
Biometrika (2020), 103, 1, pp. 1–19
Advance Access publication on 31 July 2018Printed in Great Britain

Symbolic Computation of Tight Causal Bounds
BY M.C. SACHS

Department of Medical Epidemiology and Biostatistics
Karolinska Institutet

Box 281, 17177 Stockholm, Sweden. 5

michael.sachs@ki.se

E.E. GABRIEL
Department of Medical Epidemiology and Biostatistics

Karolinska Institutet
Box 281, 17177 Stockholm, Sweden. 10

erin.gabriel@ki.se

A. SJÖLANDER
Department of Medical Epidemiology and Biostatistics

Karolinska Institutet
Box 281, 17177 Stockholm, Sweden. 15

arvid.sjolander@ki.se

SUMMARY

Causal inference involves making a set of assumptions about the nature of things, defining a
causal query, and attempting to find estimators of the query based on the distribution of observed
variables. When causal queries are not identifiable from the observed data, it still may be pos- 20

sible to derive bounds for these quantities in terms of the distribution of observed variables. We
develop and describe a general approach for computation of bounds, proving that if the problem
can be stated as a linear program, then the true global extrema result in tight bounds. Building
upon previous work in this area, we characterize a class of problems that can always be stated as
a linear programming problem; we describe a general algorithm for constructing the linear objec- 25

tive and constraints based on the causal model and the causal query of interest. These problems
therefore can be solved using a vertex enumeration algorithm. We develop an R package im-
plementing this algorithm with a user friendly graphical interface using directed acyclic graphs,
which only allows for problems within this class to be depicted. We have implemented additional
features to help with interpreting and applying the bounds that we illustrate in examples. 30

Some key words: Causal Inference; Identifiability; Bounds; Computation.

1. INTRODUCTION

In many fields of research, a common goal is to determine the causal effect of a particular
exposure, event or circumstance on a particular outcome. Unless one is able to experimentally
intervene on the exposure, this investigation is typically complicated by the fact that there are 35

common causes of the exposure and the outcome. Often, these common causes are at least partly

C© 2020 Biometrika Trust

2 M.C. SACHS ET AL.

unknown, in which case the causal effect of interest is generally not identifiable in the sense that it
cannot be computed uniquely from the probability distribution of observed variables because any
observable association could be due to the uncontrolled common causes. When the causal effects
of interest, which we will call causal queries, cannot be identified, it still may be possible to40

derive bounds, i.e. a range of possible values, for these quantities in terms of the true distribution
of the observed variables. Such bounds have been derived in a variety of settings (Robins, 1989;
Manski, 1990; Zhang & Rubin, 2003; Cai et al., 2008; Sjölander, 2009; Sjölander et al., 2014).
Although numeric optimization is possible, symbolic bounds can provide useful information
with which to draw conclusions about a study design or form of data collection in the absence of45

data.
Twenty-five years ago in his PhD dissertation, Alexander Balke illustrated a method for trans-

lating a causal theory, represented by a directly acyclic graph (DAG), and a certain type of causal
query into a constrained optimization problem (Balke & Pearl, 1994a). Balke & Pearl (1994b)
develop the representation of a causal theory in terms of latent response function variables that50

describe the probability distribution of counterfactual quantities. That representation permits one
to write the causal query in terms of the distribution of the response function variables and also
to derive a system of equations relating observed probabilities to the distribution of the response
function variables. Taken together and combined with standard probabilistic constraints, this de-
fines a constrained optimization problem. If the problem is linear then a vertex enumeration55

algorithm can be used to find the global maximum and minimum of the causal query in terms of
the true probability distribution of the observed variables (Dantzig, 1963).

Balke & Pearl (1994a) states, but does not prove, that the resulting extrema yield tight bounds
for the causal query of his example in terms of the true probability distribution of the observed
variables. “Tight” here means that all values inside the bounds are logically compatible with60

the true distribution of the observed variables. To the knowledge of the authors, no one has
proven this is true in general for all problems that define a linear program, although some have
proven this result in specific settings (Ramsahai, 2012; Bonet, 2013; Heckman & Vytlacil, 2001).
Regardless of the tightness of the bounds, vertex enumeration is only guaranteed to produce
global extrema in linear optimization problems, i.e., linear objective and linear constraints. To65

the knowledge of the authors, there has been no attempt in the literature to describe a class of
problems that are always linear or an approach for determining whether a problem is linear, given
the DAG and target causal query.

Balke wrote a program in C++ to take a linear programming problem as text file input, perform
variable reduction, conversion of equality constraints into inequality constraints, and perform the70

vertex enumeration algorithm of Mattheiss (1973). This program has been used by researchers in
the field of causal inference with great success (Balke & Pearl, 1997; Cai et al., 2008; Sjölander,
2009; Sjölander et al., 2014) but it is not particularly accessible to other researchers because of
the technical challenge of translating the DAG plus causal query into the constrained optimiza-
tion problem and to determine whether it is linear. Thus, applications of this approach have been75

limited to a small number of settings.
In this paper, we generalize and extend Balke and Pearl’s approach for computation of bounds,

proving that if the problem can be stated as a linear program, then the true global extrema re-
sult in tight bounds for the DAG and causal query and additional constraints in question. We
characterize a class of problems that can always be stated as a linear programming problem; we80

describe a general algorithm for constructing the linear objective and constraints based on the
DAG and the causal query of interest. These problems therefore, at least theoretically, can be
solved using a vertex enumeration algorithm. We develop an R package called causaloptim,
available on the Comprehensive R Archive Network (CRAN), that implements this algorithm

Symbolic Computation of Tight Causal Bounds 3

with a user friendly interface for setting up such problems via DAGs, which only allows for 85

problems within this class to be depicted. The user can then define the target causal quantity and
optionally linear constraints using standard causal notation.

We illustrate the steps of the algorithm by using it to derive bounds in a simple example with
two confounded variables. Then we apply the method to derive bounds in a novel setting, where
there are two instrumental variables that are correlated with each other. 90

2. NOTATION AND PRELIMINARIES

2.1. Response functional expression of a causal theory
Let the set of variables of interest be denotedW = {W1, . . . ,Wn}, with observed values rep-

resented by the vector w with elements w1, . . . , wn. We assume that all of these variables are
binary and can take values in {0, 1}. Each variable of interest Wi has an associated irreducible 95

error term that is latent, not necessarily binary, and denoted εi. There may be additional variables
that are latent and not necessarily binary. We also need to describe variables in the potential out-
come world, and this will be denoted using brackets: i.e., W1(W2 = w2). Thus a counterfactual
probability such as pr{W1(W2 = 0) = 1} will be read as ‘if W2 were intervened upon to have
value 0, what is the probability that W1 would have been equal to 1?’. 100

W1

U

W2 W3

ε3ε1 ε2

(a) Example with error terms. The dashed ellipse
outlines the latent causal influences of W2 and W3.
Since they both contain U , the common cause, their
response function variables are dependent.

W1

R1 R2 R3

W2 W3

(b) Example with response function variables. The
response function variables denoted are categorical,
with R1 taking two possible values, R2 taking 4 pos-
sible values, R3 taking 16 possible values.

Fig. 1: Example DAG to illustrate the concepts and notation. In this example, the variables W1,
W2, and W3 are of interest, assumed to be binary, and the others are latent errors. Since the
variables of interest are binary, the assumptions can be represented using categorical response
function variables.

The DAG encodes assumptions regarding the variables in the model. For each i, we have the
functional expression for wi, the value of Wi: wi = fWi(pai,Uwi , εi), where pai denotes the
values of variables in W that are parents of Wi in the DAG, and UWi represents the (possibly
empty) vector of latent variables that are parents of Wi in the DAG, and εi the independent
errors due to omitted factors that may influence Wi but no other variables. The UWi variables
are not assumed independent, and they generally will represent unmeasured confounders. Since
all variables of interest in the graph are assumed to be binary, we can, without loss of generality,
recode the assumptions by defining a series of categorical variables RWi , one for each variable
inW , which specifies how Wi is determined from its parents. In this response function variable
form of the DAG, if the binary variable Wi has ki parents (including the response function
variables), then there are 22ki−1

possible response patterns of Wi with respect to pai. Thus, we
may represent each RWi as a categorical random variable that takes on 22ki−1

possible values,
one for each response pattern, for i = 1, . . . , n. Let rWi denote an arbitrary value that the random

4 M.C. SACHS ET AL.

variableRWi can take, i.e., each category of rWi occurs with a certain prior probability pr{RWi =
rWi} such that

22
ki−1∑
i=1

pr{RWi = rWi} = 1.

LetR denote the vector of response function variables (R1, . . . , Rn) and r = (rW1 , . . . , rWn) an
arbitrary value of the random vector R. The vector r can take on

ℵ =

n∏
i=1

22ki−1

possible values.
The joint distribution of the response function variables pr{R = r} together with the response

functions fully characterize the causal model. To see this, note that given the value r, all variables105

Wi ∈ W have values that are functionally determined. For a given Wi and fixed r, we define a
procedure for determining its value by recursively evaluating the functional expression. We will
use nested subscripts to denote parents of Wi that are inW , i.e., Wi1, . . . ,Wiki are variables in
W that are parents of Wi. Then wi, the value of Wi can be obtained by recursively evaluating

fWi(r) = fWi(fWi1(r), . . . , fWiki
(r), rWi).

Any set of observed probabilities can be related to the distribution of response function vari-
ables as follows:

pr{w1 = W1; . . . ;wn = Wn} =
∑

r:∀j∈1,...,n[wj=fWj
(r)]

pr{R = r}.

As an example, Figure 1a shows the DAG for a model in which the outcome W3 has two
parents W2 and W1, which both have an effect on W3 and where W1 also has a direct effect
on W2. Figure 1b the equivalent DAG with response functional variables in place of the errors.
The variables that have a latent common cause have response function variables that are de-
pendent, as indicated by the dashed ellipse that outlines the latent causal influences of W2 and
W3. Since they both contain U , the common cause, then their response function variables are
dependent and thus connected by an undirected edge. As can be seen, in Figure 1b W2 has two
parents, W1 and RW2 , and then we can define RW2 so the values 0, 1, 2, 3 of RW2 correspond to
the response patterns fW2(pa2 = w1, rW2 = 0) = 0, fW2(w1, rW2 = 1) = w1, fW2(w1, rW2 =
2) = 1− w1, fW2(w1, rW2 = 3) = 1, respectively. Under this model shown in Figure 1b, with
rW1 = 0, rW2 = 1, rW3 = 3, we can evaluate the function to determine w2:

fW2(r = (0, 1, 3)) = fW2(fW1(0), 1) = fW2(0, 1) = 0.

ForW3, we need to define response patterns for each of the 22 possible combinations of values110

of (w1, w2), i.e., 222 = 16, while W1 has only 2 possible response patterns. Then, to evaluate the
probability pr{W1 = 1;W2 = 0;W3 = 1} in terms of R, we can follow the same procedure as
above for all 21 · 22 · 24 = 128 possible combinations of r, keeping track of the resulting values
w. It can be shown that the variable value w = (1, 0, 1) is consistent with 16 values of r. Thus
the probability of this event is the sum over the set of these 16 values of the probability that115

R equals them. See Balke & Pearl (1994a) or Pearl (2009), Chapter 8 for another example and
further interpretation.

Symbolic Computation of Tight Causal Bounds 5

3. RESULTS

3.1. Class of Problems
Next, we describe a general class of problems in terms of conditions on the DAG and the query 120

such that the problem is guaranteed to be a linear programming problem, and the algorithm to
obtain the bounds. By “problem”, we mean the assumptions encoded in a DAG together with the
causal query, and optionally additional linear constraints. In causal inference problems, latent
common causes (confounding) make the causal effect non-identifiable, which motivates the use
of bounds. However, bounds can be improved upon by having a variable that is unconfounded 125

with the outcome of interest (Pearl, 2009). To generalize this idea we make a separation into sets
of variable indices L andR, where the L variables are unconfounded with theR variables.

The set of variables W in the graph can be partitioned into two groups W = {WL,WR},
where L may be empty. We will likewise write R = {RL, RR} for the corresponding response
function variables, and the values of the vectors variables in lowercase. We assume without loss 130

of generality that the indices of the variables are ordered in such a way that L = {1, . . . ,K} and
R = {K + 1, . . . , n}, where K may be 0. The graph must meet all of the following conditions:

Assumption 1. Edges that connect two variables, one fromL and one fromR, must be directed
from L toR.

Assumption 2. There exists an unmeasured variable UL such that UL is a parent of Wi for all 135

i ∈ L. That is, all variables in L are confounded with each other.

Assumption 3. There exists an unmeasured variable UR such that UR is a parent of Wi for all
i ∈ R. That is, all variables inR are confounded with each other.

Assumption 4. There exists no unmeasured variable U such that U is a parent of Wi and Wj

for any i ∈ L and any j ∈ R. That is, the variables in L and R are not confounded with each 140

other.

We introduce some additional notation before stating and proving the results. Let pr{WR =
wR|WL = wL} denote the observed probabilities of all variables in R conditional on all vari-
ables in L. Let p denote the vector of length 2n of all possible observed probabilities of that form,
the elements of which will be denoted pb. 145

As we will soon show, it suffices to consider only the response function variables in R. Thus
we will denote pr(RR = rγ) = qγ for each of the rγ in the domain of RR which number

ℵR =

n∏
j=K+1

22kj−1

.

That is, qγ indexes the parameters of the joint probability distribution of the response function
variables RR, such that

ℵR∑
γ=1

qγ = 1,

and q denotes the vector.
For i ∈ R and for a fixed value of wL, we will write fWi(wL, rγ) to denote the function

fWi(wi1, . . . , wil, fWil+1
(rγ), . . . , fWiki

(rγ), rWi),

where wi1, . . . , wil are the values of the parents of Wi that are in L, and Wil+1, . . . ,Wiki are the
parents of Wi that are inR.

6 M.C. SACHS ET AL.

An overview of the algorithm is as follows: (1) For each observed probability conditional150

on variables in L, convert to linear combination of joint probabilities of the response function
variables. (2) Allow for additional linear constraints. (3) Convert the causal query to a linear
combination of joint probabilities of the response function variables. (4) Enumerate the vertices
of the dual of the linear programming problem. (5) Return bounds in terms of observed proba-
bilities. We describe 1-3 in more detail in turn, and the description of the algorithm serves as a155

constructive proof that this class of problems is a linear programming problem.

3.2. Obtaining linear constraints on observed probabilities
THEOREM 1. In DAGs that satisfy the Assumptions 1 - 4, conditional probabilities pr{WR =

wR|WL = wL} for all possible combinations of wR and wL are linear in response function
variable probabilities. This defines a system of linear equations that can be written p = Pq for160

a matrix P .

Proof of Theorem 1. By Assumption 3, all variables in (RR) are mutually dependent and
thus the probabilities cannot be factorized, i.e., pr(RWi = rWi , RWj = rWj) 6= pr(RWi =
rWi)pr(RWj = rWj) for any pair or tuple.

Algorithm 1 allows us to determine the linear equations that specify the relationship between165

the observed conditional probabilities and q. Recall p denotes the vector of length B of all pos-
sible observed probabilities of the form above, the elements of which will be denoted pb and the
corresponding variable values are denoted (wR, wL)b.
Algorithm 1. Algorithm to determine linear system of equations relating p to q.

Result: System of linear equations relating p to q
Initialize P a B by ℵR matrix of 0s;
for b ∈ 1, . . . , B do

Set w = (wR, wL)b;
for γ ∈ 1, . . . ,ℵR do

Initialize w∗;
for j ∈ R do

Compute w∗j = fWj (wL,b, rγ) ;
if (w∗, wL,b) = w then

Pb,γ = 1;
In the recursive function fWi in this algorithm, the parents of Wi that are in L are fixed at the170

values determined by the conditional probability statement, which is why in this case, fWi only
depends on rγ and not the full vector of response function variables. Thus, Algorithm 1 yields
a system of equations Pq = p where p is the vector of conditional probabilities of observed
variables, proving Theorem 1. �

3.3. Functional expression incorporating interventions175

In order to determine the values of variables of interest for counterfactual quantities that in-
corporate interventions, we must also define a procedure for evaluating the functional expression
that allows for variables to be externally forced to certain values. As a first step, we consider
extended DAGs, which add additional nodes for counterfactual quantities of interest as in Balke
& Pearl (1994b). These are called twin networks in Pearl (2009), Chapter 7. Two examples are180

shown in Figure 2a and 2b. The factual nodes remain as they are, and for each counterfactual
quantity of interest, nodes are added. The corresponding factual and counterfactual nodes share
the same response function variables. Edges that connect factual nodes to counterfactual nodes

Symbolic Computation of Tight Causal Bounds 7

are labelled with letters that denote intervention sets indexed by the child variable of that edge.
These sets define the variables being externally set, and the values that they are being set to. 185

W1 W2 W3

W3(W2(w1), w′1)W2(w1)

RW2 RW3

RW1

aW1,W1→W2→W3
aW1,W1→W3

(a) Extended graph for evaluation of the counterfactual quantity
W3(W2(W1 = 0),W1 = 1).

W1 W2 W3

W3(w2, w1)

RW2 RW3RW1
a′W2,W2→W3

a′W1,W1→W3

(b) Extended graph for evaluation of the counterfactual quantity W3(W2 = 0,W1 = 1).

Fig. 2: Extended DAGs to illustrate that multiple intervention sets are needed to define certain
counterfactual quantities.

Balke & Pearl (1994a) considered cases where we externally force a single set of the variables
to some fixed values. This construction suffices for the examples they consider, which are to
derive bounds for the noncompliance example and the ‘party example’. This formulation, how-
ever, does not suffice for defining and bounding effects like the natural direct effect of W1 in the
graph in Figure 2a whose first term is pr{W3(W2(W1 = 0),W1 = 1) = 1}. In that expression, 190

we see that the variable W1, which is a parent of both W3 and W2, is simultaneously being set to
0 and 1, the difference being which child is in question. Sjölander (2009) extended the method
to work for the natural direct effect, but not more generally than that. As another example, the
causal query pr{W3(W2(W1 = 0)) = 1;W2(W1 = 1) = 1} is a joint probability statement, and
the two events in question are under different fixed values of W1. Therefore, to be completely 195

general, the variables one assigns to a value cannot be a single set; the values that variables
are being externally forced to may depend on which children are being considered and also on
the term of the probability statement. Thus we define the extended function expression, which
“remembers” the path of edges taken to get the value that is being determined at each call.

Let A be a n by J matrix that encodes the interventions and variables on which to intervene, 200

with rows indexed by i corresponding to the variables and the columns indexed by j correspond-
ing to all possible interventional paths, the entries can be 0, 1, or ∅. The desired interventions
within the causal query then define the entries of A which are denoted aij . In our procedure
for evaluating counterfactuals, there is a distinct interventional matrix Ap corresponding to each
outcome variable with a single index p. We define the procedure for evaluating the interventional 205

response functional for an outcome variable such that there is no intervention on the outcome as

fWi

(
wi1 = fAWi1

(r,Wi1 →Wi), . . . , wiki = fAWiki
(r,Wiki →Wi), RWi

)
,

8 M.C. SACHS ET AL.

where for all variables Wi, fAWi
(r, j) is defined recursively as:

fAWi
(r, j) =


aij if aij 6= ∅
fWi(rWi) if aij = ∅ and pa(Wi) = ∅
fWi(f

A
Wi1

(r,Wi1 → j), . . . , fAWiki

(
r,Wiki → j), RWi

)
otherwise,

where {Wi1, . . . ,Wiki} = pa(Wi) are the the parents ofWi and ki are their number in the causal
model and the notation i→ j means that i→ is appended to the front of whatever is included in
j. This notation allows us to trace the full path taken from the outcome of interest to the variable210

being intervened upon.
For example, considering the DAG in Figure 2a and the first part of the causal query

pr{W3(W2(W1 = 0),W1 = 1) = 1}, we have

A =


W1 →W2 →W3 W1 →W3 W2 →W3

W1 0 1 ∅
W2 ∅ ∅ ∅
W3 ∅ ∅ ∅

 .
Thus, evaluating the functional expression results in

w3 = fW3(fAW1
(r,W1 →W3), fAW2

(r,W2 →W3), rW3).

For the first element of that function call we have fAW1
(r,W1 →W3) = 1. Then for the second

element, we recurse, giving

fAW2
(r,W2 →W3) = fW2(fAW1

(r,W1 →W2 →W3), rW2).

Now fAW1
(r,W1 →W2 →W3) = 0, giving the result w3 = fW3(w1 = 1, w2 = W2(W1 =

0), rW3).
For the DAG in Figure 2b and the first part of the causal query pr{W3(W2 = 0,W1 = 1) = 1},

A =


W1 →W2 →W3 W1 →W3 W2 →W3

W1 ∅ 1 ∅
W2 ∅ ∅ 0
W3 ∅ ∅ ∅

 .
Thus, evaluating the functional expression results in

w3 = fW3(fAW1
(r,W1 →W3), fAW2

(r,W2 →W3), rW3).

For the first element of that function call we have fAW1
(r,W1 →W3) = 1. Then for the second

element fAW2
(r,W2 →W3) = 0, giving the result w3 = fW3(w1 = 1, w2 = 0, rW3).215

The procedures for evaluating the functions f and fA are sufficient to translate any factual or
counterfactual joint probability statement into probability statements involving only the response
function variablesR. Using our response function formulation, any counterfactual or factual joint
probability statement can be written

Qv = pr{fWi1
(f
Ai1
Wi1·

(r), rWi1
) = wi1 , . . . , fWiP

(f
AiP
WiP ·

(r), rWiP
) = wiP ,

fWj1
(r) = wj1 , . . . , fWjO

(r) = wjO}, (1)

where P = {i1, . . . , iP } denote the indices of counterfactual outcomes, and O = {j1, . . . , jO}220

the indices of the factual outcomes. The sets may be overlapping, and each set may contain

Symbolic Computation of Tight Causal Bounds 9

duplicates. Viewing the vector R as a random variable, it is clear that

Qv =
∑
r∈Γ

pr{R = r}, where Γ = {r : wip = fAi
Wip

(r, ip) and wjo = fWjo
(r)},

for all ip ∈ P and all jo ∈ O. This form is completely general, and allows arbitrarily nested
counterfactuals, and combinations with observational quantities. Causal contrasts such as the
risk difference are constructed by defining Q to be sums and differences of a set of Qv indexed 225

by v ∈ {1, . . . , V }.

3.4. Obtaining causal query as linear function of causal parameters
Causal queries must satisfy:

Assumption 5. Q =
∑V

v=1 αvQv, where each αv ∈ {−1, 1}.

Assumption 6. Each Qv is a counterfactual probability as given in (1) where 230

i1, . . . , ip, j1, . . . , jo ∈ R and if L is not empty: (1) none of the variables in L that are
intervened upon can have children in L, (2) all variables in L must be in the intervention set, or
ancestors of the variables in the intervention set. Here the intervention set refers to variables in
the rows of the A matrices that are not ∅, (3) No observations are allowed in Qv.

THEOREM 2. Under DAGs that satisfy Assumptions 1 - 4, causal queries that satisfy Assump- 235

tions 5 - 6 are linear functions of the joint probabilities of the response function variables. That
is, we can write Q = αT q, for some vector α.

Proof of Theorem 2. Algorithm 2 describes the manner in which the causal query is converted
into a linear function of the response function variable probabilities.
Algorithm 2. Converting Q to a linear combination of q.

Result: Q in terms of qs
for v ∈ 1, . . . , V do

Set Qv = 0;
Set A according to Qv;
for γ ∈ 1, . . . ,ℵR do

Set P = {i1, . . . , ip} to the indices of variables intervened upon, and
O = {j1, . . . , jo} the indices of the variables not intervened upon in in Qv;

Initialize w∗ ;
for l ∈ P do

Compute w∗l = fAWl
(rγ) ;

for l ∈ O do
Compute w∗l = fWl

(rγ) ;
if w∗ = w then

Qv = Qv + αjqk;
Compute Q =

∑V
v=1 αvQv, and reduce the q variables.

240

By Assumptions 6, all of the variables inw are inR. Then by Assumptions 1 - 4, we know that
changing the values of the response function variables in L does not influence the possible values
of w. Then, since RL is independent of RR, each match in the final if statement of Algorithm 2
leads to a sum over all possible values of rL that can be factored out and is equal to 1, thereby
leaving only the sum of distinct parameters for RR. 245

Therefore, we have Q = αT q for some vector α. This is the objective function in terms of the
counterfactual probabilities thereby proving Theorem 2. �

10 M.C. SACHS ET AL.

3.5. Optimization via vertex enumeration
After applying Algorithms 1 and 2, we have a linear objective and a system of linear con-

straints. We also have the probabilistic constraints:250 ∑
wR

pr(WR = wR|WL = wL) = 1, for all possible values of the vector wL,

ℵR∑
γ=1

qγ = 1.

Additional user specified constraints on q can be optionally specified as Bq + h ≥ 0 where
h is a vector of constants. We now can state the following linear programming problem (linear
objective with linear constraints).

Minimize (maximize): Q
Subject to:255

ℵR∑
γ=1

qγ = 1

Pq = p

Bq + h ≥ 0

qj , pi ≥ 0∑
R
P (WR = wR|WL = wL) ≥ 0, for all levels of wL.

Global solutions to this problem can be found symbolically by applying Balke’s implemen-
tation of a vertex enumeration algorithm (Balke & Pearl, 1994a; Mattheiss, 1973). In brief, this
algebraically reduces the variables in the optimization problem, then adds slack variables so that
all constraints are converted into inequality constraints. The dual of this problem is to maximize
(minimize) yT p, for some vector y subject to a set of constraints. Thus the extremum of the260

causal query as stated in terms of q is equal to the extremum in the p space defined by the dual
constraints. Then, by noting that those constraints describe a convex polytope in the p space,
the global extrema can be found by enumerating all of the vertices of the polytope. This gives
the bounds on the causal effect of interest as the minimum (maximum) of a list of terms involv-
ing only observable probabilities, each of which corresponds to a vertex of this polytope. This265

demonstrates that for this class of problems, tight bounds can be derived symbolically according
to this algorithm.

3.6. Conditional probabilities are sufficient
THEOREM 3. Under Assumptions 1 - 6, the bounds obtained by solving the linear program-

ming problem are valid and tight.270

Proof of Theorem 3. In order to completely exhaust the relations between observed probabil-
ities and response function variable probabilities, one would have to consider the joint proba-
bilities pr(WR = wR,WL = wL). By Assumption 1, we have RL is independent of RR. Thus,
applying the same procedure as in Algorithm 1 to those joint probabilities would yield a system
of equations of the form PqK = p∗, where K is a diagonal matrix of response function vari-275

able probabilities for variables in L and p∗ is the vector of joint observed probabilities. Thus,

Symbolic Computation of Tight Causal Bounds 11

Pq = K−1p∗ = p. That is, the constraints implied by the joint observed probabilities do not
contain any information beyond what is implied by the conditional observed probabilities.

Therefore, the set of equations relating the conditional probabilities to the response function
variable probabilities exhausts the relations between observed probabilities and counterfactual 280

probabilities. That is, Algorithm 1 completely describes the relationship between observed prob-
abilities and response function variable probabilities, and in such a way that the relationships are
linear. Therefore, the global extrema for the constrained optimization problem yields global ex-
trema for the causal model, hence the bounds are the tightest possible assumption-free bounds.�

3.7. A note on the equivalence class of causal problems for which the bounds are tight 285

The algorithm is formulated so that bounds are derived in terms of the true probabilities of
the observed variables inR conditional on the variables in L. Provided one is not intervening on
any of the variables in L, this implies that the direction of the edges within the left side cannot
be informative. That is, the bounds are tight for the equivalence class of DAGs that contains the
set of DAGs for all possible directions of edges among variables of interest on the left side. For 290

example, the bounds computed for a query such as pr{Y (X = 1) = 1} are tight and equal for
both of the DAGs in Figures 3 (a) and (b). In either case, the knowledge of whether Z causes Z2
or vice versa does not influence the bounds because both of those variables are conditioned upon
in the algorithm, and as shown above, conditional probabilities are sufficient.

Alternatively, if the desired query was pr{Y (X(Z = 1)) = 1}, the DAGs in Figures 3 (a) and 295

(b) may not result in the same bounds, and in fact, the causal problem under Figure 3 (a) may not
be linear. As required by Assumption 6, if we intervene upon a variable in L, then the direction
of edges within L matters, and in fact if the intervened upon variable has a child also in L, the
condition will not be met.

UL

Z2

Z

UR

X Y

(a)

UL

Z2

Z

UR

X Y

(b)

Fig. 3: An equivalence class of DAGs defined by arbitrary connections on the leftside. Bounds
for causal parameters that involve intervening on X that meet our conditions are equivalent and
tight for these two graphs in (a) and (b).

4. EXAMPLES 300

4.1. User interface
The R package causaloptim, now available on CRAN, has a graphical user interface which

allows users to define a DAG that is constrained by design to be in the class of problems that
we describe (R Core Team, 2019; Sachs et al., 2020). The graph is divided into a left side,
which corresponds to the L set, and a right side, which corresponds to the R set, as in Figure 305

4. The left side is displayed as a violet (dary grey) box, and the right side a yellow (light grey)
box. The program is constrained so that only DAGs that meet Assumptions 1-4 may be drawn.
Unmeasured common causes on each side are added to the DAG automatically by the program.

After the user draws the DAG interactively using a web browser, they specify the causal effect
of interest using the same notation we have used in this paper in a text interface. Additional user- 310

12 M.C. SACHS ET AL.

specified constraints are optional and are also specified using a text interface. The program then
applies our algorithm in order to find the symbolic bounds in terms of the observed conditional
probabilities.

In cases where there is only a single intervention set that applies for all possible paths, the
program allows for a shorthand notation. For example, in the graph in Figure 1b, if the query of315

interest is pr{Y (X(Z = 1), Z = 1) = 1}, then the user may instead write pr{Y (Z = 1) = 1}.
This is understood by the program to indicate a single intervention set onZ, and the interventions
are propagated through all possible paths to the outcome Y . This is useful in situations where
there may be a large number of possible paths between a single intervention of interest and the
outcome.320

Fig. 4: Depiction of the graphical user interface available in the R package. The left side in violet
(dark grey) defines the variables in L and the right side in yellow (light grey) defines variables in
R. The interface and algorithm is set up so that only DAGs that meet our Assumptions 1 - 4 are
allowed.

4.2. Confounded exposure and outcome

X Y

U

(a)

Rx Ry

X Y

(b)

Fig. 5: Simple confounded example as drawn in the program, and the equivalent response func-
tion variable graph.

The basic DAG with two variables that are confounded as shown in Figure 5a conforms to our
class of models. In this case, the variable X is the exposure of interest, and Y the outcome of
interest. X and Y have a common, unmeasured cause U . Our causal effect of interest is the risk
difference pr{Y (X = 1) = 1} − P{Y (X = 0) = 1}, and we have no additional constraints to325

specify.
Here we have two variables and therefore two response functions. The response function vari-

able formulation of the graph in Figure 5b is an equivalent representation of the causal model.
We have

Symbolic Computation of Tight Causal Bounds 13

y = fY (x, rY)

x = fX(rX)

A1 =

 X → Y
X 1
Y ∅

 , for the first term of the query

A2 =

 X → Y
X 0
Y ∅

 , for the second term of the query.

RY is a random variable that can take on 4 possible values, and RX is a random variable that 330

can take on 2 possible values. Thus, the joint distribution of (RX , RY) is characterized by 8
parameters, say qi,j , where i ∈ {0, 1} and j ∈ {0, 1, 2, 3}. Applying Algorithm 1, we can relate
the 4 observed probabilities to the parameters of the response function variable distribution as
follows

pr(Y = 0, X = 0) = q0,0 + q0,2

pr(Y = 0, X = 1) = q1,0 + q1,1

pr(Y = 1, X = 0) = q0,1 + q0,3

pr(Y = 1, X = 1) = q1,2 + q1,3.

Applying Algorithm 2, we find the relation 335

pr{Y (X = 1) = 1} − pr{Y (X = 0) = 1} = (q0,2 + q1,2)− (q0,1 + q1,1).

Together with the probabilistic constraints, we then have the fully specified linear program-
ming problem. The bounds as output by the program are

−pr(X = 1, Y = 0)− pr(X = 0, Y = 1) ≤ pr{Y (X = 1) = 1} − pr{Y (X = 0) = 1}
≤ 1− pr(X = 1, Y = 0)− pr(X = 0, Y = 1),

which coincide with the bounds derived in (Robins, 1989).

4.3. Two instruments
Our next example is shown in the DAG in Figure 6. This extends the instrumental variable 340

example to the case where there are two variables on the left side that may be correlated with
each other and that both have a direct effect on X , but no direct effect on Y . This situation
may arise in Mendelian randomization studies, wherein multiple genes may be known to cause
changes in an exposure but not on directly on the outcome.

The bounds on risk difference pr{Y (X = 1)} − pr{Y (X = 0)} under this DAG can be com- 345

puted using our algorithm. In this problem, there are 16 constraints involving the conditional
probabilities, the distribution of the response function variables has 64 parameters, and the causal
query is a function of 32 of these parameters. The bounds are the extrema over 112 vertices, and
are therefore too long to be presented simply, but they are included in the Supplemental Appendix
along with code to reproduce the results using our algorithm. 350

14 M.C. SACHS ET AL.

Z1

Z2

X Y

Ur

Ul

Fig. 6: Two instrumental variables example

We can also use the package to create R functions from the bounds, and compute them for spe-
cific values of the observed probabilities. We did this, simulating a large number of distributions
that satisfy the DAG, and compare the bounds for when there are two instruments to the bounds
we get when we assume that only one of the instruments is observed.

Specifically, we generated probability distributions pr{Ul, Ur, Z1, Z2, X, Y } under the causal355

diagram in Figure 6 from the model

pr{Ul = 1} ∼ Unif(0, 1)
pr{Ur = 1} ∼ Unif(0, 1)

pr{Z2 = 1|Ul} = Φ(α1 + α2Ul)
pr{Z1 = 1|Ul, Z2} = Φ(α3 + α4Ul + α5Z2)

pr{X = 1|Ur, Z1, Z2} = Φ(β1 + β2Ur + β3Z1 + β4Z2)
pr{Y = 1|Ur, X} = Φ(γ1 + γ2Ur + γ3X)

(α1, α2, α3, α4, α5, β1, β2, β3, β4, γ1, γ2, γ3) ∼ N(0, 4)

where Φ(x) is the cumulative distribution function of a standard normal random variable.
The results are shown in Figure 7 for 5,000 simulated distributions. The bounds with two

instruments are never wider than those with only one instrument.

Symbolic Computation of Tight Causal Bounds 15

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparison of width of bounds intervals

Single IV

Tw
o

IV

Fig. 7: Under a DAG with two instruments, this is a comparison of the width of the bounds
intervals for the causal risk difference assuming only one of the instruments is observed to the
width of the bounds assuming both are observed.

16 M.C. SACHS ET AL.

4.4. Measurement error in the outcome360

Our final example illustrates some additional features of our method. In Figure 8, we have
the variable X that is a cause of Y , but Y is not observed. Instead, Y 2 which is a child of Y
is observed that is also confounded with the true Y . In our R package, users can indicate that
variables on the right side are unobserved (indicated by dashed circles) by selecting the node and
typing ‘u’. Additionally, we would like to include a user-specified constraint that can be specified365

in a text box of the web browser. The constraint is Y 2(Y = 1) ≥ Y 2(Y = 0), which is often
called the monotonicity constraint. This constraint encodes the assumption that the outcome
measured with error would not be equal to 0 unless the true unobserved outcome is also equal
to 0. In terms of the response functions, this constraint removes the case where fY 2(y, rY 2) =
1− y, thereby reducing the number of possible values that rY 2 can take by 1.370

The fact that Y in unobserved implies that we have 4 possible conditional probabilities to
work with pr(Y 2 = y2|X = x), for y2, x ∈ {0, 1}. There are 12 parameters that characterize
the distribution of the response function variables, and 5 constraints. The bounds for the risk
difference θ = pr{Y (X = 1) = 1} − pr{Y (X = 0) = 1} computed using our method are

max{−1, 2 pr(Y 2 = 0|X = 0)− 2 pr(Y 2 = 0|X = 1)− 1} ≤ θ ≤
min{1, 2 pr(Y 2 = 0|X = 0)− 2 pr(Y 2 = 0|X = 1) + 1}.

Except in cases where pr(Y 2 = 0|X = 0) = pr(Y 2 = 0|X = 1), these bounds are informative;375

meaning they give an interval that is shorter than the widest possible interval for θ which is
[−1, 1].

X Y2Y

Ur

Ul

Fig. 8: Example with measurement error in the outcome. Dashed circles indicate unobserved
variables.

5. CONCLUSION AND DISCUSSION

In this paper, we have described a general approach to symbolic computation of bounds on
causal queries that are not identified from the true probability distribution of the observed vari-380

ables. We described an algorithm that applies to a broad class of graphs combined with causal
queries for which we have proven that the bounds are valid and tight. This has been implemented
in the R package causaloptim with a user-friendly interface that allows for graphical descrip-
tion of DAGs and description of causal queries and constraints in a natural way (Sachs et al.,
2020). All in a web browser, users can draw DAGs, describe causal targets, describe constraints,385

compute bounds, and output them as text, LATEXformulas, or R functions. Advanced users can

Symbolic Computation of Tight Causal Bounds 17

interface with the algorithm directly using code, to ensure reproducibility or for more complex
situations.

Our approach is useful is several novel scenarios, as we have illustrated with our examples.
Additional applications of this method to unsolved problems in causal inference are now much 390

more accessible to researchers. Our basic example and previously described bounds such as
the instrumental variable (Balke & Pearl, 1994a), controlled direct effect (Cai et al., 2008), and
natural direct effect (Sjölander et al., 2014) all run in a matter of seconds using our software on
a modern laptop computer. The multiple instrumental variable problem takes approximately 6
hours, which involved enumerating 112 vertices twice (once for the upper bound and once for 395

the lower). There is no theoretical upper limit to the number of vertices that can be enumerated
using this approach. Modern vertex enumeration algorithms and implementations using parallel
processing may allow currently unfeasible problems to be solved.

We cannot rule out that there exist problems outside of our class that can be stated as linear,
so one suggestion for future work would be to identify a broader class of problems or a different 400

algorithm that may apply on a case-by-case basis. Causal quantities such as the relative risk or
odds ratio clearly imply a nonlinear optimization problem. Measured confounding, or knowl-
edge about the absence of confounding often implies nonlinear constraints. We have assumed
that all variables are binary, which is uncommon in real scientific problems that usually involve
categorical or continuous variables. Extensions and insights into solving these sorts of problems 405

would be useful in the causal inference community.

SUPPLEMENTAL MATERIAL

Supplementary material available at Biometrika online includes additional and more detailed
results for the two instruments example. The R package causaloptim: An Interface to Spec-
ify Causal Graphs and Compute Bounds on Causal Effects, is available from CRAN, and from 410

Github at https://sachsmc.github.io/causaloptim, with additional documenta-
tion and examples. The file example-code.R contains the R code used to run the exam-
ples and simulations presented in the main text, and is also available at https://sachsmc.
github.io/causaloptim/articles/example-code.html.

REFERENCES 415

BALKE, A. & PEARL, J. (1994a). Counterfactual probabilities: Computational methods, bounds and applications.
In Proceedings of the Tenth international conference on Uncertainty in artificial intelligence. Morgan Kaufmann
Publishers Inc.

BALKE, A. & PEARL, J. (1994b). Probabilistic evaluation of counterfactual queries. In Proceedings of the twelfth
national conference on artificial intelligence. The AAAI Press, Menlo Park, California. 420

BALKE, A. & PEARL, J. (1997). Bounds on treatment effects from studies with imperfect compliance. Journal of
the American Statistical Association 92, 1171–1176.

BONET, B. (2013). Instrumentality tests revisited , arXiv: 1301.2258.
CAI, Z., KUROKI, M., PEARL, J. & TIAN, J. (2008). Bounds on direct effects in the presence of confounded

intermediate variables. Biometrics 64, 695–701. 425

DANTZIG, G. B. (1963). Linear Programming and Extensions. Princeton University Press.
HECKMAN, J. J. & VYTLACIL, E. J. (2001). Instrumental variables, selection models, and tight bounds on the

average treatment effect. In Econometric Evaluations of Active Labor Market Policies in Europe. Physica-Verlag.
MANSKI, C. F. (1990). Nonparametric bounds on treatment effects. The American Economic Review 80, 319–323.
MATTHEISS, T. H. (1973). An algorithm for determining irrelevant constraints and all vertices in systems of linear 430

inequalities. Operations Research 21, 247–260.
PEARL, J. (2009). Causality. Cambridge university press.
R CORE TEAM (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria.

18 M.C. SACHS ET AL.

RAMSAHAI, R. R. (2012). Causal Bounds and Observable Constraints for Non-deterministic Models. Journal of435

Machine Learning Research 13, 829–848.
ROBINS, J. M. (1989). The analysis of randomized and non-randomized aids treatment trials using a new approach

to causal inference in longitudinal studies. Health service research methodology: a focus on AIDS , 113–159.
SACHS, M. C., SJÖLANDER, A. & GABRIEL, E. E. (2020). causaloptim: An Interface to Specify Causal Graphs

and Compute Bounds on Causal Effects. R package version 0.6.4.440

SJÖLANDER, A. (2009). Bounds on natural direct effects in the presence of confounded intermediate variables.
Statistics in Medicine 28, 558–571.

SJÖLANDER, A., LEE, W., KÄLLBERG, H. & PAWITAN, Y. (2014). Bounds on causal interactions for binary
outcomes. Biometrics 70, 500–505.

ZHANG, J. L. & RUBIN, D. B. (2003). Estimation of causal effects via principal stratification when some outcomes445

are truncated by “death”. Journal of Educational and Behavioral Statistics 28, 353–368.

[Received on 8 April 2020. Editorial decision on 1 April 2021]

