
DETAILS OF CHEBPOL

SIMEN GAURE

Abstract. chebpol is a package for multivariate interpolation using Chebyshev-
polynomials. Interpolation means that the approximating function it produces

matches the original function in prespecified points, and try to fill in between

the gaps. Thus, it is not smoothing like the mgcv package. Indeed, the package
also contains some other multivariate interpolation methods. This document

outlines how chebpol works.

1. Introduction

We consider the problem of interpolating a continuous function f : [−1, 1] 7→ R
based on its values in n points {xi}i=1..n called knots. I.e. we want to find a
reasonably behaved function Pnf defined on [−1, 1] such that Pnf (xi) = f(xi) for
i = 1..n.

A classical approach is to let Pnf be a polynomial of degree n − 1 and find the

coefficients by solving the linear system Pnf (xi) = f(xi) (i = 1..n). However, high-
degree polynomials do not always behave reasonably. In particular there is the
Runge phenomenon: If the points xi are uniformly spaced in [−1, 1] and one tries
to interpolate the Runge function f : x 7→ (1 + 25x2)−1, there will be oscillations
in Pnf near the end-points. As n grows, the amplitude of these oscillations grow
without bounds.

2. Chebyshev interpolation

The classical solution to the Runge phenomenon is to use a particular set of knots,
the Chebyshev knots xni = cos(π(i− 0.5)/n) for i = 1..n. This will ensure that Pnf
will converge uniformly to f as n→∞, provided f is uniformly continuous. In this
case one uses a special basis for the space of polynomials of degree up to n− 1, the
Chebyshev polynomials {Ti(x)}i=0..n−1, which are orthogonal w.r.t to a suitable
inner product. Due to a trigonometric identity, we have Ti(x) = cos(i cos−1(x)).
The coefficients for these polynomials may be computed by a variant of the DCT-II
transform. Thus, the method is fast.

More modern methods use splines, where the idea is to glue pieces of simple func-
tions together, either low-degree polynomials or rational functions, subject to vari-
ous constraints. Splines are in many respects superior to Chebyshev-interpolation.

For the multivariate case, where f : [−1, 1]r → R, the DCT-II transform, being
a variant of the Fourier transform, factors over tensor-products, so a natural choice
is to use this tensor-product transform in the multivariate case. The knots are the
Cartesian product of one-dimensional knots. This is a classical way to interpolate
multivariate real functions.

Date: February 25, 2013.

1



2 SIMEN GAURE

This procedure is available in package chebpol in two variants. One for the case
that f(xni ) is known for each i = 1..n, this is the function chebappx. For the
case that the function f is available, not only its values in the knots, we have the
function chebappxf. This is a short wrapper for chebappx which simply evaluates
f in the knots.

Thus, given a function f we may compute its Chebyshev approximation and plot
it:

> f <- function(x) cos(3*pi*x)/(1+25*(x-0.25)^2)

> ch <- chebappxf(f,15)

> s <- seq(-1,1,length.out=401)

> plot(s,f(s),type='l')

> lines(s,ch(s), col='red')

> kn <- chebknots(15)[[1]]

> points(kn,f(kn))

−1.0 −0.5 0.0 0.5 1.0

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

s

f(
s)

●●
●

●

●

●

●

●

●●

●●
●●●

Even though there still are oscillations near the end points, their amplitude will
diminish as n grows. The knots are the locations where the curves intersect.

In the multivariate case, the dims argument to chebappxf is a vector of integers,
the number of knots in each dimension. The chebappx variant instead uses the dim

attribute of its input to determine this.

3. Uniformly spaced grids

In some applications it is not feasible to evaluate the function f in the Chebyshev
knots. Rather it may have to be evaluated on a uniformly spaced grid. To avoid
the Runge phenomenon, chebpol transforms the domain of the function as follows.



DETAILS OF CHEBPOL 3

A fairly simple function exists which monotonically maps uniform grid points

into Chebyshev knots. It’s g : x 7→ sin
(
πx(1−n)

2n

)
. We omit the dependence on n to

avoid clutter. This g has the property that for Chebyshev knots xni and a uniform
grid yni = −1 + 2(i− 1)/(n− 1) we have g(yni ) = xni for i = 1..n.

Thus, given a function f to interpolate on a uniform grid, we construct the
function h : x 7→ f(g−1(x)). We then create the Chebyshev approximation Pnh
which requires h to be evaluated in the Chebyshev knots xni , but g−1(xni ) = yni
are the uniform grid points, so f is evaluated there. We then use the function
Qn : x 7→ Pnh (g(x)) for interpolation.

It is readily verified that for i = 1..n we have Qn(yni ) = f(yni ), thus Qn agrees
with the function f on the uniform grid. This is no longer a polynomial interpola-
tion, so the Runge phenomenon is not necessarily present.

This procedure is available in the function ucappx, with a function variant in
ucappxf. Continuing the former example, we have

> uc <- ucappxf(f,15)

> lines(s,uc(s),col='blue')

−1.0 −0.5 0.0 0.5 1.0

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

s

f(
s)

●●

●

●

●

●

●

●

●●

●●

●
●●

For the multivariate case, ucappx creates a separate map function g for each
dimension, which may have different number of knots. One could imagine a case
where some dimensions are evaluated on Chebyshev grids, whereas other dimensions
are evaluated on uniform grids. Although chebpol has no ready-made wrapper
function to do this, it is not particularly difficult to achieve.



4 SIMEN GAURE

4. Non-standard hypercubes

Often, the domain of the function is not [−1, 1], but rather some other interval
[a, b]. This interval may be affinely mapped onto [−1, 1] by x 7→ (2x−(a+b))/(b−a).
For the multidimensional case this may be done for each dimension separately. The
functions in chebpol have an optional intervals argument, a list of such intervals,
one for each dimension, to support such hyper-rectangles.

In principle, the same could be done with infinite intervals, with e.g. a mapping
(−∞,∞) 7→ (−1, 1) like x 7→ 2

π tan−1(x), but chebpol does not implement it.

4.1. A multivariate example. Let f be the function f : (x, y) 7→ log(x)
√
y/ log(x+

y) defined on [1, 2]× [15, 20]. Let’s approximate it with 5 knots in x and 8 in y and
see how it fares in a random point:

> library(chebpol)

> f <- function(x) log(x[[1]])*sqrt(x[[2]])/log(sum(x))

> ch <- chebappxf(f, c(5,8), list(c(1,2), c(15,20)))

> uc <- ucappxf(f, c(5,8), list(c(1,2), c(15,20)))

> tp <- c(runif(1,1,2), runif(1,15,20))

> cat('arg:',tp,'true:', f(tp), 'ch:', ch(tp), 'uc:',uc(tp),'\n')

arg: 1.340665 16.57465 true: 0.4136095 ch: 0.4137009 uc: 0.4225757

5. Arbitrarily spaced grids

In some applications not even uniformly spaced grids are feasible. In this case
we do something similar as in the uniformly spaced case. We have grid-points
{yi}i=1..n in ascending or descending order. We then use splinefun in package
stats with method=’monoH.FC’ to create a monotone function g from the grid-
points {yi}i=1..n to the Chebyshev knots {xni }i=1..n. Otherwise, the same method
as for uniform grids are used.

The function chebappxg performs this procedure. With an accompanying func-
tion variant chebappxgf. In the multivariate case, it is assumed that the grid
in each dimension is arbitrary, but the multi-dimensional grid is still a Cartesian
product of these. We may test this on a non-uniform grid.

> f <- function(x) cos(3*pi*x)/(1+25*(x-0.25)^2)

> gr <- log(seq(exp(-1),exp(1),length=15))

> chg <- chebappxgf(f,gr)

> plot(s, f(s), col='black', type='l')

> lines(s, chg(s), col='blue')

> points(gr,f(gr))



DETAILS OF CHEBPOL 5

−1.0 −0.5 0.0 0.5 1.0

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

s

f(
s)

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

6. Multilinear interpolation

For demanding functions chebpol also contains a multilinear interpolation in
mlappx. A multilinear function is a function f(x1, x2, ..., xn) such that for each
i = 1..n the function gi(x) = f(x1, ..., xi−1, x, xi+1, ..., xn) is of the form ax+ b for
every choice of the xis. A typical example is f(x, y, z) = xyz + xy + 2yz − x + 2.
mlappx may take either a function or function values as its first argument and create
a piecewise multilinear interpolation. It is a straightforward implementation which
interpolates a point by a convex combination of the function values in the corners
of the surrounding hypercube. We try it out on an intricate function on [−1, 1]4

and evaluate the result along an intricate parametric curve. Of course, if one is
interested in this particular curve, one could interpolate along it instead. This is
just an example of multilinear interpolation.

> f <- function(x) sign(sum(x^3)-0.1)*

+ sqrt(abs(25*prod(x)-4))/

+ (1+25*sum(x)^2)

> grid <- replicate(4,list(seq(-1,1,length=15)))

> ml <- mlappx(f,grid)

> s <- seq(-1,1,length=400)

> curve <- function(x) c(cos(1.2*pi*x),

+ sin(1.5*pi*x^3),

+ x^2, -x/(1+x^2))

> wf <- sapply(s,function(x) f(curve(x)))

> wml <- sapply(s,function(x) ml(curve(x)))



6 SIMEN GAURE

> plot(s,wf,typ='l') # function

> lines(s,wml,col='blue') # multilinear interpolation

−1.0 −0.5 0.0 0.5 1.0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

s

w
f

7. Scattered data

In some cases multidimensional data points are not organized in a grid, rather
they are scattered. For this case, there is an experimental implementation of poly-
harmonic splines in polyh. It accepts a function, or function values, and a matrix
of centres (knots), one centre in each column. Here is a 20-dimensional example
with 3000 randomly placed knots:

> r <- runif(20)

> r <- r/sum(r)

> f <- function(x) 1/mean(log1p(r*x))

> knots <- matrix(runif(60000), 20)

> phs <- polyh(f, knots, 3)

> rr <- runif(20)

> curve <- function(x) abs(cos(5*pi*rr*x))

> s <- seq(0,1,length.out=1000)

> plot(s,sapply(s,function(x) f(curve(x))),typ='l')

> lines(s,sapply(s,function(x) phs(curve(x))),col='blue',lty=2)



DETAILS OF CHEBPOL 7

0.0 0.2 0.4 0.6 0.8 1.0

20
25

30
35

s

sa
pp

ly
(s

, f
un

ct
io

n(
x)

 f(
cu

rv
e(

x)
))

polyh(f,knots,k) fits a function of the form P (x) =
∑n
i=1 wiφ(‖x − ci‖) +

L(x) + c such that P (ci) = f(ci) for each i where the ci ∈ Rd are the knots, ‖ · ‖ is
the Euclidean norm on Rd, wi ∈ R are weights, L is linear Rd 7→ R, and c ∈ R is a
constant. φ is the function R+ 7→ R

φ(x) =


xk when k ∈ N is odd

xk log(x) when k ∈ N is even

exp(kx2) when k < 0

Note that this differs from some other expositions, which use 2m − d as exponent
for a natural number m.

For k = 2, we get the thin plate spline. Note that the fitting may fail, in
particular for k < 0 and irregular data. In this case a least squares fit is used, and a
warning is issued. The k parameter then may need to be tuned for the problem at
hand. Note that polyh by default transforms the knots and coordinates into a unit
hypercube if any of the knots are outside, see the help entry for polyh. Note that
for positive k the theory in [1, Proposition 6] says that there are enough splines
even if we do not scale, but the numerics may be more favourable when we scale.
There is more about polyharmonic splines in [2].

There do exist some acceleration schemes for low dimensions, but the current
implementation does not use any. It is an entirely straightforward implementation
which fits by solving a linear system, and evaluates the P (x) directly.



8 SIMEN GAURE

References

1. Thomas Hangelbroek and Jeremy Levesley, On the density of polyharmonic splines, Journal of
Approximation Theory 167 (2013), 94 – 108.

2. Christophe Rabut, Elementary m-harmonic cardinal b-splines, Numerical Algorithms 2 (1992),

no. 1, 39–61.

Ragnar Frisch Centre for Economic Research, Oslo, Norway


