: C67:

e Data set type: Isothermal Amplifcation - Helicase Dependent Amplification

e Description: A Helicase Dependent Amplification (HDA) of HRPT1 (Homo sapiens hypoxanthine
phosphoribosyltransferase 1), performed at different input DNA quantities using the Bio-Rad iQ5
thermo cycler.

e Number of variables: 43

e Number of measurements: 6
20. Data set: CD75:

e Data set type: Isothermal Amplifcation - Helicase Dependent Amplification

e Description: Helicase Dependent Amplification in the VideoScan HCU of HRPT1 (Homo sapiens
hypoxanthine phosphoribosyltransferase 1) measured at at 55, 60 or 65 degree Celsius.

e Number of variables: 93

e Number of measurements: 6

21. Data set: C81:
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Data set type: Isothermal Amplifcation - Helicase Dependent Amplification

Description: Helicase Dependent Amplification (HDA) of pCNG1 using the VideoScan Platform
(Roediger et al. (2013)). The HDA was performed at 65 degree Celsius. Two concentrations of
input DNA were used.

Number of variables: 351

Number of measurements: 5

22. Data set: C85:

Data set type: Isothermal Amplifcation - Helicase Dependent Amplification

Description: Helicase Dependent Amplification (HDA) of Vimentin (Vim) in the VideoScan Platform
(Roediger et al. (2013)). The HDA was performed at 65 degree Celsius with three dilutions of input
DNA.

Number of variables: 301

Number of measurements: 7

51



12 Acknowledgment

Part of this work was funded by the BMBF InnoProfile-Projekt 03 IPT 611X. Grateful thanks belong to all
authors of the cited R packages, the R community and RKWard developers.

52



List of Figures

S1
52
S3
S4
S5
S6
S7
S8
59
S10
S11
512
513
S14
S15
S16

S17
S18

519

Signal analysis using the VIMCFX96_60 data set (96-well plate cycler (Bio-Rad CFX96)). . . . .
Use of MFTaggr to test for heteroskedasticity using the Breusch-Pagan test. . . . . . ... .. ..
The plotCurves function. . . . . . . . . . . e
Imputation of missing values in amplification curve data. . . . . .. .. ... ... ... .....
Comparison of the normalization functions from CPP . . . . . . . ... .. ... ... ......
FILL ME. . . . . e
Working principle of th.cyc. . . . . . . .. e
Application of th.cyc for the analysis of ccPCR data. . . . . . . ... ... ... ... .. .....
Helicase Dependent Amplification (HDA) of Vimentin (Vim). . . . .. .. ... ... .. ... ..
Amplification standard curve simulation and regression analysis. . . . . .. ... ... ... ...
Calculation of the amplification efficiency. . . . . . . . .. ... o oo oL
FILL ME. . . . e
Simulation of a qPCR experiment using AmpSim function. . . . . .. ... ... ... ... ...
Application of the CPP and th.cyc functions. . . . . . . . . .. ... ... ... ...
Cycle of quantification by the second derivative maximum method. . . . . . . . . ... ... ...
Plot all data from C127EGHP and calculate the SDM (Second Derivative Maximum) values with
the diffQ2 function. . . . . . . . . ..
Amplification curve profiles from the Bio-Rad iQ5 thermo cycler for the human gene HPRT'1

bg.max to estimate the range between the background and the plateau phase of an amplification
reaction . . . .. L e
Application of the bg.max function to detect the start and end of an amplification reaction in a
capillary convective PCR. . . . . . . . . . e

53

39
41

44



References

1]

[15]

[16]

Mariano J. Alvarez, Guillermo J. Vila-Ortiz, Mariano C. Salibe, Osvaldo L. Podhajcer, and Fernando J.
Pitossi. Model based analysis of real-time PCR data from DNA binding dye protocols. BMC Bioinformatics,
8(1):85, March 2007.

Anke Batsch, Andrea Noetel, Christian Fork, Anita Urban, Daliborka Lazic, Tina Lucas, Julia Pietsch,
Andreas Lazar, Edgar Schomig, and Dirk Griindemann. Simultaneous fitting of real-time PCR data with
efficiency of amplification modeled as gaussian function of target fluorescence. BMC Bioinformatics, 9(1):95,
February 2008.

Stephen A. Bustin, Vladimir Benes, Jeremy A. Garson, Jan Hellemans, Jim Huggett, Mikael Kubista, Rein-
hold Mueller, Tania Nolan, Michael W. Pfaffl, Gregory L. Shipley, Jo Vandesompele, and Carl T. Wittwer.
The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments.
Clinical Chemistry, 55(4):611-622, April 20009.

Paul H. C. Eilers. A perfect smoother. Analytical Chemistry, 75(14):3631-3636, July 2003.

Daniel N Frank. BARCRAWL and BARTARB: software tools for the design and implementation of barcoded
primers for highly multiplexed DNA sequencing. BMC Bioinformatics, 10:362, 2009. PMID: 19874596
PMCID: PMC2777893.

Weihong Liu and David A Saint. A new quantitative method of real time reverse transcription polymerase
chain reaction assay based on simulation of polymerase chain reaction kinetics. Analytical Biochemistry,
302(1):52-59, March 2002. PMID: 11846375.

Izaskun Mallona, Julia Weiss, and Marcos Egea-Cortines. pcrEfficiency: a web tool for PCR amplification
efficiency prediction. BMC' Bioinformatics, 12(1):404, October 2011.

Sarika Mehra and Wei-Shou Hu. A kinetic model of quantitative real-time polymerase chain reaction.
Biotechnology and bioengineering, 91(7):848-860, September 2005. PMID: 15986490.

Zhenghua Nie and Jeffrey S Racine. The crs Package: Nonparametric Regression Splines for Continuous
and Categorical Predictors. The R Journal, 4(2):48-56, December 2012.

Stuart N Peirson, Jason N Butler, and Russell G Foster. Experimental validation of novel and conventional
approaches to quantitative real-time PCR data analysis. Nucleic Acids Research, 31(14):e73, July 2003.
PMID: 12853650 PMCID: PMC167648.

Xiayu Rao, Dejian Lai, and Xuelin Huang. A new method for quantitative real-time polymerase chain
reaction data analysis. Journal of computational biology: a journal of computational molecular cell biology,

20(9):703-711, September 2013. PMID: 23841653 PMCID: PMC3762066.
C. Ritz and J. C. Streibig. Bioassay analysis using r. Journal of Statistical Software, 12, 2005.

Stefan Rodiger, Alexander Béhm, and Ingolf Schimke. Surface melting curve analysis with R. The R Journal,
5(2):37-53, December 2013.

J M Ruijter, C Ramakers, W M H Hoogaars, Y Karlen, O Bakker, M J B van den Hoff, and A F M Moorman.
Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids
Research, 37(6):e45, April 2009. PMID: 19237396 PMCID: PMC2665230.

Jan M. Ruijter, Peter Lorenz, Jari M. Tuomi, Michael Hecker, and Maurice J. B. van den Hoff. Fluorescent-
increase kinetics of different fluorescent reporters used for qPCR depend on monitoring chemistry, targeted
sequence, type of DNA input and PCR efficiency. Microchimica Acta, pages 1-8, 2014.

Jan M Ruijter, Michael W Pfaffl, Sheng Zhao, Andrej N Spiess, Gregory Boggy, Jochen Blom, Robert G
Rutledge, Davide Sisti, Antoon Lievens, Katleen De Preter, Stefaan Derveaux, Jan Hellemans, and Jo Van-
desompele. Evaluation of qPCR curve analysis methods for reliable biomarker discovery: bias, resolution,
precision, and implications. Methods (San Diego, Calif.), 59(1):32-46, January 2013. PMID: 22975077.

Stefan Rodiger, Peter Schierack, Alexander Bohm, Jorg Nitschke, Ingo Berger, Ulrike Frommel, Carsten
Schmidt, Mirko Ruhland, Ingolf Schimke, Dirk Roggenbuck, Werner Lehmann, and Christian Schroder. A
highly versatile microscope imaging technology platform for the multiplex real-time detection of biomolecules
and autoimmune antibodies. Advances in Biochemical Engineering/Biotechnology, 133:35-74, 2013.

54



[18]

[19]

[20]

[21]

[22]

[25]

[26]

Abraham. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by simplified least squares
procedures. Analytical Chemistry, 36(8):1627-1639, July 1964.

Eric B Shain and John M Clemens. A new method for robust quantitative and qualitative analysis of
real-time PCR. Nucleic Acids Research, 36(14):€91, August 2008. PMID: 18603594 PMCID: PM(C2504305.

Marjo V. Smith, Chris R. Miller, Michael Kohn, Nigel J. Walker, and Chris J. Portier. Absolute estimation
of initial concentrations of amplicon in a real-time RT-PCR process. BMC' Bioinformatics, 8(1):409, October
2007.

Anders Staalberg, Pierre Aman, Borje Ridell, Petter Mostad, and Mikael Kubista. Quantitative real-time
PCR method for detection of b-lymphocyte monoclonality by comparison of kappa and lambda immunoglob-
ulin light chain expression. Clinical Chemistry, 49(1):51-59, January 2003. PMID: 12507960.

Joel Tellinghuisen and Andrej-Nikolai Spiess. Comparing real-time quantitative polymerase chain reaction
analysis methods for precision, linearity, and accuracy of estimating amplification efficiency. Analytical
Biochemistry, 449:76-82, March 2014. PMID: 24365068.

Ales Tichopad, Michael Dilger, Gerhard Schwarz, and Michael W Pfaffl. Standardized determination of
real-time PCR efficiency from a single reaction set-up. Nucleic Acids Research, 31(20):e122, October 2003.
PMID: 14530455 PMCID: PMC219490.

Jari Michael Tuomi, Frans Voorbraak, Douglas L Jones, and Jan M Ruijter. Bias in the Cq value observed
with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value.
Methods (San Diego, Calif.), 50(4):313-322, April 2010. PMID: 20138998.

Jochen Wilhelm, Alfred Pingoud, and Meinhard Hahn. Real-time PCR-based method for the estimation of
genome sizes. Nucleic Acids Research, 31(10):e56, May 2003. PMID: 12736322 PMCID: PMC156059.

Sheng Zhao and Russell D. Fernald. Comprehensive algorithm for quantitative real-time polymerase chain re-
action. Journal of Computational Biology : a Journal of Computational Molecular Cell Biology, 12(8):1047—
1064, October 2005. PMID: 16241897 PMCID: PMC2716216.

55



