
bssm: Bayesian Inference of Non-linear and

Non-Gaussian State Space Models in R
Jouni Helske∗

Matti Vihola†

January 31, 2017

Introduction

State space models (SSM) are latent variable models which are commonly applied in analysing time series
data due to their flexible and general framework (cf. J. Durbin and Koopman 2012). For R (R Core Team
2016), there is large number of packages available for state space modelling, especially for the two special
cases. First special case is linear-Gaussian SSM (LGSSM) where both the observation and state densities are
Gaussian with linear relationships with the states. Another special case is SSM with discrete state space,
which are sometimes called hidden Markov models (HMM). We do not consider HMMs in this paper. What
is special about these two class of models is that the marginal likelihood function, and the conditional state
distributions (conditioned on the observations) of these models are analytically tractable, making inference
relatively straightforward. See for example (Petris and Petrone 2011, Tusell (2011), J. Helske (2017), S.
Helske and Helske (2017)) for review of some of the R packages dealing with these type of models. The R

package bssm is designed for Bayesian inference of general state space models with non-Gaussian and/or
non-linear observational and state equations. The package aims to provide easy-to-use and efficient functions
for fully Bayesian inference of common time series models such basic structural time series model (BSM)
(Harvey 1989) with exogenous covariates, simple stochastic volatility models, and discretized diffusion models,
making it straighforward and efficient to make predictions and other inference in a Bayesian setting.

When extending the state space modelling to non-linear or non-Gaussian models, some difficulties arise. As
the model densities are no longer analytically tractable, computing the latent state distributions, as well as
hyperparameter estimation of the model becomes more difficult. One general option is to use Markov chain
Monte Carlo (MCMC) methods targeting the full joint posterior of hyperparameters and the latent states,
for example by Gibbs sampling or Hamiltonian Monte Carlo. Unfortunately the joint posterior can be very
high dimensional and due to the strong autocorrelation structures of the state densities, the efficiency of such
methods can be relatively poor. Another asymptotically exact approach is based on the pseudo-marginal
particle MCMC approach (Andrieu, Doucet, and Holenstein 2010), where the likelihood function and the state
distributions are estimated using sequential Monte Carlo (SMC) i.e. particle filter (PF). However, methods
can also be computationally demanding, and optimal tuning of such algorithms can be cumbersome. Yet
another option is to resort to approximative methods such extended and unscented Kalman filters, as well as
more general Laplace approximation provided for example by (Lindgren and Rue 2015).

The motivation behind the bssm package is in (Vihola, Helske, and Franks 2017) which suggests a new
computationally efficient, parallelisable approach for Bayesian inference of state space models. The core idea
is to use fast approximative MCMC targeting the approximate marginal posterior of the hyperparameters,
which is then used in importance sampling type weighting phase which provides asymptotically exact
samples from the joint posterior of hyperparameters and the hidden states. In addition to this the two-stage
procedure, standard pseudo-marginal MCMC and so called delayed acceptance pseudo-marginal MCMC are
also supported.

We will first introduce the basic state space modelling framework used in bssm, and the relevant algorithms.
We then give illustrations how to use bssm in practice.

∗Linköping University, Department of Science and Technology, Sweden, University of Jyväskylä, Department of Mathematics

and Statistics, Finland
†University of Jyväskylä, Department of Mathematics and Statistics, Finland

1

State space models with linear-Gaussian dynamics

Denote a sequence of observations (y1, . . . , yT) as y1:T , and sequence of latent state variables (α1, . . . , αT) as
α1:T . Note that in general both the observations and the states can be multivariate, but currently the main
algorithms of bssm support only univariate observations. A general state space model consists of two parts:
observation level densities gt(yt|αt) and latent state transition densities µt(αt+1|αt). We first focus on the
case where the state transitions are linear-Gaussian:

αt+1 = ct + Ttαt +Rtηt,

where ct is known input vector (often omitted), and Tt and Rt are a system matrices which can depend on
unknown parameters. Also, ηt ∼ N(0, Ik) and α1 ∼ N(a1, P1) independently of each other. For observation
level density gt, the bssm package currently supports basic stochastic volatility model and general exponential
family state space models.

For exponential family models, the observation equation has a general form

gt(yt|dt + Ztαt, x
′
tβ, φ, ut),

where dt is a again known input, xt contains the exogenous covariate values at time t, with β corresponding
to the regression coefficients. Parameter φ and the known vector ut are distribution specific and can be
omitted in some cases. Currently, following observational level distributions are supported:

• Gaussian distribution: gt(yt|Ztαt, x
′
tβ) = x′

tβ + Ztαt +Htǫt with ǫt ∼ N(0, 1).

• Poisson distribution: gt(yt|Ztαt, x
′
tβ, ut) = Poisson(ut exp(x′

tβ+Ztαt)), where ut is the known exposure
at time t.

• Binomial distribution: gt(yt|Ztαt, x
′
tβ, ut) = binomial(ut, exp(x′

tβ+Ztαt)/(1+exp(x′
tβ+Ztαt))), where

ut is the size and exp(xtβ + Ztαt)/(1 + exp(x′
tβ + Ztαt)) is the probability of the success.

• Negative binomial distribution: gt(yt|Ztαt, x
′
tβ, φ, ut) = negative binomial(exp(x′

tβ + Ztαt), φ, ut),
where ut exp(x′

tβ + Ztαt) is the expected value and φ is the dispersion parameter (ut is again exposure
term).

For stochastic volatility model, there are two possible parameterizations available. In general for we have

yt = x′
tβ + σ exp(αt/2)ǫt, ǫt ∼ N(0, 1),

and
αt+1 = µ+ ρ(αt − µ) + σηηt,

with α1 ∼ N(µ, σ2
η/(1 − ρ2)). For identifiability purposes we must either choose σ = 1 or µ = 0. Although

analytically identical, the parameterization with µ is often preferable in terms of computational efficiency.

Typically some of the model components such as β, Tt or Rt depend on unknown parameter vector θ, so
gt(yt|αt) and µt(αt+1|αt) depend implicitly on θ. Our goal is to perform Bayesian inference of the joint
posterior of α1:T and θ.

MCMC for Gaussian state space models

Given the prior p(θ), the joint posterior of θ and α1:T is given as

p(α1:T , θ|y1:T) ∝ p(θ)p(α1:T , y1:T |θ) = p(θ)p(y|θ)p(α1:T |y1:T , θ)

where p(y1:T |θ) is the marginal likelihood, and p(α1:T |y1:T , θ) is often referred as a smoothing distribution.
However, instead of targeting this joint posterior, it is typically more efficient to target the marginal posterior

2

p(θ|y), and then given the sample {θi}n
i=1 from this marginal posterior, simulate states αi

1:T from the
smoothing distribution p(α1:T |y1:T , θ

i) for i = 1 . . . , n.

For Gaussian models given the parameters θ, the marginal likelihood p(y1:T |θ) can be computed using the
well known Kalman filter recursions, and there are several algorithms for simulating the states α1:T from
the smoothing distribution p(α1:T |y1:T) (see for example J. Durbin and Koopman (2012)). Therefore we can
straightforwardly apply standard MCMC algoritms. In bssm, we use an adaptive random walk Metropolis
algorithm based on RAM (Vihola 2012) where we fix the target acceptance rate beforehand. There RAM
algorithm is provided by the ramcmc package (J. Helske 2016). The complete adaptive MCMC algorithm of
bssm for Gaussian models is as follows.

Given the target acceptance rate a∗ (e.g. 0.234) and γ ∈ (0, 1] (the default 2/3 works well in practice), at
iteration i:

1. Compute the proposal θ′ = θi−1 + Si−1u
i, where ui is simulated from the standard d-dimensional

Gaussian distribution and Si−1 is a lower diagonal matrix with positive diagonal elements.

2. Accept the proposal with probability ai := min{1, p(θ′)p(y1:T |θ′)
p(θi−1)p(y1:T |θi−1)} .

3. If the proposal θ′ is accepted, set θi = θ′ and simulate a realization (or multiple realizations) of the
states α1:T from p(α1:T |y1:T , θ

i) using the simulation smoothing algorithm by J. Durbin and Koopman
(2002). Otherwise, set θi = θi−1 and αi

1:T = αi−1
1:T .

4. Compute (using Cholesky update or downdate algorithm) the Cholesky factor matrix Si satisfying the
equation

SiS
T
i = Si−1

(

I + min{1, di−γ}(ai − a∗)
uiu

T
i

‖ui‖2

)

ST
i−1.

If the interest is in the posterior means and variances of the states, we can replace the simulation smoothing
in step 3 with standard fixed interval smoothing which gives the smoothed estimates (expected values and
variances) of the states given the data and the model parameters. From these, the posterior means and
variances of the states can be computed straightforwardly.

Non-Gaussian models

For non-linear/non-Gaussian models, the marginal likelihood p(y1:T |θ) is typically not available in closed
form. Thus we need to resort to simulation methods, which leads to pseudo-marginal MCMC algorithm
(Lin, Liu, and Sloan 2000, Beaumont (2003), Andrieu and Roberts (2009)). The observational densities of
our non-linear/non-Gaussian models are all twice differentiable, so we can straightforwardly use the Laplace
approximation based on (J. Durbin and Koopman 2000). This gives us an approximating Gaussian model
which has the same mode of p(α1:T |y1:T , θ) as the original model. Often this approximating Gaussian model
works well as such, and thus we can use it in MCMC scheme directly, which results in an approximate
Bayesian inference. We can also use the approximating model together with importance sampling or particle
filtering, which produces exact Bayesian inference on p(α1:T , θ|y1:T).

We will illustrate our approach using simple importance sampling. We can factor the likelihood of the
non-Gaussian model as (J. Durbin and Koopman 2012)

p(y1:T |θ) =

∫

g(α1:T , y1:T |θ)dα

= g(y1:T |θ)Eg

[

g(y1:T |α1:T , θ)

g̃(y1:T |α1:T , θ)

]

,

where g̃(y1:T |θ) is the likelihood of the Gaussian approximating model and the expectation is taken with

3

respect to the Gaussian density g(α|y, θ). Equivalently we can write

log p(y1:T |θ) = log g(y1:T |θ) + logEg

[

g(y1:T |α1:T , θ)

g̃(y1:T |α1:T , θ)

]

= log g(y1:T |θ) + log
g(y1:T |α̂1:T , θ)

g̃(y1:T |α̂1:T , θ)
+ logEg

[

g(y1:T |α, θ)/g(y1:T |âlpha1:T , θ)

g̃(y1:T |α1:T , θ)/g̃(y1:T |α̂1:T , θ)

]

= log g(y|θ) + log ŵ + logEgw
∗

≈ log g(y|θ) + log ŵ + log
1

N

N
∑

j=1

w∗
j ,

where α̂1:T is the conditional mode estimate obtained from the approximating Gaussian model. For approxi-
mating inference, we simply omit the term log 1

N

∑N
j=1 w

∗
j .

In principle, when using the exact Bayesian inference we should simulate multiple realizations of the states
α1:T in each iteration of MCMC in order to compute log 1

N

∑N
j=1 w

∗
j . Fortunately, we can use so called delayed

acceptance (DA) approach (Christen and Fox 2005; Banterle et al. 2015) which speeds up the computation
considerably. Instead of single acceptance step we use two-stage approach as follows.

1. Make initial acceptance of the given proposal θ′ with probability min
{

1, p(y1:T |θ′)ŵ′

p(y1:T |θi−1)ŵi−1

}

.

2. If accepted, perform the importance sampling of the states α1:T and make the delayed acceptance with

probability min{1,
∑N

j=1 w
∗,′

j /
∑N

j=1 w
∗,i−1
j }.

3. If the delayed acceptance is successful, set θi = θ′ and sample one (or multiple) realization of the
previously simulated states with weights wi

j , j = 1, . . . , N (with replacement in case of multiple samples

are stored). Otherwise, set θi = θi−1 and similarly for the states.

If our approximation is good, then most of the times when we accept in the first stage we also accept in
seconds stage, and thus we often need to simulate the states only for each accepted state. Compared to
standard pseudo-marginal approach where we need to simulate the states for each proposal, DA can provide
substantial computational benefits.

However, the simple importance approach does not scale well with the data, leading to large variance in
importance weights. Thus it is more efficient to use particle filtering based simulation methods for the
marginal likelihood estimation and state simulation. Although bssm supports standard bootstrap particle
filter (Gordon, Salmond, and Smith 1993), we recommend using more efficient ψ-auxiliary particle filter
(Vihola, Helske, and Franks 2017) which makes use of our approximating Gaussian model. With ψ-APF,
we typically need only a very few particles (say 10) for relatively accurate likelihood estimate, which again
speeds up the computations.

In addition to standard pseudo-marginal MCMC or its DA variant, bssm also supports the importance
sampling type correction method presented in Vihola, Helske, and Franks (2017). Here the MCMC algorithm
targets the approximate marginal posterior of θ, and the correction to actual target joint posterior is made
in offline fashion using SMC. Essentially it has all the same ingredients as DA algorithm described above,
but by splitting work into to separate tasks, we get additional computational benefits over DA as we need
to run the particle filter only for each accepted value of the Markov chain (after burnin), and the weight
computations are straightforwardly parallelisable. fOr effciency comparisons between IS-weighting and DA,
see Vihola, Helske, and Franks (2017) and Franks and Vihola (2017).

For all MCMC algorithms, bssm uses so-called jump chain representation of the Markov chain X1, . . . , Xn,
where we only store each accepted Xk and the number of steps we stayed on the same state. So for example
if X1:n = (1, 2, 2, 1, 1, 1), we present such chain as X̃ = (1, 2, 1), N = (1, 2, 3). This approach reduces the
storage space, and makes it more efficient to use importance sampling type correction algorithms. One
drawback of this approach is that the results from the MCMC runs correspond to weighted samples from the
target posterior, so some of the commonly used postprocessing tools need to be adjusted. Of course in case of
other methods than IS-weighting, the simplest option is to just expand the samples using the stored counts
N instead.

4

Non-linear model state densities

In case the state equation is non-linear, the standard particle MCMC approach using bootstrap filter can
still be used. For delayed acceptance and IS-weighting approaches, as well as ψ-APF, new approximation
techniques are needed. For this tasks, the bssm supports approximations by extended Kalman filter (EKF).
Same approach is also applicable to the case with non-linear Gaussian observation densities. Due to the more
general form of these models, definition of these models with bssm is slightly more complex. The general
non-linear Gaussian model in the bssm has following form:

yt = Z(t, αt, θ) +H(t, αt, θ)ǫt, αt+1 = T (t, αt, θ) +R(t, αt, θ)ηt, α1 ∼ N(a1(θ), P1(θ)),

with t = 1, . . . , n, ǫt N(0, Ip), and η N(0, Ik). Here vector θ contains the unknown model parameters.
Functions T (·), H(·), T (·), R(·),a1(·), P1(·), as well as functions defining the Jacobians of Z(·) and T (·)
needed by the EKF and the prior distribution for θ must be defined by user as a external pointers to C++

functions. All of these functions can also depend on some known parameters, defined as known_params

(vector) and known_tv_params (matrix with n columns) arguments to nlg_ssm function. Note that while
using the Laplace approximation as intermediate step is typically always more efficient that standard BSF
based particle MCMC, the EKF approximation can be very unstable, and thus the the methods using EKF
in the approximation phase can have poor performance in some cases.

Time-discretised diffusion models

The bssm package also supports models where the state equation is defined as a continuous time diffusion
model of form

dαt = µ(t, αt, θ)dt+ σ(t, αt, θ)dBt, t ≥ 0,

where Bt is a (vector valued) Brownian motion and where µ and σ are vector and matrix valued functions,
with the univariate observation density p(yk|αk) defined at integer times k = 1 . . . , n. As these transition
densities are generally unavailable for non-linear diffusions, we use Millstein time-discretisation scheme for
approximate simulation with bootstrap particle filter. Fine discretisation mesh gives less bias than the
coarser one, with increased computational complexity. The DA and IS approaches can be used to speed up
the inference by using coarse discretisation in the first stage, and then using more fine mesh in the second
stage. For comparison of DA and IS approaches in case of geometric Brownian motion model, see again
Vihola, Helske, and Franks (2017). Like non-linear Gaussian models, this model is also defined by small C++
snippets.

Package functionality

Main functions of bssm is written in C++, with help of Rcpp and RcppArmadillo packages. On the Rside,
package uses S3 methods in order to provide relatively unified workflow independent of the type of the model
one is working with. The model building functions such as ng_bsm and svm are used to construct the actual
state models which can be then passed to other methods, such as logLik and run_mcmc which compute the
log-likelihood value and run MCMC algorithm respectively. We will now briefly describe the main functions
and methods of bssm, for more detailed descriptions of different function arguments and return values, see
the corresponding documentation in R.

Model building functions

For linear-Gaussian models, bssm offers functions bsm for basic univariate structural time series models (BSM),
ar1 for univariate, possibly noisy AR(1) process, as well as general lgg_ssm for arbitrary (multivariate)
LGSSMs, defined via pointers to user supplied C++ functions. There is also a function gssm for general

5

univariate LGSSM where user defines the system matrices directly as R objects, which can be more convinient
in many cases. However, defining the priors for this model is somewhat more restricted, whereas for lgg_smm,
arbitrary prior definitions can be used. As an example, consider a Gaussian local linear trend model of form

yt = µt + ǫt,

µt+1 = µt + νt + ηt,

νt+1 = νt + ξt,

with zero-mean Gaussian noise terms ǫt, ηt, ξt with unknown standard deviations. This model can be built
with bsm function as

library("bssm")

data("nhtemp", package = "datasets")

prior <- halfnormal(1, 10)

bsm_model <- bsm(y = nhtemp, sd_y = prior, sd_level = prior,

sd_slope = prior)

Here we use helper function halfnormal which defines half-Normal prior distribution for the standard
deviation parameters, with first argument defining the initial value of the parameter, and second defines the
scale parameter of the half-Normal distribution. Other prior options are normal and uniform.

Same model could also by built with lgg_ssm, by defining the small C++ snippets and passing the corresponding
external pointers to lgg_ssm. For the BSM model, we can use following cpp file:

// A template for building a general linear-Gaussian state space model

// Here we define an univariate local linear trend model which could be

// constructed also with bsm function.

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::interfaces(r, cpp)]]

// theta:

// theta(0) = standard deviation sigma_y

// theta(1) = standard deviation sigma_level

// theta(2) = standard deviation sigma_slope

//

// Function for the prior mean of alpha_1

// [[Rcpp::export]]

arma::vec a1_fn(const arma::vec& theta, const arma::vec& known_params) {

return arma::vec(2, arma::fill::zeros);

}

// Function for the prior variance of alpha_1

// [[Rcpp::export]]

arma::mat P1_fn(const arma::vec& theta, const arma::vec& known_params) {

arma::mat P1(2, 2, arma::fill::zeros);

P1(0, 0) = 1000;

P1(1, 1) = 1000;

return P1;

}

// Function for the Cholesky of the observational level covariance matrix

// [[Rcpp::export]]

arma::mat H_fn(const unsigned int t, const arma::vec& theta,

6

const arma::vec& known_params, const arma::mat& known_tv_params) {

// note no transformations, needs to check for positivity in prior

// we could also use exp(theta) here and work with the corresponding prior

arma::mat H(1,1);

H(0, 0) = theta(0);

return H;

}

// Function for the Cholesky of state level covariance matrix

// [[Rcpp::export]]

arma::mat R_fn(const unsigned int t, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

arma::mat R(2, 2, arma::fill::zeros);

R(0, 0) = theta(1);

R(1, 1) = theta(2);

return R;

}

// Z function

// [[Rcpp::export]]

arma::mat Z_fn(const unsigned int t, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

arma::mat Z(1, 2, arma::fill::zeros);

Z(0, 0) = 1.0;

return Z;

}

// T function

// [[Rcpp::export]]

arma::mat T_fn(const unsigned int t, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

arma::mat T(2, 2, arma::fill::ones);

T(1, 0) = 0.0;

return T;

}

// input to state equation

// [[Rcpp::export]]

arma::vec C_fn(const unsigned int t, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

return arma::vec(2, arma::fill::zeros);

}

// input to observation equation

// [[Rcpp::export]]

arma::vec D_fn(const unsigned int t, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

return arma::vec(1, arma::fill::zeros);

}

// # log-prior pdf for theta

// [[Rcpp::export]]

double log_prior_pdf(const arma::vec& theta) {

7

double log_pdf = -std::numeric_limits<double>::infinity();

if (arma::all(theta >= 0)) {

log_pdf = R::dnorm(theta(0), 0, 10, 1) +

R::dnorm(theta(1), 0, 10, 1) +

R::dnorm(theta(2), 0, 10, 1);

}

return log_pdf;

}

// Create pointers, no need to touch this if

// you don't alter the function names above

// [[Rcpp::export]]

Rcpp::List create_xptrs() {

// typedef for a pointer returning matrices Z, H, T, and R

typedef arma::mat (*lmat_fnPtr)(const unsigned int t, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params);

// typedef for a pointer of linear function of lgg-model equation returning vectors D and C

typedef arma::vec (*lvec_fnPtr)(const unsigned int t, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params);

// typedef for a pointer returning vector a1

typedef arma::vec (*a1_fnPtr)(const arma::vec& theta, const arma::vec& known_params);

// typedef for a pointer returning matrix P1

typedef arma::mat (*P1_fnPtr)(const arma::vec& theta, const arma::vec& known_params);

// typedef for a pointer of log-prior function

typedef double (*prior_fnPtr)(const arma::vec&);

return Rcpp::List::create(

Rcpp::Named("a1_fn") = Rcpp::XPtr<a1_fnPtr>(new a1_fnPtr(&a1_fn)),

Rcpp::Named("P1_fn") = Rcpp::XPtr<P1_fnPtr>(new P1_fnPtr(&P1_fn)),

Rcpp::Named("Z_fn") = Rcpp::XPtr<lmat_fnPtr>(new lmat_fnPtr(&Z_fn)),

Rcpp::Named("H_fn") = Rcpp::XPtr<lmat_fnPtr>(new lmat_fnPtr(&H_fn)),

Rcpp::Named("T_fn") = Rcpp::XPtr<lmat_fnPtr>(new lmat_fnPtr(&T_fn)),

Rcpp::Named("R_fn") = Rcpp::XPtr<lmat_fnPtr>(new lmat_fnPtr(&R_fn)),

Rcpp::Named("D_fn") = Rcpp::XPtr<lvec_fnPtr>(new lvec_fnPtr(&D_fn)),

Rcpp::Named("C_fn") = Rcpp::XPtr<lvec_fnPtr>(new lvec_fnPtr(&C_fn)),

Rcpp::Named("log_prior_pdf") =

Rcpp::XPtr<prior_fnPtr>(new prior_fnPtr(&log_prior_pdf)));

}

Note that most of this code is general and can be modified to specific models accordingly by changing the
function bodies. Word of caution when using these C++ snippets: Due to the use of pointers, users must
recompile and construct the model objects in each R session, i.e. saving and later loading the model object is
not sufficient. Also, using the sourceCpp function from the Rcpp package repeatedly for the recompilation of
the external pointers from the same file can cause R crash unexpectedly, if the corresponding cache directory
is not changed between compilations1. Changing the cache directory (cacheDir argument of sourceCpp)
between subsequent compilations is therefore recommended.

We can then compile the file and construct the model as

11

8

Rcpp::sourceCpp("lgg_ssm_template.cpp", rebuild = TRUE, cleanupCacheDir = TRUE)

Warning in normalizePath(path.expand(path), winslash, mustWork):

path[1]="C:/Users/jouhe21/AppData/Local/Temp/RtmpywYOGg/Rbuild24b4648b4be7/

bssm/vignettes/../inst/include": The system cannot find the file specified

pntrs <- create_xptrs()

bsm_model2 <- lgg_ssm(y = nhtemp, Z = pntrs$Z, H = pntrs$H, T = pntrs$T, R = pntrs$R,

a1 = pntrs$a1, P1 = pntrs$P1, state_intercept = pntrs$C, obs_intercept = pntrs$D,

log_prior_pdf = pntrs$log_prior_pdf, theta = rep(1, 3),

n_states = 2, state_names = c("level", "slope"), time_varying = rep(FALSE, 6))

Compared to bsm, we need to manually define the actual number of states, and optionally their names. We
can also use argument time_varying for defining whether or not some of the system matrices vary in time
or not which can lead to some computational savings

And we seem to get identical results as expected:

logLik(bsm_model)

[1] -127.639

logLik(bsm_model2)

[1] -127.639

For non-Gaussian models, function ng_bsm can be used for constructing an BSM model where the observations
are assumed to be distributed according to Poisson, binomial or negative binomial distribution. The syntax
is nearly identical as in case of bsm, but we now define also the distribution via argument distribution,
and depending on the model, we can also define paramters u and phi. For Poisson and negative binomial
models, the known parameter u corresponds to the offset term, whereas in case of binomial model u defines
the number of trials. For negative binomial model, argument phi defines the dispersion term, which can
be given as a fixed value, or as a prior function. For same observational densities, a model where the state
equation follows a first order autoregressive process can be defined using the function ng_ar1. Finally, a
stochastic volatility model can be defined using a function svm, and an arbirary linear-Gaussian state model
with Poisson, binomial or negative binomial distributed observations can be defined with ngssm.

For models where the state equation is now longer linear-Gaussian, we can again use our pointer-based
interface. General non-linear Gaussian model can be defined with the function nlg_ssm, with similar fashion
as in case of lgg_ssm. A template for nlg_ssm can be found in the Appendix.

As a relatively new feature, bssm now supports also discretely observed diffusion models where the state
process is assumed to be continous stochastic process These can be constructed using the sde_ssm function,
which takes pointers to C++ functions defining the drift, diffusion, the derivative of the diffusion function,
and the log-densities of the observations and the prior. As an example, let us consider an Ornstein–Uhlenbeck
process

dαt = ρ(ν − αt)dt+ σdBt,

with parameters θ = (φ, ν, σ) = (0.5, 2, 1) and the initial condition α0 = 1. For observation density, we use
Poisson distribution with parameter exp(αk). We first simulate a trajectory x0, . . . , xn using the sde.sim

function from the sde package (Iacus 2016) and use that for the simulation of observations y:

set.seed(1)

suppressMessages(library("sde"))

Warning: package 'sde' was built under R version 3.4.4

Warning: package 'fda' was built under R version 3.4.4

Warning: package 'zoo' was built under R version 3.4.4

9

x <- sde.sim(t0 = 0, T = 100, X0 = 1, N = 100,

drift = expression(0.5 * (2 - x)),

sigma = expression(1),

sigma.x = expression(0))

y <- rpois(100, exp(x[-1]))

We then compile and build the model as in the case of lgg_ssm model:

Rcpp::sourceCpp("sde_ssm_template.cpp", rebuild = TRUE, cleanupCacheDir = TRUE)

Warning in normalizePath(path.expand(path), winslash, mustWork):

path[1]="C:/Users/jouhe21/AppData/Local/Temp/RtmpywYOGg/Rbuild24b4648b4be7/

bssm/vignettes/../inst/include": The system cannot find the file specified

pntrs <- create_xptrs()

sde_model <- sde_ssm(y, pntrs$drift, pntrs$diffusion,

pntrs$ddiffusion, pntrs$obs_density, pntrs$prior, c(0.5, 2, 1), 1, FALSE)

Filtering and smoothing

Filtering refers to estimating the conditional densities of the hidden states at time t, given the observations
up to that point. For linear-Gaussian models, these densities can be efficiently computed using the Kalman
filter recursions. The bssm has a method kfilter for this task. For models defined with the ngssm ,ng_bsm,
ng_ar1, and svm functions, kfilter will first construct an approximating Gaussian model for which the
Kalman filter is then used. For details of this approximation, see James Durbin and Koopman (1997) and
Vihola, Helske, and Franks (2017). For non-linear models defined by nlg_ssm it is possible to perform filtering
using extended Kalman filter (EKF) with the function ekf, or unscented Kalman filter with the function ukf.
It is also possible to use iterated EKF (IEKF) by changing the argument iekf_iter of the ekf function.
Compared to EKF, in IEKF the observation equation is linearized iteratively within each time step.

While Kalman filter solves the filtering problem exactly in case of linear-Gaussian models, EKF, UKF, and
the filtering based on the approximating Gaussian models produce only approximate, possibly biased filtering
estimates for general models. This problem can be solved by the use of particle filters (PF). These sequential
Monte Carlo methods are computationally more expensive, but can in principle deal with almost arbitrary
state space models. The bssm supports general bootstrap particle filter (BSF) for all model classes of the bssm.
For ngssm ,ng_bsm, ng_ar1, and svm models we recommend the particle filter called ψ-APF (Vihola, Helske,
and Franks 2017) which makes use of the previously mentioned approximating Gaussian model in order to
produce more efficient filter. It is also available for nlg_ssm models but in case of severe non-linearities, it is
not necessarily best option.

Compared to filtering problem, in smoothing problems we are interested in the conditional densities of the
hidden states at certain time point t given all the observations y1, . . . , yt, . . . , yn. Again for linear-Gaussian
models we can use so called Kalman smoothing recursions, where as in case of more general models we can
rely on approximating methods, or smoothing algorithms based on the output of particle filters. Currently
only filter-smoother approach (Kitagawa 1996) for particle smoothing is fully supported.

Markov chain Monte Carlo

The main purpose of the bssm is to allow efficient MCMC-based inference for various state space models. For
this task, a method run_mcmc can be used. The function takes large number of arguments, depending on the
model class, but for many of these, default values are provided. For linear-Gaussian models, we only need to
supply the number of iterations. Here we define a random walk model with a drift and stochastic seasonal
component for UK gas consumption dataset and use 40 000 MCMC iteration where first half is discarded by
default as a burn-in (burn-in phase is also used for the adaptation of the proposal distribution):

10

prior <- halfnormal(0.1, 1)

UKgas_model <- bsm(log10(UKgas), sd_y = prior, sd_level = prior,

sd_slope = prior, sd_seasonal = prior)

mcmc_bsm <- run_mcmc(UKgas_model, n_iter = 4e4)

mcmc_bsm

##

Call:

run_mcmc.bsm(object = UKgas_model, n_iter = 40000)

##

Iterations = 20001:40000

Thinning interval = 1

Length of the final jump chain = 4820

##

Acceptance rate after the burn-in period: 0.24095

##

Summary for theta:

##

Mean SD SE

sd_y 0.016277908 0.0058299179 1.791884e-04

sd_level 0.005103946 0.0032997156 9.627454e-05

sd_slope 0.001220829 0.0005275716 1.475450e-05

sd_seasonal 0.026181135 0.0037166520 1.082403e-04

##

Effective sample sizes for theta:

##

ESS

sd_y 1058.535

sd_level 1174.709

sd_slope 1278.538

sd_seasonal 1179.033

##

Summary for alpha_109:

##

Mean SD SE

level 2.845139098 0.01722130 3.369275e-04

slope 0.009829496 0.00389792 7.794318e-05

seasonal_1 0.268115967 0.03542028 6.909860e-04

seasonal_2 0.061533709 0.01774275 3.647596e-04

seasonal_3 -0.295414064 0.01517585 3.242937e-04

##

Effective sample sizes for alpha_109:

##

ESS

level 2612.514

slope 2500.976

seasonal_1 2627.638

seasonal_2 2366.075

seasonal_3 2189.925

##

Run time:

user system elapsed

6.45 0.04 6.61

11

Note that all MCMC algorithms of bssm output also state forecasts for the timepoint n+ 1, the summary
statistics of this state is also shown in the output above.

For plotting purposes, we’ll use bayesplot package for the figures after expanding our jump chain represen-
tation. The function expand_sample expands the jump chain representation to typical Markov chain, and
returns an object of class mcmc of the coda package (Plummer et al. 2006) (thus the plotting and diagnostic
methods of coda can also be used).

theta <- expand_sample(mcmc_bsm, "theta")

suppressMessages(library("bayesplot"))

Warning: package 'bayesplot' was built under R version 3.4.4

mcmc_areas(theta, bw = 0.001)

Warning: package 'bindrcpp' was built under R version 3.4.4

sd_seasonal

sd_slope

sd_level

sd_y

0.00 0.01 0.02 0.03 0.04

level <- expand_sample(mcmc_bsm, "alpha", times = 101:109, states = 1)

mcmc_areas(level, bw = 0.005)

12

109

108

107

106

105

104

103

102

101

2.75 2.80 2.85 2.90

Using the summary method we can obtain the posterior estimates of the trend:

sumr <- summary(mcmc_bsm)

level <- sumr$states$Mean[, 1]

lwr <- level - 1.96 * sumr$states$SD[, 1]

upr <- level + 1.96 * sumr$states$SD[, 1]

ts.plot(UKgas_model$y, cbind(level, lwr, upr), col = c(1, 2, 2, 2), lty = c(1, 1, 2, 2))

For prediction intervals, we first build a model for the future time points, and then use the previously obtained
posterior samples for the prediction:

future_model <- UKgas_model

future_model$y <- ts(rep(NA, 24), start = end(UKgas_model$y) + c(0, 1), frequency = 4)

pred <- predict(mcmc_bsm, future_model, probs = c(0.025, 0.1, 0.9, 0.975))

ts.plot(log10(UKgas), pred$mean, pred$intervals[, -3],

col = c(1, 2, c(3, 4, 4, 3)), lty = c(1, 1, rep(2, 4)))

Now same with ggplot2:

require("ggplot2")

Loading required package: ggplot2

level_fit <- ts(colMeans(expand_sample(mcmc_bsm, "alpha")$level), start = start(UKgas_model$y),

frequency = 4)

autoplot(pred, y = UKgas_model$y, fit = level_fit, interval_color = "red", alpha_fill = 0.2)

13

Time

1960 1965 1970 1975 1980 1985

2
.0

2
.2

2
.4

2
.6

2
.8

3
.0

Figure 1: Smoothed trend component with 95% intervals.

14

Time

1960 1965 1970 1975 1980 1985 1990

2
.0

2
.5

3
.0

3
.5

Figure 2: Mean predictions and prediction intervals.

15

2.0

2.5

3.0

3.5

1960 1970 1980 1990

time

m
e
a
n

Figure 3: Prediction plots with ggplot2.

16

Time

1960 1965 1970 1975 1980 1985 1990

2
.0

2
.2

2
.4

2
.6

2
.8

3
.0

3
.2

3
.4

Figure 4: State prediction.

We can also obtain predictions in terms of individual components of the state vector:

pred_state <- predict(mcmc_bsm, future_model, probs = c(0.025, 0.1, 0.9, 0.975), type = "state")

ts.plot(log10(UKgas), level_fit, pred_state$mean[,"level"], pred_state$intervals$level[, -3],

col = c(1, 2, 2, c(3, 4, 4, 3)), lty = c(1, 1, 1, rep(2, 4)))

Acknowledgements

This work has been supported by the Academy of Finland research grants 284513 and 312605.

References

Appendix

Template for general linear-Gaussian model

17

// A template for building a general linear-Gaussian state space model

// Here we define an univariate local linear trend model which could be

// constructed also with bsm function.

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::interfaces(r, cpp)]]

// theta:

// theta(0) = standard deviation sigma_y

// theta(1) = standard deviation sigma_level

// theta(2) = standard deviation sigma_slope

//

// Function for the prior mean of alpha_1

// [[Rcpp::export]]

arma::vec a1_fn(const arma::vec& theta, const arma::vec& known_params) {

return arma::vec(2, arma::fill::zeros);

}

// Function for the prior variance of alpha_1

// [[Rcpp::export]]

arma::mat P1_fn(const arma::vec& theta, const arma::vec& known_params) {

arma::mat P1(2, 2, arma::fill::zeros);

P1(0, 0) = 1000;

P1(1, 1) = 1000;

return P1;

}

// Function for the Cholesky of the observational level covariance matrix

// [[Rcpp::export]]

arma::mat H_fn(const unsigned int t, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

// note no transformations, needs to check for positivity in prior

// we could also use exp(theta) here and work with the corresponding prior

arma::mat H(1,1);

H(0, 0) = theta(0);

return H;

}

// Function for the Cholesky of state level covariance matrix

// [[Rcpp::export]]

arma::mat R_fn(const unsigned int t, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

arma::mat R(2, 2, arma::fill::zeros);

R(0, 0) = theta(1);

R(1, 1) = theta(2);

return R;

}

// Z function

// [[Rcpp::export]]

arma::mat Z_fn(const unsigned int t, const arma::vec& theta,

18

const arma::vec& known_params, const arma::mat& known_tv_params) {

arma::mat Z(1, 2, arma::fill::zeros);

Z(0, 0) = 1.0;

return Z;

}

// T function

// [[Rcpp::export]]

arma::mat T_fn(const unsigned int t, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

arma::mat T(2, 2, arma::fill::ones);

T(1, 0) = 0.0;

return T;

}

// input to state equation

// [[Rcpp::export]]

arma::vec C_fn(const unsigned int t, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

return arma::vec(2, arma::fill::zeros);

}

// input to observation equation

// [[Rcpp::export]]

arma::vec D_fn(const unsigned int t, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

return arma::vec(1, arma::fill::zeros);

}

// # log-prior pdf for theta

// [[Rcpp::export]]

double log_prior_pdf(const arma::vec& theta) {

double log_pdf = -std::numeric_limits<double>::infinity();

if (arma::all(theta >= 0)) {

log_pdf = R::dnorm(theta(0), 0, 10, 1) +

R::dnorm(theta(1), 0, 10, 1) +

R::dnorm(theta(2), 0, 10, 1);

}

return log_pdf;

}

// Create pointers, no need to touch this if

// you don't alter the function names above

// [[Rcpp::export]]

Rcpp::List create_xptrs() {

// typedef for a pointer returning matrices Z, H, T, and R

typedef arma::mat (*lmat_fnPtr)(const unsigned int t, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params);

// typedef for a pointer of linear function of lgg-model equation returning vectors D and C

typedef arma::vec (*lvec_fnPtr)(const unsigned int t, const arma::vec& theta,

19

const arma::vec& known_params, const arma::mat& known_tv_params);

// typedef for a pointer returning vector a1

typedef arma::vec (*a1_fnPtr)(const arma::vec& theta, const arma::vec& known_params);

// typedef for a pointer returning matrix P1

typedef arma::mat (*P1_fnPtr)(const arma::vec& theta, const arma::vec& known_params);

// typedef for a pointer of log-prior function

typedef double (*prior_fnPtr)(const arma::vec&);

return Rcpp::List::create(

Rcpp::Named("a1_fn") = Rcpp::XPtr<a1_fnPtr>(new a1_fnPtr(&a1_fn)),

Rcpp::Named("P1_fn") = Rcpp::XPtr<P1_fnPtr>(new P1_fnPtr(&P1_fn)),

Rcpp::Named("Z_fn") = Rcpp::XPtr<lmat_fnPtr>(new lmat_fnPtr(&Z_fn)),

Rcpp::Named("H_fn") = Rcpp::XPtr<lmat_fnPtr>(new lmat_fnPtr(&H_fn)),

Rcpp::Named("T_fn") = Rcpp::XPtr<lmat_fnPtr>(new lmat_fnPtr(&T_fn)),

Rcpp::Named("R_fn") = Rcpp::XPtr<lmat_fnPtr>(new lmat_fnPtr(&R_fn)),

Rcpp::Named("D_fn") = Rcpp::XPtr<lvec_fnPtr>(new lvec_fnPtr(&D_fn)),

Rcpp::Named("C_fn") = Rcpp::XPtr<lvec_fnPtr>(new lvec_fnPtr(&C_fn)),

Rcpp::Named("log_prior_pdf") =

Rcpp::XPtr<prior_fnPtr>(new prior_fnPtr(&log_prior_pdf)));

}

Template for non-linear Gaussian model

// A template for building a general non-linear Gaussian state space model

// Here we define an univariate growth model (see vignette growth_model)

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::interfaces(r, cpp)]]

// Function for the prior mean of alpha_1

// [[Rcpp::export]]

arma::vec a1_fn(const arma::vec& theta, const arma::vec& known_params) {

arma::vec a1(2);

a1(0) = known_params(2);

a1(1) = known_params(3);

return a1;

}

// Function for the prior covariance matrix of alpha_1

// [[Rcpp::export]]

arma::mat P1_fn(const arma::vec& theta, const arma::vec& known_params) {

arma::mat P1(2, 2, arma::fill::zeros);

P1(0,0) = known_params(4);

P1(1,1) = known_params(5);

return P1;

}

// Function for the Cholesky of observational level covariance matrix

// [[Rcpp::export]]

20

arma::mat H_fn(const unsigned int t, const arma::vec& alpha, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

arma::mat H(1,1);

H(0, 0) = theta(0);

return H;

}

// Function for the Cholesky of state level covariance matrix

// [[Rcpp::export]]

arma::mat R_fn(const unsigned int t, const arma::vec& alpha, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

arma::mat R(2, 2, arma::fill::zeros);

R(0, 0) = theta(1);

R(1, 1) = theta(2);

return R;

}

// Z function

// [[Rcpp::export]]

arma::vec Z_fn(const unsigned int t, const arma::vec& alpha, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

arma::vec tmp(1);

tmp(0) = alpha(1);

return tmp;

}

// Jacobian of Z function

// [[Rcpp::export]]

arma::mat Z_gn(const unsigned int t, const arma::vec& alpha, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

arma::mat Z_gn(1, 2);

Z_gn(0, 0) = 0.0;

Z_gn(0, 1) = 1.0;

return Z_gn;

}

// T function

// [[Rcpp::export]]

arma::vec T_fn(const unsigned int t, const arma::vec& alpha, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

double dT = known_params(0);

double k = known_params(1);

arma::vec alpha_new(2);

alpha_new(0) = alpha(0);

alpha_new(1) = k * alpha(1) * exp(alpha(0) * dT) /

(k + alpha(1) * (exp(alpha(0) * dT) -1));

return alpha_new;

}

// Jacobian of T function

21

// [[Rcpp::export]]

arma::mat T_gn(const unsigned int t, const arma::vec& alpha, const arma::vec& theta,

const arma::vec& known_params, const arma::mat& known_tv_params) {

double dT = known_params(0);

double k = known_params(1);

double tmp = exp(alpha(0) * dT) /

std::pow(k + alpha(1) * (exp(alpha(0) * dT) - 1), 2);

arma::mat Tg(2, 2);

Tg(0, 0) = 1.0;

Tg(0, 1) = 0;

Tg(1, 0) = k * alpha(1) * dT * (k - alpha(1)) * tmp;

Tg(1, 1) = k * k * tmp;

return Tg;

}

// # log-prior pdf for theta

// [[Rcpp::export]]

double log_prior_pdf(const arma::vec& theta) {

double log_pdf;

if(arma::any(theta < 0)) {

log_pdf = -std::numeric_limits<double>::infinity();

} else {

// weakly informative priors.

// Note that negative values are handled above

log_pdf = R::dnorm(theta(0), 0, 10, 1) + R::dnorm(theta(1), 0, 10, 1) +

R::dnorm(theta(2), 0, 10, 1);

}

return log_pdf;

}

// Create pointers, no need to touch this if

// you don't alter the function names above

// [[Rcpp::export]]

Rcpp::List create_xptrs() {

// typedef for a pointer of nonlinear function of model equation returning vec (T, Z)

typedef arma::vec (*nvec_fnPtr)(const unsigned int t, const arma::vec& alpha,

const arma::vec& theta, const arma::vec& known_params, const arma::mat& known_tv_params);

// typedef for a pointer of nonlinear function returning mat (Tg, Zg, H, R)

typedef arma::mat (*nmat_fnPtr)(const unsigned int t, const arma::vec& alpha,

const arma::vec& theta, const arma::vec& known_params, const arma::mat& known_tv_params);

// typedef for a pointer returning a1

typedef arma::vec (*a1_fnPtr)(const arma::vec& theta, const arma::vec& known_params);

// typedef for a pointer returning P1

typedef arma::mat (*P1_fnPtr)(const arma::vec& theta, const arma::vec& known_params);

// typedef for a pointer of log-prior function

typedef double (*prior_fnPtr)(const arma::vec&);

22

return Rcpp::List::create(

Rcpp::Named("a1_fn") = Rcpp::XPtr<a1_fnPtr>(new a1_fnPtr(&a1_fn)),

Rcpp::Named("P1_fn") = Rcpp::XPtr<P1_fnPtr>(new P1_fnPtr(&P1_fn)),

Rcpp::Named("Z_fn") = Rcpp::XPtr<nvec_fnPtr>(new nvec_fnPtr(&Z_fn)),

Rcpp::Named("H_fn") = Rcpp::XPtr<nmat_fnPtr>(new nmat_fnPtr(&H_fn)),

Rcpp::Named("T_fn") = Rcpp::XPtr<nvec_fnPtr>(new nvec_fnPtr(&T_fn)),

Rcpp::Named("R_fn") = Rcpp::XPtr<nmat_fnPtr>(new nmat_fnPtr(&R_fn)),

Rcpp::Named("Z_gn") = Rcpp::XPtr<nmat_fnPtr>(new nmat_fnPtr(&Z_gn)),

Rcpp::Named("T_gn") = Rcpp::XPtr<nmat_fnPtr>(new nmat_fnPtr(&T_gn)),

Rcpp::Named("log_prior_pdf") =

Rcpp::XPtr<prior_fnPtr>(new prior_fnPtr(&log_prior_pdf)));

}

Template for SDE model

// A template for building a univariate discretely observed diffusion model

// Here we define a latent Ornsteinâ€“Uhlenbeck process with Poisson observations

// d\alpha_t = \rho (\nu - \alpha_t) dt + \sigma dB_t, t>=0

// y_k ~ Poisson(exp(\alpha_k)), k = 1,...,n

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::interfaces(r, cpp)]]

// x: state

// theta: vector of parameters

// theta(0) = rho

// theta(1) = nu

// theta(2) = sigma

// Drift function

// [[Rcpp::export]]

double drift(const double x, const arma::vec& theta) {

return theta(0) * (theta(1) - x);

}

// diffusion function

// [[Rcpp::export]]

double diffusion(const double x, const arma::vec& theta) {

return theta(2);

}

// Derivative of the diffusion function

// [[Rcpp::export]]

double ddiffusion(const double x, const arma::vec& theta) {

return 0.0;

}

// log-density of the prior

// [[Rcpp::export]]

double log_prior_pdf(const arma::vec& theta) {

23

double log_pdf;

if(theta(0) <= 0.0 || theta(2) <= 0.0) {

log_pdf = -std::numeric_limits<double>::infinity();

} else {

// weakly informative priors.

// Note that negative values are handled above

log_pdf = R::dnorm(theta(0), 0, 10, 1) + R::dnorm(theta(1), 0, 10, 1) +

R::dnorm(theta(2), 0, 10, 1);

}

return log_pdf;

}

// log-density of observations

// [[Rcpp::export]]

arma::vec log_obs_density(const double y,

const arma::vec& alpha, const arma::vec& theta) {

arma::vec log_pdf(alpha.n_elem);

for (unsigned int i = 0; i < alpha.n_elem; i++) {

log_pdf(i) = R::dpois(y, exp(alpha(i)), 1);

}

return log_pdf;

}

// Function which returns the pointers to above functions (no need to modify)

// [[Rcpp::export]]

Rcpp::List create_xptrs() {

// typedef for a pointer of drift/volatility function

typedef double (*funcPtr)(const double x, const arma::vec& theta);

// typedef for log_prior_pdf

typedef double (*prior_funcPtr)(const arma::vec& theta);

// typedef for log_obs_density

typedef arma::vec (*obs_funcPtr)(const double y,

const arma::vec& alpha, const arma::vec& theta);

return Rcpp::List::create(

Rcpp::Named("drift") = Rcpp::XPtr<funcPtr>(new funcPtr(&drift)),

Rcpp::Named("diffusion") = Rcpp::XPtr<funcPtr>(new funcPtr(&diffusion)),

Rcpp::Named("ddiffusion") = Rcpp::XPtr<funcPtr>(new funcPtr(&ddiffusion)),

Rcpp::Named("prior") = Rcpp::XPtr<prior_funcPtr>(new prior_funcPtr(&log_prior_pdf)),

Rcpp::Named("obs_density") = Rcpp::XPtr<obs_funcPtr>(new obs_funcPtr(&log_obs_density)));

}

Andrieu, Christophe, and Gareth O. Roberts. 2009. “The Pseudo-Marginal Approach for Efficient Monte
Carlo Computations.” Annstat 37 (2): 697–725.

Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. 2010. “Particle Markov Chain Monte Carlo
Methods.” J. R. Stat. Soc. Ser. B Stat. Methodol. 72 (3): 269–342.

Banterle, M., C. Grazian, A. Lee, and C. P. Robert. 2015. “Accelerating Metropolis-Hastings algorithms by
Delayed Acceptance.” ArXiv E-Prints, March. http://arxiv.org/abs/1503.00996.

Beaumont, Mark A. 2003. “Estimation of Population Growth or Decline in Genetically Monitored Populations.”

24

http://arxiv.org/abs/1503.00996

Genetics 164: 1139–60.

Christen, J. Andrés, and Colin Fox. 2005. “Markov Chain Monte Carlo Using an Approximation.” Journal

of Computational and Graphical Statistics 14 (4): 795–810. doi:10.1198/106186005X76983.

Durbin, J., and S. J. Koopman. 2000. “Time Series Analysis of Non-Gaussian Observations Based on State
Space Models from Both Classical and Bayesian Perspectives.” Journal of Royal Statistical Society B 62:
3–56.

———. 2002. “A Simple and Efficient Simulation Smoother for State Space Time Series Analysis.” Biometrika

89: 603–15.

———. 2012. Time Series Analysis by State Space Methods. 2nd ed. New York: Oxford University Press.

Durbin, James, and Siem Jan Koopman. 1997. “Monte Carlo Maximum Likelihood Estimation for Non-
Gaussian State Space Models.” Biometrika 84 (3): 669–84. doi:10.1093/biomet/84.3.669.

Franks, Jordan, and Matti Vihola. 2017. “Importance Sampling and Delayed Acceptance via a Peskun Type
Ordering.” Preprint arXiv:1706.09873.

Gordon, Neil J., D. J. Salmond, and A. F. M. Smith. 1993. “Novel Approach to Nonlinear/Non-Gaussian
Bayesian State Estimation.” IEE Proceedings-F 140 (2): 107–13.

Harvey, A. C. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University
Press.

Helske, Jouni. 2016. ramcmc: Robust Adaptive Metropolis Algorithm. http://github.com/helske/ramcmc.

———. 2017. “KFAS: Exponential Family State Space Models in R.” Journal of Statistical Software 78 (10):
1–39. doi:10.18637/jss.v078.i10.

Helske, Satu, and Jouni Helske. 2017. “Mixture Hidden Markov Models for Sequence Data: The seqHMM
Package in R.” Submitted to Journal of Statistical Software. http://arxiv.org/abs/1704.00543.

Iacus, Stefano Maria. 2016. Sde: Simulation and Inference for Stochastic Differential Equations. https:
//CRAN.R-project.org/package=sde.

Kitagawa, Genshiro. 1996. “Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space
Models.” J-Cgs 5 (1): 1–25.

Lin, L., K.F. Liu, and J. Sloan. 2000. “A Noisy Monte Carlo Algorithm.” Physical Review D 61.

Lindgren, Finn, and Håvard Rue. 2015. “Bayesian Spatial Modelling with R-INLA.” Journal of Statistical

Software 63 (19): 1–25. doi:10.18637/jss.v063.i19.

Petris, Giovanni, and Sonia Petrone. 2011. “State Space Models in R.” Journal of Statistical Software 41 (4):
1–25. doi:10.18637/jss.v041.i04.

Plummer, Martyn, Nicky Best, Kate Cowles, and Karen Vines. 2006. “CODA: Convergence Diagnosis and
Output Analysis for Mcmc.” R News 6 (1): 7–11. http://CRAN.R-project.org/doc/Rnews/.

R Core Team. 2016. R: A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing. https://www.R-project.org/.

Tusell, Fernando. 2011. “Kalman Filtering in R.” Journal of Statistical Software 39 (2): 1–27.
doi:10.18637/jss.v039.i02.

Vihola, Matti. 2012. “Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate.” Statistics and

Computing 22 (5): 997–1008. doi:10.1007/s11222-011-9269-5.

Vihola, Matti, Jouni Helske, and Jordan Franks. 2017. “Importance Sampling Type Estimators Based on
Approximate Marginal Markov Chain Monte Carlo.” Preprint arXiv:1609.02541v3.

25

https://doi.org/10.1198/106186005X76983
https://doi.org/10.1093/biomet/84.3.669
http://github.com/helske/ramcmc
https://doi.org/10.18637/jss.v078.i10
http://arxiv.org/abs/1704.00543
https://CRAN.R-project.org/package=sde
https://CRAN.R-project.org/package=sde
https://doi.org/10.18637/jss.v063.i19
https://doi.org/10.18637/jss.v041.i04
http://CRAN.R-project.org/doc/Rnews/
https://www.R-project.org/
https://doi.org/10.18637/jss.v039.i02
https://doi.org/10.1007/s11222-011-9269-5

	Introduction
	State space models with linear-Gaussian dynamics
	MCMC for Gaussian state space models
	Non-Gaussian models
	Non-linear model state densities
	Time-discretised diffusion models

	Package functionality
	Model building functions
	Filtering and smoothing
	Markov chain Monte Carlo
	Acknowledgements

	References
	Appendix
	Template for general linear-Gaussian model
	Template for non-linear Gaussian model
	Template for SDE model

