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boral-package Bayesian Ordination and Regression AnaLysis (boral)

Description

Bayesian approaches for analyzing multivariate data in ecology. Estimation is performed using
Markov Chain Monte Carlo (MCMC) methods via Three. JAGS types of models may be fitted: 1)
With explanatory variables only, boral fits independent column Generalized Linear Models (GLMs)
to each column of the response matrix; 2) With latent variables only, boral fits a purely latent
variable model for model-based unconstrained ordination; 3) With explanatory and latent variables,
boral fits correlated column GLMs with latent variables to account for any residual correlation
between the columns of the response matrix.

Details

Package: boral
Type: Package
Version: 0.6
Date: 2014-12-12
License: GPL-2
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Examples

## Please see main boral function for examples.

about.distributions Distributions available in boral

Description

Stable
This help file provides more information regarding the distributions i.e., the family argument,
available in the boral package, to handle various responses types.

Details

A variety of families are available in boral, designed to accommodate multivariate abundance data
of varying response types. Please see the family argument in the boral which lists all distributions
that are currently available.

For multivariate abundance data in ecology, species counts are often overdispersed. Using a nega-
tive binomial distribution (family = "negative.binomial") to model the counts usually helps to
account for this overdispersion. Please note the variance for the negative binomial distribution is
parameterized as V ar(y) = µ+ φµ2, where φ is the dispersion parameter.

For non-negative continuous data such as biomass, the lognormal, Gamma, and tweedie distribu-
tions may be used (Foster and Bravington, 2013). For the gamma distribution, the variance is
parameterized as V ar(y) = µ/φ where φ is the column-specific rate (henceforth referred to also as
dispersion parameter).



4 about.distributions

For the tweedie distribution, a common power parameter is across all columns with this family,
because there is almost always insufficient information to model column-specific power parame-
ters. Specifically, the variance is parameterized as V ar(y) = φµp where φ is the column-specific
dispersion parameter and p is a power parameter common to all columns assumed to be tweedie,
with 1 < p < 2.

Normal responses are also implemented, just in case you encounter normal stuff in ecology (pun
intended)! For the normal distribution, the variance is parameterized as V ar(y) = φ2, where φ is
the column-specific standard deviation.

The beta distribution can be used to model data between values between but not including 0 and 1.
In principle, this would make it useful for percent cover data in ecology, if it not were for the fact
that percent cover is commonly characterized by having lots of zeros (which are not permitted for
beta regression). An ad-hoc fix to this would be to add a very small value to shift the data away
from exact zeros and/or ones. This is however heuristic, and pulls the model towards producing
conservative results (see Smithson and Verkuilen, 2006, for a detailed discussion on beta regression,
and Korhonen et al., 2007, for an example of an application to forest canopy cover data). Note
the parameterization of the beta distribution used here is directly in terms of the mean µ and the
dispersion parameter φ (more commonly know as the "sample size"). In terms of the two shape
parameters, if we denote the two shape parameters as the vector (a, b), his is equivalent to a = µφ
and b = (1− µ)φ.

For ordinal response columns, cumulative probit regression is used (Agresti, 2010). boral assumes
all ordinal columns are measured using the same scale i.e., all columns have the same number of
theoretical levels, even though some levels for some species may not be observed. The number
of levels is then assumed to be given by the maximum value from all the ordinal columns of y.
Because of this, all ordinal columns then assumed to have the same cutoffs, τ , while the column-
specific intercept, β0j , allows for deviations away from these common cutoffs. That is,

Φ(P (yij ≤ k)) = τk + β0j + . . . ,

where Φ(·) is the probit function, P (yij ≤ k) is the cumulative probability of element yij being less
than or equal to level k, τk is the cutoff linking levels k and k + 1 (and which are increasing in k),
β0j are the column effects, and . . . denotes what else is included in the model, e.g. latent variables
and related coefficients. To ensure model identifiability, and also because they are interpreted as
column-specific deviations from the common cutoffs, the β0j’s are treated as random effects and
drawn from a normal distribution with mean zero and unknown standard deviation.

The parameterization above is useful for modeling ordinal in ecology. When ordinal responses
are recorded, usually the same scale is applied to all species e.g., level 1 = not there, level 2 = a
bit there, level 3 = lots there, level 4 = everywhere! The quantity τk can thus be interpreted as
this common scale, while β0j allows for deviations away from these to account for differences in
species prevalence. Admittedly, the current implementation of boral for ordinal data can be quite
slow.

For count distributions where zeros are not permitted, then the zero truncated Poisson (family =
"ztpoisson") and zero truncated negative binomial distributions (family = "ztnegative.binomial")
are possible. Note for these two distributions, and as is commonly implemented in other regression
models e.g., the countreg package (Zeileis and Kleiber, 2018), the models are set up such that a
log-link connects the mean of the untruncated distribution to the linear predictor. While not neces-
sarily useful on its own, the zero truncated distributions may often be used in conjunction with an
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model for modeling presence-absence data, and together they can be used to construct the hurdle
class of models (noting direct implementation of hurdle models is currently not available).

Finally, in the event different responses are collected for different columns, e.g., some columns
of y are counts, while other columns are presence-absence, one can specify different distributions
for each column. Aspects such as variable selection, residual analysis, and plotting of the latent
variables are, in principle, not affected by having different distributions. Naturally though, one has
to be more careful with interpretation of the row effects αi and latent variables zi, as different link
functions will be applied to each column of y. A situation where different distributions may prove
useful is when y is a species–traits matrix, where each row is a species and each column a trait such
as specific leaf area. In this case, traits could be of different response types, and the goal perhaps
is to perform unconstrained ordination to look for patterns between species on an underlying trait
surface e.g., a defense index for a species (Moles et al., 2013).

Warnings

• MCMC with lots of ordinal columns take an especially long time to run! Moreover, estimates
for the cutoffs in cumulative probit regression may be poor for levels with little data. Major
apologies for this advance =(

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References
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regression with beta-distributed dependent variables. Psychological methods, 11, 54-71.

• Zeileis, A., and Kleiber C. (2018). countreg: Count Data Regression. R package version
0.2-1. URL http://R-Forge.R-project.org/projects/countreg/

See Also

boral for the main boral fitting function.

Examples

## Please see main boral function for examples.
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about.lvs Correlation structure for latent variables

Description

Stable

This help file provides more information how (non-independence) correlation structures can be
assumed for latent variables.

Details

In the main boral function, when latent varaibles are included, the default option is to assume that
the latent variables are independent across the rows (sites) of the response matrix i.e., lv.type =
"independent". That is, zi ∼ N(0, Id) where d = num.lv. This is useful when we want to model
between species correlations (is a parsimonious manner), but it does make an assumption that sites
are independent.

If one a-priori believes that the sites are, in fact, correlated e.g., due to spatial correlation, and that it
cannot be sufficiently well accounted for by row effects (see comment below), then we can account
for this by assuming a non-independence correlation structure for the the latent variables across
sites. Note however we continue to assume that the d latent variables are still independent of one
another. That is, if we let zi = (zi1, . . . , zid), then we assume that for l = 1, . . . , d,

(z1l, z2l, . . . , znl) ∼ N(0,Σ),

where Σ is some correlation matrix. When Σ = In then we are back in the independence case.
However, if we allow for the off-diagonals to be non-zero, then we the latent variables to be corre-
lated, Σij = Cov(zil, zjl). This in turn induces correlation across sites and species i.e., two species
at two different sites are now correlated because of the correlation across sites.

While there are fancier structures and attempts at accounting for correlations between sites (Cressie
and Wikle, 2015), in boral we assume relatively simple structures. Specifically, we can assume that
sites further away are less correlated, and so Σ can be characterized based on a distance matrix
distmat and associated spatial covariance parameters which require estimation. Indeed, such sim-
ple spatial latent variable models have become rather popular in community ecology of late, at least
as a first attempt at accounting for spatial (and also temporal) correlation e.g., Thorson et al., (2015,
2016); Ovaskainen et al., (2017).

At the moment, several correlation structures are permitted. Let Dij denote the distance be-
tween site i and j i.e., entry (i, j) in distmat. Also, let (ϑ1, ϑ2) denote the two spatial co-
variance parameters (noting that the second parameter is not required for some of structures).
Then we have: 1) lv.type = "exponential" such that Σij = exp(−Dij/ϑ1); 2) lv.type =
"squared.exponential", such that Σij = exp(−Dij/ϑ

2
1); 3) lv.type = "power.exponential",

such that Σij = exp(−(Dij/ϑ1)ϑ2) where ϑ1 ∈ (0, 2] ; 4) lv.type = "spherical", such that
(Dij < ϑ1)∗(1−1.5∗Dij/ϑ1 +0.5∗(Dij/ϑ1)3). We refer the reader to the geoR and the function
cov.spatial for more, simple information on spatial covariance functions (Ribeiro Jr and Diggle,
2016).
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It is important to keep in mind that moving away from an independence correlation structure for
the latent variables massively increases computation time for MCMC sampling (and indeed any
estimation method for latent variable models). Given JAGS is not the fastest of methods when it
comes to MCMC sampling, then one should be cautious about moving away from indepndence. For
example, if you a-priori have a nested experimental design which is inducing spatial correlation,
then it is much faster and more effective to include (multiple) row effects in the model to account
for this spatial correlation instead.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References
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K. (2015). Spatial factor analysis: a new tool for estimating joint species distributions and
correlations in species range. Methods in Ecology and Evolution, 6, 627-63

See Also

boral for the main boral fitting function.

Examples

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
X <- scale(spider$x)
n <- nrow(y)
p <- ncol(y)

## NOTE: The examples below and taken directly from the boral help file

example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,
n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

## Not run:

https://CRAN.R-project.org/package=geoR


8 about.ssvs

## Example 2d - model with environmental covariates and
## two structured latent variables using fake distance matrix
fakedistmat <- as.matrix(dist(1:n))
spiderfit_lvstruc <- boral(y, X = X, family = "negative.binomial",

lv.control = list(num.lv = 2, type = "exponential", distmat = fakedistmat),
mcmc.control = example_mcmc_control, model.name = testpath)

summary(spiderfit_lvstruc)

## End(Not run)

about.ssvs Stochastic search variable selection (SSVS) in boral

Description

Stable

This help file provides more information regarding the implementation of the stochastic search
variable selection (SSVS, George and McCulloch, 1993) as implemented in the boral package.

Details

Stochastic search variable selection (SSVS, George and McCulloch, 1993) is a approach for model
selection, which is applicable specifically to the Bayesian MCMC framework. As of boral version
1.5, SSVS is implemented in two ways.

SSVS on coefficients in X: SSVS is implemented on the column-specific coefficients βj . Basically,
SSVS works by placing a spike-and-slab priors on these coefficients, such that the spike is a narrow
normal distribution concentrated around zero and the spike is a normal distribution with a large
variance.

ρ(β) = Iβ=1 ×N (0, σ2) + (1− Iβ=1)×N (0, g ∗ σ2),

where σ2 is determined by prior.control$hypparams[3], g is determined by ssvs.g, and Iβ=1 =
P (β = 1) is an indicator function representing whether coefficient is included in the model. It is
given a Bernoulli prior with probability of inclusion 0.5. After fitting, the posterior probability of
β being included in the model is returned based on posterior mean of the indicator function Iβ=1.
Note this is NOT the same as a p-value seen in maximum likelihood estimation: a p-value pro-
vides an indication of how much evidence there is against the null hypothesis of β = 0, while the
posterior probability provides a measure of how likely it is for β 6= 0 given the data.

SSVS can be applied at a grouped or individual coefficient level, and this is governed by
prior.control$ssvs.index:

• For elements of ssvs.index equal to -1, SSVS is not applied on the corresponding covariate
of the X.
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• For elements equal to 0, SSVS is applied to each individual coefficients of the corresponding
covariate in X. That is, the fitted model will return posterior probabilities for this covariate,
one for each column of y.

• For elements taking positive integers 1,2,..., SSVS is applied to each group of coefficients of
the corresponding covariate in X. That is, the fitted model will return a single posterior prob-
ability for this covariate, indicating whether this covariate should be included for all columns
of y; see O’Hara and Sillanpaa (2009) and Tenan et al. (2014) among many others for an
discussion of Bayesian variable selection methods.

Note the last application of SSVS allows multiple covariates to be selected simultaneously. For
example, suppose X consists of five columns: the first two columns are environmental covariates,
while the last three correspond to quadratic terms of the two covariates as well as their interaction.
If we want to "test" whether any quadratic terms are required, then we can set
prior.control$ssvs.index = c(-1,-1,1,1,1), so a single posterior probability of inclusion is
returned for the last three columns of X.

Finally, note that summaries such as posterior medians and HPD intervals of the coefficients, as
well as performing residual analysis, from a fitted model that has implemented SSVS may be prob-
lematic because the posterior distribution is by definition multi-modal. It may be advisable instead
to separate out their application of SSVS and posterior inference.

SSVS on trait coefficients: If traits are included in boral, thereby leading to a fourth corner model
(see about.traits for more details on this type of model), SSVS can also be performed on the
associated trait coefficients. That is, in such model we have

β0j ∼ N(κ01 + traits>j κ1, σ
2
1)

for the column-specific intercepts, and

βjk ∼ N(κ0k + traits>j κk, σ
2
k)

for k = 1, . . . , d where d = ncol(X). Then if the a particular index in the argument
prior.control$ssvs.traitsindex is set to 0, SSVS is performed on the corresponding element
in κ1 or κk. For example, suppose which.traits[[2]] = c(2,3), meaning that the βj1’s are
drawn from a normal distribution with mean depending only on the second and third columns of
traits. Then
prior.control$ssvs.traitsindex[[2]] = c(0,1), then a spike-and-slab prior is placed on the
first coefficent in κ2, while the second coefficient is assigned the “standard" prior governed by the
prior.control$hypparams. That is, SSVS is performed on the first but not the second coefficient
in κ2.

Please keep in mind that because boral allows the user to manually decide which traits drive which
covariates in X, then care must be taken when setting up both which.traits and
prior.control$ssvs.traitsindex. That is, when supplied then both objects should be lists of
have the same length, and the length of the corresponding vectors comprising each element in the
two lists should match as well e.g., which.traits[[2]] and
prior.control$ssvs.traitsindex[[2]] should be of the same length.



10 about.ssvs

Warnings

• Summaries of the coefficients such as posterior medians and HPD intervals may also be prob-
lematic when SSVS is being used, since the posterior distribution will be multi-modal.

• If save.model = TRUE, the raw jags model is also returned. This can be quite very memory-
consuming, since it indirectly saves all the MCMC samples.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References
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the American Statistical Association, 85, 398-409.
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What, How and Which. Bayesian Analysis, 4, 85-118.
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See Also

boral for the main boral fitting function which implementing SSVS, and about.traits for how
fourth corner models work before applying SSVS to them.

Examples

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
X <- scale(spider$x)
n <- nrow(y)
p <- ncol(y)

## NOTE: The two examples below and taken directly from the boral help file

example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,
n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

## Not run:
## Example 3a - Extend example 2 to demonstrate grouped covariate selection
## on the last three covariates.
example_prior_control <- list(type = c("normal","normal","normal","uniform"),

ssvs.index = c(-1,-1,-1,1,2,3))
spiderfit_nb2 <- boral(y, X = X, family = "negative.binomial",

mcmc.control = example_mcmc_control, prior.control = example_prior_control,
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model.name = testpath)

summary(spiderfit_nb2)

## Example 3b - Extend example 2 to demonstrate individual covariate selection
## on the last three covariates.
example_prior_control <- list(type = c("normal","normal","normal","uniform"),

ssvs.index = c(-1,-1,-1,0,0,0))
spiderfit_nb3 <- boral(y, X = X, family = "negative.binomial",

mcmc.control = example_mcmc_control, prior.control = example_prior_control,
model.name = testpath)

summary(spiderfit_nb3)

## Example 5a - model fitted to count data, no site effects, and
## two latent variables, plus traits included to explain environmental responses
data(antTraits)
y <- antTraits$abun
X <- as.matrix(scale(antTraits$env))
## Include only traits 1, 2, and 5
traits <- as.matrix(antTraits$traits[,c(1,2,5)])
example_which_traits <- vector("list",ncol(X)+1)
for(i in 1:length(example_which_traits))

example_which_traits[[i]] <- 1:ncol(traits)
## Just for fun, the regression coefficients for the second column of X,
## corresponding to the third element in the list example_which_traits,
## will be estimated separately and not regressed against traits.
example_which_traits[[3]] <- 0

fit_traits <- boral(y, X = X, traits = traits,
which.traits = example_which_traits, family = "negative.binomial",
mcmc.control = example_mcmc_control, model.name = testpath,
save.model = TRUE)

summary(fit_traits)

## Example 5b - perform selection on trait coefficients
ssvs_traitsindex <- vector("list",ncol(X)+1)
for(i in 1:length(ssvs_traitsindex))

ssvs_traitsindex[[i]] <- rep(0,ncol(traits))
ssvs_traitsindex[[3]] <- -1
fit_traits <- boral(y, X = X, traits = traits, which.traits = example_which_traits,

family = "negative.binomial", mcmc.control = example_mcmc_control,
save.model = TRUE, prior.control = list(ssvs.traitsindex = ssvs_traitsindex),
model.name = testpath)

summary(fit_traits)

## End(Not run)
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about.traits Including species traits in boral

Description

Stable
This help file provides more information regarding the how species can be included to help mediate
environmental responses, analogous to the so-called fourth corner problem.

Details

In the main boral function, when covariates X are included i.e. both the independent and correlated
response models, one has the option of also including traits to help explain differences in species
environmental responses to these covariates. Specifically, when traits and which.traits are sup-
plied, then the β0j’s and βj’s are then regarded as random effects drawn from a normal distribution.
For the column-specific intercepts, we have

β0j ∼ N(κ01 + traits>j κ1, σ
2
1),

where (κ01,κ1) are the regression coefficients relating to the traits to the intercepts and σ1 is the
error standard deviation. These are now the "parameters" in the model, in the sense that priors are
assigned to them and MCMC sampling is used to estimate them (see the next section on estimation).

In an analogous manner, each of the elements in βj = (βj1, . . . , βjd) are now drawn as random
effects from a normal distribution. That is, for k = 1, . . . , d where d = ncol(X), we have,

βjk ∼ N(κ0k + traits>j κk, σ
2
k),

Which traits are to included (regressed) in the mean of the normal distributions is determined by
the list argument which.traits in the main boral function. The first element in the list applies
to beta0j , while the remaining elements apply to the the βj . Each element of which.traits is a
vector indicating which traits are to be used. For example, if which.traits[[2]] = c(2,3), then
the βj1’s are drawn from a normal distribution with mean depending only on the second and third
columns of traits. If which.traits[[2]][1] = 0, then the regression coefficients are treated as
independent, i.e. the values of βj1 are given their own priors and estimated separately from each
other.

Including species traits in the model can be regarded as a method of simplifying the model: rather
than each to estimates p sets of column-specific coefficients, we instead say that these coefficients
are linearly related to the corresponding values of their traits (Warton et al., 2015). That is, we
are using trait data to help explain similarities/differences in species responses to the environment.
This idea has close relations to the fourth corner problem in ecology (Brown et al., 2014). Unlike
the models of Brown et al. (2014) however, which treat the β0j’s and βjk’s are fixed effects and
fully explained by the traits, boral adopts a random effects approach similar to Jamil et al. (2013)
to "soak up" any additional between species differences in environmental responses not explained
by traits.

Finally, note that from boral version 1.5, stochastic search variable selection (SSVS) can now be
applied to the trait coefficients κ1 and κk; please see about.ssvs for more details.



about.traits 13

Warnings

• No intercept column should be required in traits, as it is included automatically.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References

• Brown, et al. (2014). The fourth-corner solution - using predictive models to understand how
species traits interact with the environment. Methods in Ecology and Evolution 5, 344-352.

• Jamil, T. et al. (2013). Selecting traits that explain species-environment relationships: a
generalized linear mixed model approach. Journal of Vegetation Science 24, 988-1000

• Warton et al. (2015). So Many Variables: Joint Modeling in Community Ecology. Trends in
Ecology and Evolution, 30, 766-779.

See Also

boral for the main boral fitting function, and about.ssvs for implementing SSVS on fourth corner
models.

Examples

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
X <- scale(spider$x)
n <- nrow(y)
p <- ncol(y)

## NOTE: The two examples below and taken directly from the boral help file

example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,
n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

## Not run:
## Example 5a - model fitted to count data, no site effects, and
## two latent variables, plus traits included to explain environmental responses
data(antTraits)
y <- antTraits$abun
X <- as.matrix(scale(antTraits$env))
## Include only traits 1, 2, and 5
traits <- as.matrix(antTraits$traits[,c(1,2,5)])
example_which_traits <- vector("list",ncol(X)+1)
for(i in 1:length(example_which_traits))

example_which_traits[[i]] <- 1:ncol(traits)
## Just for fun, the regression coefficients for the second column of X,
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## corresponding to the third element in the list example_which_traits,
## will be estimated separately and not regressed against traits.
example_which_traits[[3]] <- 0

fit_traits <- boral(y, X = X, traits = traits,
which.traits = example_which_traits, family = "negative.binomial",
mcmc.control = example_mcmc_control, model.name = testpath,
save.model = TRUE)

summary(fit_traits)

## Example 5b - perform selection on trait coefficients
ssvs_traitsindex <- vector("list",ncol(X)+1)
for(i in 1:length(ssvs_traitsindex)) ssvs_traitsindex[[i]] <- rep(0,ncol(traits))
ssvs_traitsindex[[3]] <- -1
fit_traits <- boral(y, X = X, traits = traits, which.traits = example_which_traits,

family = "negative.binomial", mcmc.control = example_mcmc_control,
save.model = TRUE, prior.control = list(ssvs.traitsindex = ssvs_traitsindex),
model.name = testpath)

summary(fit_traits)

## Example 6 - simulate Bernoulli data, based on a model with two latent variables,
## no site variables, with two traits and one environmental covariates
## This example is a proof of concept that traits can used to
## explain environmental responses
library(mvtnorm)

n <- 100; s <- 50
X <- as.matrix(scale(1:n))
colnames(X) <- c("elevation")

traits <- cbind(rbinom(s,1,0.5), rnorm(s))
## one categorical and one continuous variable
colnames(traits) <- c("thorns-dummy","SLA")

simfit <- list(true.lv = rmvnorm(n, mean = rep(0,2)),
lv.coefs = cbind(rnorm(s), rmvnorm(s, mean = rep(0,2))),
traits.coefs = matrix(c(0.1,1,-0.5,1,0.5,0,-1,1), 2, byrow = TRUE))

rownames(simfit$traits.coefs) <- c("beta0","elevation")
colnames(simfit$traits.coefs) <- c("kappa0","thorns-dummy","SLA","sigma")

simy = create.life(true.lv = simfit$true.lv, lv.coefs = simfit$lv.coefs, X = X,
traits = traits, traits.coefs = simfit$traits.coefs, family = "binomial")

example_which_traits <- vector("list",ncol(X)+1)
for(i in 1:length(example_which_traits))

example_which_traits[[i]] <- 1:ncol(traits)
fit_traits <- boral(y = simy, X = X, traits = traits,

which.traits = example_which_traits, family = "binomial",
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lv.control = list(num.lv = 2), save.model = TRUE,
mcmc.control = example_mcmc_control, model.name = testpath)

## End(Not run)

boral Fitting boral (Bayesian Ordination and Regression AnaLysis) models

Description

Stable

Bayesian ordination and regression models for analyzing multivariate data in ecology. Three "types"
of models may be fitted: 1) With covariates and no latent variables, boral fits independent response
GLMs; 2) With no covariates, boral fits a pure latent variable model; 3) With covariates and latent
variables, boral fits correlated response GLMs.

Usage

boral(y, ...)

## Default S3 method:
boral(y, X = NULL, X.ind = NULL, traits = NULL, which.traits = NULL,

family, trial.size = 1,
lv.control = list(num.lv = 0, type = "independent", distmat = NULL),
row.eff = "none", row.ids = NULL,
offset = NULL, save.model = FALSE, calc.ics = FALSE,
mcmc.control = list(n.burnin = 10000, n.iteration = 40000,
n.thin = 30, seed = NULL),
prior.control = list(type = c("normal","normal","normal","uniform"),
hypparams = c(10, 10, 10, 30), ssvs.index = -1, ssvs.g = 1e-6,
ssvs.traitsindex = -1), do.fit = TRUE, model.name = NULL, num.lv = NULL, ...)

## S3 method for class 'boral'
print(x, ...)

Arguments

y A response matrix of multivariate data e.g., counts, binomial or Bernoulli re-
sponses, continuous response, and so on. With multivariate abundance data ecol-
ogy for instance, rows correspond to sites and columns correspond to species.
Any categorical (multinomial) responses must be converted to integer values.
For ordinal data, the minimum level of y must be 1 instead of 0.

X A model matrix of covariates, which can be included as part of the model. De-
faults to NULL, in which case no model matrix was used. No intercept column
should be included in X.
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X.ind An matrix of 1s and 0s, indicating whether a particular covariate should be in-
cluded (1) or excluded (0) in the mean structure of a particular response. The
matrix should the number of rows equal to the number of columns in y, and the
number of columns equal to the number of columns in X. Defaults to NULL, in
which case it is assumed that all covariates are included in the mean structure of
all responses i.e., all 1s.

x An object for class "boral".
traits A model matrix of species traits, which can be included as part of the model.

Defaults to NULL, in which case no matrix was used. No intercept column should
be included in traits, as it is included automatically.

which.traits A list of length equal to (number of columns in X + 1), informing which columns
of traits the column-specific intercepts and each of the column-specific re-
gression coefficients should be regressed against. The first element in the list
applies to the column-specific intercept, while the remaining elements apply to
the regression coefficients. Each element of which.traits is a vector indicating
which traits are to be used.
For example, if which.traits[[2]] = c(2,3), then the regression coefficients
corresponding to the first column in X are regressed against the second and third
columns of traits. If which.traits[[2]][1] = 0, then the regression coeffi-
cients for each column are treated as independent. Please see about.traits for
more details.
Defaults to NULL, and used in conjunction with traits and
prior.control$ssvs.traitsindex.

family Either a single element, or a vector of length equal to the number of columns
in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial" (with log link), "normal" (with identity link), "lnormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression), "ztpoisson" (zero truncated Poisson with log link), "ztnegative.binomial"
(zero truncated negative binomial with log link).
Please see about.distributions for information on distributions available in
boral overall.

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

lv.control A list (currently) with the following arguments:
• num.lv: which specifies the number of true latent variables to generate.

Defaults to 0.
• type: which specifies the type the correlation structure of the latent vari-

ables (across sites). Defaults to independence correlation structure.
• distmat: which a distance matrix required to calculate correlations across

sites when a non-independence correlation structure on the latent variables
is imposed.



boral 17

Please see about.lvs for more information.

row.eff Single element indicating whether (multiple) row effects are included as fixed
effects ("fixed"), random effects ("random") or not included ("none") in the
model. If fixed effects, then for parameter identifiability the first row effect is set
to zero, which analogous to acting as a reference level when dummy variables
are used. If random effects, they are drawn from a normal distribution with mean
zero and unknown variance, analogous to a random intercept in mixed models.
Defaults to "none".

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (i, j) indicates to the cluster ID of row i in y for random ef-
fect eqnj. This matrix is useful if one wants to specify more complicated row
effect structures beyond a single, row effect unique to each row; please see
details below as well as examples below. Whether these row effects are in-
cluded as fixed or random effects is governed by row.eff. Defaults to NULL, so
that if row.eff = "none" then the argument is ignored, otherwise if row.eff =
"fixed" or "random", then
row.ids = matrix(1:nrow(y),ncol = 1) i.e., a single, row effect unique to
each row.

offset A matrix with the same dimensions as the response matrix y, specifying an a-
priori known component to be included in the linear predictor during fitting.
Defaults to NULL.

save.model If save.model = TRUE, then the JAGS model file is saved as a text file (with
name given by model.name) in the current working directory as well as the
MCMC samples, which themselves can be extracted using the get.mcmcsamples
function. Various functions available in the coda package can be applied to the
MCMC samples for diagnosing convergence. Note MCMC samples can take up
a lot of memory. Defaults to FALSE.

calc.ics If calc.ics = TRUE, then various information criteria values are also returned,
which could be used to perform model selection (see get.measures). Defaults
to FALSE. WARNING: As of version 1.6, this function is longer updated!

mcmc.control A list of parameters for controlling the MCMC sampling. Values not set will
assume default values. These include:

• n.burnin: Length of burnin i.e., the number of iterations to discard at the
beginning of the MCMC sampler. Defaults to 10000.

• n.iteration: Number of iterations including burnin. Defaults to 40000.
• n.thin: Thinning rate. Must be a positive integer. Defaults to 30.
• seed: Seed for JAGS sampler. A set.seed(seed) command is run imme-

diately before starting the MCMC sampler. Defaults to the value NULL, so
the MCMC estimation is not seeded.

prior.control A list of parameters for controlling the prior distributions. Values not set will
assume default values. These include:

• type: Vector of four strings indicating the type of prior distributions to use.
In order, these are: 1) priors for all column-specific intercepts, row effects,
and cutoff points for ordinal data; 2) priors for the latent variable coef-
ficients. This is ignored if num.lv = 0; 3) priors for all column-specific
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coefficients relating to X (ignored if X = NULL). When traits are included in
the model, this is also the prior for the trait regression coefficients (please
see about.traits for more information); 4) priors for any dispersion pa-
rameters and variance (standard deviation, to be precise) parameters in the
model.
For elements 1-3, the prior distributions currently available include: I) “nor-
mal", which is a normal prior with the variance controlled by elements 1-3
in hypparams; II) “cauchy", which is a Cauchy prior with variance con-
trolled by elements 1-3 in hypparams. Gelman, et al. (2008) considers
using Cauchy priors with variance 2.52 as weakly informative priors for
coefficients in logistic and potentially other generalized linear models; III)
“uniform", which is a symmetric uniform prior with minimum and maxi-
mum values controlled by element 1-3 in hypparams.
For element 4, the prior distributions currently available include: I) “uni-
form", which is uniform prior with minimum zero and maximum controlled
by element 4 in hypparmas; II) “halfnormal", which is half-normal prior
with variance controlled by hypparams; III) “halfcauchy", which is a half-
Cauchy prior with variance controlled by element 4 in hypparams.
Defaults to the vector c("normal","normal","normal","uniform").

• hypparams: Vector of four hyperparameters used in the set up of prior
distributions. In order, these are: 1) affects the prior distribution for all
column-specific intercepts, row effects, and cutoff points for ordinal data;
2) affects the prior distribution for all latent variable coefficients. This is
ignored if num.lv = 0; 3) affects the prior distribution for column-specific
coefficients relating to X (ignored if X = NULL). When traits are included in
the model, it also affects the prior distribution for the trait regression coef-
ficients; 4) affects the prior distribution for any dispersion parameters, as
well as the prior distributions for the standard deviation of the random ef-
fects normal distribution if row.eff = "random", the standard deviation of
the column-specific random intercepts for these columns if more than two
of the columns are ordinal, and the standard deviation of the random effects
normal distribution for trait regression coefficients when traits are included
in the model.
Defaults to the vector c(10,10,10,30). The use of normal distributions
with mean zero and variance 10 as priors is seen as one type of (very)
weakly informative prior, according to Prior choice recommendations.

• ssvs.index: Indices to be used for stochastic search variable selection (SSVS,
George and McCulloch, 1993). Either a single element or a vector with
length equal to the number of columns in X. Each element can take values
of -1 (no SSVS is performed on this covariate), 0 (SSVS is performed on in-
dividual coefficients for this covariate), or any integer greater than 0 (SSVS
is performed on collectively all coefficients on this covariate/s.)
Please see about.ssvs for more information regarding the implementation
of SSVS. Defaults to -1, in which case SSVS is not performed on X vari-
ables.

• ssvs.g: Multiplicative, shrinkage factor for SSVS, which controls the strength
of the "spike" in the SSVS mixture prior. In summary, if the coefficient is
included in the model, the "slab" prior is a normal distribution with mean

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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zero and variance given by element 3 in hypparams, while if the coefficient
is not included in the model, the "spike" prior is normal distribution with
mean zero and variance given by element 3 in hypparams multiplied by
ssvs.g. Please see about.ssvs for more information regarding the imple-
mentation of SSVS. Defaults to 1e-6.

• ssvs.traitsindex: Used in conjunction with traits and which.traits, this
is a list of indices to be used for performing SSVS on the trait coefficients.
Should be a list with the same length as which.traits, and with each ele-
ment a vector of indices with the same length as the corresponding element
in which.traits. Each index either can take values of -1 (no SSVS on this
trait coefficient) or 0 (no SSVS on this trait coefficient).
Please see about.ssvs for more information regarding the implementation
of SSVS. Defaults to -1, in which case SSVS is not performed on any of
the trait coefficients, if they are included in the model.

do.fit If do.fit = FALSE, then only the JAGS model file is written to the current work-
ing directly (as text file with name based on model.name). No MCMC sampling
is performed, and nothing else is returned. Defaults to TRUE.

model.name Name of the text file that the JAGS script is written to. Defaults to NULL, in
which case the default of "jagsboralmodel.txt" is used.

num.lv Old argument superceded by lv.control. Defaults to NULL and ignored.

... Not used.

Details

The boral package is designed to fit three types models which may be useful in ecology (and prob-
ably outside of ecology as well =D).

Independent response models: boral allows explanatory variables to be entered into the model via
X. This model matrix can contain anything the user wants, provided factors have been parameterized
as dummy variables. It should NOT include an intercept column.

Without latent variables, i.e. lv.control$num.lv = 0, boral fits separate GLMs to each column of
the n× p matrix y, where the columns are assumed to be independent.

g(µij) = αi + β0j + x>iβj ; i = 1, . . . , n; j = 1, . . . , p,

where the mean response for element (i,j), denoted as muij , is regressed against the covariates xi
via a link function g(·). The quantities beta0j and betaj denote the column-specific intercepts and
coefficients respectively, while alpha_i is an optional row effect that may be treated as a fixed or
random effect. In the former, the first row effect is constrained to be zero for parameter identifia-
bility reasons, while the latter assumes the row effects are drawn from a normal distribution with
unknown variance φ2. One reason we might want to include row effects is to account differences
in sampling intensity between sites: these can lead to differences in site total abundance, and so by
including fixed effects they play the same role as an offset to account for these differences.

boral can also handle multiple, hierarchical row effects, which may be useful to account for sam-
pling design. This is controlled using the row.ids argument. For example, if the first five rows of
y correspond to replications from site 1, the next five rows correspond to replications from site 2,
and so on, then one can set row.ids = matrix(c(1,1,1,1,1,2,2,2,2,2,...),ncol = 1) to take
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this in account. While this way of coding row effects via the row.ids argument takes some getting
used to, it has been done this way partly to force the user to think more carefully about exactly the
structure of the data i.e., with great power comes great responsibility...

If offset is supplied, then it will be included in the linear predictor below (and all linear predictors
below where appropriate).

Without row effects, the above independent response model is basically a Bayesian analog of the
manyglm function in the mvabund package (Wang et al., 2013). Note that X.ind argument can be
optionally used to manually force certain covariates to be included in (1) or excluded from (0) from
the mean structure of specific responses.

Pure latent variable models: If no explanatory variables are included and lv.control$num.lv >
0, boral fits a pure latent variable model to perform model-based unconstrained ordination (Hui et
al., 2014),

g(µij) = αi + β0j + z>iθj ,

where instead of measured covariates, we now have a vector of latent variables zi with θj being
the column-specific coefficients relating to these latent variables. The column-specific intercept,
beta_0j, accounts for differences between species prevalence, while the row effect, alphai, is in-
cluded to account for differences in site total abundance (typically assuming a fixed effect, row.eff
= "fixed", although see Jamil and ter Braak, 2013, for a motivation for using random site effects),
so that the ordination is then in terms of species composition. If αi is omitted from the model i.e.,
row.eff = FALSE, then the ordination will be in terms of relative species abundance. As mentioned
previously, one reason for including fixed row effects is to account of any potential differences in
sampling intensity between sites.

Unconstrained ordination is used for visualizing multivariate data in a low-dimensional space, with-
out reference to covariates (Chapter 9, Legendre and Legendre, 2012). Typically, lv.control$num.lv
= 1 to 3 latent variables is used, allowing the latent variables to plotted (using lvsplot, for instance).
The resulting plot can be interpreted in the same manner as plots from Nonmetric Multi-dimensional
Scaling (NMDS, Kruskal, 1964) and Correspondence Analysis (CA, Hill, 1974), for example. A
biplot can also be constructed by setting biplot = TRUE when using lvsplot, so that both the latent
variables and their corresponding coefficients are plotted. For instance, with multivariate abundance
data, biplots are used to visualize the relationships between sites in terms of species abundance or
composition, as well as the indicator species for the sites.

boral offers a small number of options for allowing the latent variables to be correlated across rows
of the responses. This may be useful when one has a-priori information about correlation between
sites e.g., spatial correlation, which cannot be systematically accounted for by the inclusion of
random effects. Please see the help file about.lvs for more information on this. By default, boral
assumes the latent variables are independent standard normally distributed across rows. Note the
use of a non-independence correlation structure massively increases computation time!

Correlated response models: When one or more latent variables are included in conjunction with
covariates i.e., X is given and lv.control$num.lv > 1, boral fits separate GLMs to each column of y
while allowing for residual correlation between columns via the latent variables. This is quite useful
for multivariate abundance data in ecology, where a separate GLM is fitted to species (modeling its
response against environmental covariates), while accounting for the fact species at a site are likely
to be correlated for reason other than similarities in environmental responses, e.g. biotic interaction,
phylogeny, and so on. Correlated response model take the following form,
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g(µij) = αi + β0j + x>
i βj ,+z

>
i θj .

This model is thus a mash of the first two types of models. The linear predictor z>i θj induces a
residual covariance between the columns of y (which is of rank lv.control$num.lv). For multi-
variate abundance data, this leads to a parsimonious method of accounting for correlation between
species not due to the shared environmental responses. After fitting the model, the residual corre-
lation matrix then can be obtained via the get.residual.cor function. Note lv.control$num.lv
> 1 is necessarily in order to flexibly model the residual correlations; see Pollock et al. (2014) for
residual correlation matrices in the context of Joint Species Distribution Models, and Warton et al.
(2015) for an overview of latent variable models in multivariate ecology.

Distributions: A variety of families are available in boral, designed to handle multivariate abun-
dance data of varying response types. Please see about.distributions for more information on
this.

Including species traits: When covariates X are included i.e. both the independent and correlated
response models, one has the option of also including traits to help explain differences in species
environmental responses to these covariates. Please see about.traits for more information on
this.

Estimation: Estimation for all models is performed using Bayesian Markov Chain Monte Carlo
(MCMC) methods via JAGS (Plummer, 2003). Please note that only one MCMC chain in run: this
point is discussed later in this help file. Regarding prior distributions, the default settings, based on
the prior.control argument, are as follows:

• Normal priors with mean zero and variance given by element 1 in hypparams are assigned to
all intercepts, cutoffs for ordinal responses, and row effects.

• Normal priors with mean zero and variance given by element 2 in hypparams are assigned
coefficients relating to latent variables, θj .

• Normal priors with mean zero and variance given by element 3 hypparams are assigned to
all coefficients relating to covariates in βj . If traits are included, the same normal priors are
assigned to the κ’s, and the standard deviation σk are assigned uniform priors with maximum
equal to element 4 in hypparams.

• For the negative binomial, normal, lognormal, and tweedie distributions, uniform priors with
maximum equal to element 4 in hypparams are used on the dispersion parameters. Please
note that for the normal and lognormal distributions, these uniform priors are assigned to the
standard deviations φ (see Gelman, 2006). If there are any variance (standard deviation, to be
precise) parameters in the model, then these are also assigned uniform priors with maximum
equal to element 4 in hypparams e.g., standard deviation of the normal random effect if the row
effects are assumed to random, the standard deviation of the normal random column-specific
intercepts if more than two columns are ordinal responses etc...

Using information criteria at your own risk: Using information criterion from calc.ics = TRUE
for model selection should be done with extreme caution, for two reasons: 1) The implementation
of some of these criteria is heuristic and experimental, 2) Deciding what model to fit should also
be driven by the science. For example, it may be the case that a criterion suggests a model with 3
or 4 latent variables is more appropriate. However, if we are interested in visualizing the data for
ordination purposes, then models with 1 or 2 latent variables are more appropriate. As another ex-
ample, whether or not we include row effects when ordinating multivariate abundance data depends
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on if we are interested in differences between sites in terms of relative species abundance (row.eff
= "none") or species composition (row.eff = "fixed"). We also make the important point that if
traits are included in the model, then the regression coefficients β0j ,βj are now random effects.
However, currently the calculation of all information criteria do not take this into account!
SSVS: Stochastic search variable selection (SSVS, George and McCulloch, 1993) is also imple-
mented for the column-specific coefficients βj . Please see about.ssvs for more information on
this approach.

Value

An object of class "boral" is returned, being a list containing (but not limited to) the following
components where applicable:

call The matched call.
lv.coefs.mean/median/sd/iqr

Matrices containing the mean/median/standard deviation/interquartile range of
the posterior distributions of the latent variable coefficients. This also includes
the column-specific intercepts, and dispersion parameters if appropriate.

lv.mean/median/sd/iqr

A matrix containing the mean/median/standard deviation/interquartile range of
the posterior distributions of the latent variables.

lv.covparams.mean/median/sd/iqr

A matrix containing the mean/median/standard deviation/interquartile range of
the posterior distributions for the parameters characterizing the correlation struc-
ture of the latent variables when they are assumed to be non-independent across
rows.

X.coefs.mean/median/sd/iqr

Matrices containing the mean/median/standard deviation/interquartile range of
the posterior distributions of the column-specific coefficients relating to X.

traits.coefs.mean/median/sd/iqr

Matrices containing the mean/median/standard deviation/interquartile range of
the posterior distributions of the coefficients and standard deviation relating to
the species traits; please see about.traits.

cutoffs.mean/median/sd/iqr

Vectors containing the mean/median/standard deviation/interquartile range of
the posterior distributions of the common cutoffs for ordinal responses (please
see the not-so-brief tangent on distributions above).

ordinal.sigma.mean/median/sd/iqr

Scalars containing the mean/median/standard deviation/interquartile range of
the posterior distributions of the standard deviation for the random intercept
normal distribution corresponding to the ordinal response columns.

powerparam.mean/median/sd/iqr

Scalars for the mean/median/standard deviation/interquartile range of the poste-
rior distributions of the common power parameter for tweedie responses (please
see the not-so-brief tangent on distributions above).

row.coefs.mean/median/sd/iq

A list with each element containing the vectors of mean/median/standard de-
viation/interquartile range of the posterior distributions of the row effects. The
length of the list is equal to the number of row effects included i.e., ncol(row.ids).
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row.sigma.mean/median/sd/iqr

A list with each element containing the mean/median/standard deviation/interquartile
range of the posterior distributions of the standard deviation for the row random
effects normal distribution. The length of the list is equal to the number of row
effects included i.e., ncol(row.ids).

ssvs.indcoefs.mean/ssvs.indcoefs.sd

Matrices containing posterior probabilities and associated standard deviation for
individual SSVS of coefficients in X.

ssvs.gpcoefs.mean/ssvs.gpcoefs.sd

Matrices containing posterior probabilities and associated standard deviation for
group SSVS of coefficients in X.

ssvs.traitscoefs.mean/ssvs.traitscoefs.sd

Matrices containing posterior probabilities and associated standard deviation for
individual SSVS of coefficients relating to species traits.

hpdintervals A list containing components which correspond to the lower and upper bounds
of highest posterior density (HPD) intervals for all the parameters indicated
above. Please see get.hpdintervals for more details.

ics If calc.ics = TRUE, then a list of different information criteria values for the
model calculated using get.measures is run. Please see get.measures for
details regarding the criteria. Also, please note the ics returned are based on
get.measures with more.measures = FALSE.

jags.model If save.model = TRUE, the raw jags model fitted is returned. This can be quite
large!

geweke.diag A list with two elements. The first element is itself a list containing the Geweke
convergence diagnostic (Z-scores) for all appropriate parameters in the model.
The second element contains the proportion of Z-scores that whose correspond-
ing p-value is less than 0.05. No adjustment is made for multiple comparison
on the p-values. Please see the section Why is only one MCMC chain run? for
more information on this diagnostic.

n, p, family, trial.size, num.lv, ...

Various attributes of the model fitted, including the dimension of y, the response
and model matrix used, distributional assumptions and trial sizes, number of
latent variables, the number of covariates and traits, hyperparameters used in
the Bayesian estimation, indices for SSVS, the number of levels for ordinal re-
sponses, and n.burnin, n.iteration and n.thin.

Why is only one MCMC chain run?

Much like the MCMCfactanal function in the MCMCpack package (Martin et al., 2011) for conducting
factor analysis, which is a special case of the pure latent variable model with Gaussian responses,
boral deliberately runs only one MCMC chain. This runs contrary to the recommendation of most
Bayesian analyses, where the advice is to run multiple MCMC chains and check convergence using
(most commonly) the Gelman-Rubin statistic (Gelman et al., 2013). The main reason for this is
that, in the context of MCMC sampling, the latent variable model is invariant to a switch of the
sign, i.e. z>i θj = (−z>i (−θj), and so is actually unidentifiable.

As a result of sign-switching, different MCMC chains can produce latent variables and correspond-
ing coefficients values that, while having similar magnitudes, will be different in sign. Conse-
quently, combining MCMC chains and checking Rhats, computing posterior means and medians
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etc...becomes complicated (in principle, one way to resolve this problem would be to post-process
the MCMC chains and deal with sign switching, but this is really hard!). Therefore, to alleviate this
issue together, boral chooses to only run one MCMC chain.

What does this mean for the user?

• boral automatically calculates the Geweke convergence diagnostic (Geweke, 1992), which is
a diagnostic applicable with only one MCMC chain; please see the help file geweke.diag
in the coda package for more information. The output is a list containing Z-scores for the
appropriate parameters in the model, and each score can be interpreted in the same manner as
the test statistic from conducting a Z-test i.e., if the score exeeds roughly 1.96 then the p-value
is less than 0.05, and there is evidence the MCMC chain (for this particular parameter) has not
converged.
The output from boral also provides the proportion of Z-scores whose corresponding p-values
are less than 0.05. Of course, because there are a large number of parameters in the model,
then there are large number of Z-scores, and boral does not make any multiple comparison
adjustment for this when calculating the number of “significant" Z-scores. If you do indeed
want to use this diagnostic to formally check for convergence, then we recommend you con-
duct some adjustment e.g., using Holm’s method, by doing something such as
gew.pvals <-2*pnorm(abs(unlist(fit$geweke.diag[[1]])),lower.tail = FALSE) and
then p.adjust(gew.pvals,method = "holm").

• For checking convergence, we recommend you look at trace plots of the MCMC chains. Us-
ing the coda package, which is automatically loaded when the boral package is loaded, try
something like plot(get.mcmcsamples(fit)).

• If you have a lot of data, e.g. lots of sites compared to species, sign-switching tends to be less
of problem and pops up less often.

Warnings

• No intercept column is required in X. Column-specific intercepts are estimated automatically
and given by the first column of lv.coefs. Similarly, no intercept column is required in
traits, as it is included automatically.

• As of version 1.6, functions to calculate information criteria along with calc.marglogLik are
no longer updated!

• MCMC with a non-independence correlation structure for the latent variables takes an espe-
cially long time to run!

• Likewise, MCMC with lots of ordinal columns take an especially long time to run! Moreover,
estimates for the cutoffs in cumulative probit regression may be poor for levels with little data.
Major apologies for this advance =(

• Summaries of the coefficients such as posterior medians and HPD intervals may also be prob-
lematic when SSVS is being used, since the posterior distribution will be multi-modal.

• If save.model = TRUE, the raw jags model is also returned. This can be quite very memory-
consuming, since it indirectly saves all the MCMC samples.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>
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See Also

lvsplot for a scatter plot of the latent variables (and their coefficients if applicable), coefsplot for
horizontal line or "caterpillar plot" of the regression coefficients corresponding to X (if applicable),
summary.boral for a summary of the fitted model, get.enviro.cor and get.residual.cor for
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calculating the correlation matrix between the explanatory variables in X and the residual correlation
matrix respectively, calc.varpart to calculate variance partitioning of the explanatory variables in
X, and predict.boral for calculating predictions from a fitted model.

Examples

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
X <- scale(spider$x)
n <- nrow(y)
p <- ncol(y)

## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

## Example 1 - model with two latent variables, site effects,
## and no environmental covariates
spiderfit_nb <- boral(y, family = "negative.binomial",

lv.control = list(num.lv = 2), row.eff = "fixed",
mcmc.control = example_mcmc_control, model.name = testpath)

summary(spiderfit_nb)

par(mfrow = c(2,2))
plot(spiderfit_nb) ## Plots used in residual analysis,
## Used to check if assumptions such an mean-variance relationship
## are adequately satisfied.

lvsplot(spiderfit_nb) ## Biplot of the latent variables,
## which can be interpreted in the same manner as an ordination plot.

## Not run:
## Example 2a - model with no latent variables, no site effects,
## and environmental covariates
spiderfit_nb <- boral(y, X = X, family = "negative.binomial",

mcmc.control = example_mcmc_control, model.name = testpath)

summary(spiderfit_nb)
## The results can be compared with the default example from
## the manyglm() function in mvabund.

## Caterpillar plots for the coefficients
par(mfrow=c(2,3), mar = c(5,6,1,1))
sapply(colnames(spiderfit_nb$X), coefsplot, x = spiderfit_nb)

## Example 2b - suppose now, for some reason, the 28 rows were
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## sampled such into four replications of seven sites
## Let us account for this as a fixed effect
spiderfit_nb <- boral(y, X = X, family = "negative.binomial",

row.eff = "fixed", row.ids = matrix(rep(1:7,each=4),ncol=1),
mcmc.control = example_mcmc_control, model.name = testpath)

spiderfit_nb$row.coefs

## Example 2c - suppose now, for some reason, the 28 rows reflected
## a nested design with seven regions, each with four sub-regions
## We can account for this nesting as a random effect
spiderfit_nb <- boral(y, X = X, family = "negative.binomial",

row.eff = "random",
row.ids = cbind(1:n, rep(1:7,each=4)),
mcmc.control = example_mcmc_control, model.name = testpath)

spiderfit_nb$row.coefs

## Example 2d - model with environmental covariates and
## two structured latent variables using fake distance matrix
fakedistmat <- as.matrix(dist(1:n))
spiderfit_lvstruc <- boral(y, X = X, family = "negative.binomial",

lv.control = list(num.lv = 2, type = "exponential", distmat = fakedistmat),
mcmc.control = example_mcmc_control, model.name = testpath)

summary(spiderfit_lvstruc)

## Example 3a - Extend example 2 to demonstrate grouped covariate selection
## on the last three covariates.
example_prior_control <- list(type = c("normal","normal","normal","uniform"),

ssvs.index = c(-1,-1,-1,1,2,3))
spiderfit_nb2 <- boral(y, X = X, family = "negative.binomial",

mcmc.control = example_mcmc_control,
prior.control = example_prior_control, model.name = testpath)

summary(spiderfit_nb2)

## Example 3b - Extend example 2 to demonstrate individual covariate selection
## on the last three covariates.
example_prior_control <- list(type = c("normal","normal","normal","uniform"),

ssvs.index = c(-1,-1,-1,0,0,0))
spiderfit_nb3 <- boral(y, X = X, family = "negative.binomial",

mcmc.control = example_mcmc_control, prior.control = example_prior_control,
model.name = testpath)

summary(spiderfit_nb3)

## Example 4 - model fitted to presence-absence data, no site effects, and
## two latent variables
data(tikus)
y <- tikus$abun
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y[y > 0] <- 1
y <- y[1:20,] ## Consider only years 1981 and 1983
y <- y[,apply(y > 0,2,sum) > 2] ## Consider only spp with more than 2 presences

tikusfit <- boral(y, family = "binomial",
lv.control = list(num.lv = 2), mcmc.control = example_mcmc_control,
model.name = testpath)

lvsplot(tikusfit, biplot = FALSE)
## A strong location between the two sampling years

## Example 5a - model fitted to count data, no site effects, and
## two latent variables, plus traits included to explain environmental responses
data(antTraits)
y <- antTraits$abun
X <- as.matrix(scale(antTraits$env))
## Include only traits 1, 2, and 5
traits <- as.matrix(antTraits$traits[,c(1,2,5)])
example_which_traits <- vector("list",ncol(X)+1)
for(i in 1:length(example_which_traits))

example_which_traits[[i]] <- 1:ncol(traits)
## Just for fun, the regression coefficients for the second column of X,
## corresponding to the third element in the list example_which_traits,
## will be estimated separately and not regressed against traits.
example_which_traits[[3]] <- 0

fit_traits <- boral(y, X = X, traits = traits,
lv.control = list(num.lv = 2),
which.traits = example_which_traits, family = "negative.binomial",
mcmc.control = example_mcmc_control, model.name = testpath,
save.model = TRUE)

summary(fit_traits)

## Example 5b - perform selection on trait coefficients
ssvs_traitsindex <- vector("list",ncol(X)+1)
for(i in 1:length(ssvs_traitsindex))

ssvs_traitsindex[[i]] <- rep(0,ncol(traits))
ssvs_traitsindex[[3]] <- -1
fit_traits <- boral(y, X = X, traits = traits, which.traits = example_which_traits,

family = "negative.binomial",
lv.control = list(num.lv = 2), mcmc.control = example_mcmc_control,
save.model = TRUE, prior.control = list(ssvs.traitsindex = ssvs_traitsindex),
model.name = testpath)

summary(fit_traits)

## Example 6 - simulate Bernoulli data, based on a model with two latent variables,
## no site variables, with two traits and one environmental covariates
## This example is a proof of concept that traits can used to
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## explain environmental responses
library(mvtnorm)

n <- 100; s <- 50
X <- as.matrix(scale(1:n))
colnames(X) <- c("elevation")

traits <- cbind(rbinom(s,1,0.5), rnorm(s))
## one categorical and one continuous variable
colnames(traits) <- c("thorns-dummy","SLA")

simfit <- list(true.lv = rmvnorm(n, mean = rep(0,2)),
lv.coefs = cbind(rnorm(s), rmvnorm(s, mean = rep(0,2))),
traits.coefs = matrix(c(0.1,1,-0.5,1,0.5,0,-1,1), 2, byrow = TRUE))

rownames(simfit$traits.coefs) <- c("beta0","elevation")
colnames(simfit$traits.coefs) <- c("kappa0","thorns-dummy","SLA","sigma")

simy = create.life(true.lv = simfit$true.lv, lv.coefs = simfit$lv.coefs, X = X,
traits = traits, traits.coefs = simfit$traits.coefs, family = "binomial")

example_which_traits <- vector("list",ncol(X)+1)
for(i in 1:length(example_which_traits))

example_which_traits[[i]] <- 1:ncol(traits)
fit_traits <- boral(y = simy, X = X, traits = traits,

which.traits = example_which_traits, family = "binomial",
lv.control = list(num.lv = 2), save.model = TRUE,
mcmc.control = example_mcmc_control, model.name = testpath)

## End(Not run)

calc.condlogLik Conditional log-likelihood for a fitted model

Description

Soft-deprecated

Calculates the conditional log-likelihood for a set of parameter estimates from a fitted model, where
everything is treated as "fixed effects" including latent variables, row effects, and so on.

Usage

calc.condlogLik(y, X = NULL, family, trial.size = 1, lv.coefs,
X.coefs = NULL, row.coefs = NULL, row.ids = NULL,
offset = NULL, lv = NULL, cutoffs = NULL, powerparam = NULL)



30 calc.condlogLik

Arguments

y The response matrix the model was fitted to.

X The model matrix used in the model. Defaults to NULL, in which case it is as-
sumed no model matrix was used.

family Either a single element, or a vector of length equal to the number of columns
in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial" (with log link), "normal" (with identity link), "lnormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression).
Please see about.distributions for information on distributions available in
boral overall.

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

lv.coefs The column-specific intercept, coefficient estimates relating to the latent vari-
ables, and dispersion parameters from the fitted model.

X.coefs The coefficients estimates relating to X from the fitted model. Defaults to NULL,
in which it is assumed there are no covariates in the model.

row.coefs Row effect estimates for the fitted model. The conditional likelihood is defined
conditional on these estimates i.e., they are also treated as “fixed effects". De-
faults to NULL, in which case it is assumed there are no row effects in the model.

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (i, j) indicates to the cluster ID of row i in y for random ef-
fect eqnj; please see the boral function for details. Defaults to NULL, so that if
row.coefs = NULL then the argument is ignored, otherwise if row.coefs is sup-
plied then row.ids = matrix(1:nrow(y),ncol = 1) i.e., a single, row effect
unique to each row. An internal check is done to see row.coefs and row.ids
are consistent in terms of arguments supplied.

offset A matrix with the same dimensions as the response matrix y, specifying an a-
priori known component to be included in the linear predictor during fitting.
Defaults to NULL.

lv Latent variables "estimates" from the fitted model, which the conditional like-
lihood is based on. Defaults to NULL, in which case it is assumed no latent
variables were included in the model.

cutoffs Common cutoff estimates from the fitted model when any of the columns of y
are ordinal responses. Defaults to NULL.

powerparam Common power parameter from the fitted model when any of the columns of y
are tweedie responses. Defaults to NULL.
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Details

For an nxp response matrix y, suppose we fit a model with one or more latent variables. If we
denote the latent variables by zi; i = 1, . . . , n, then the conditional log-likelihood is given by,

log(f) =

n∑
i=1

p∑
j=1

log{f(yij |zi,θj , β0j , . . .)},

where f(yij |·) is the assumed distribution for column j, zi are the latent variables and θj are
the coefficients relating to them, β0j are column-specific intercepts, and . . . denotes anything else
included in the model, such as row effects, regression coefficients related X and traits, etc...

The key difference between this and the marginal likelihood (see calc.marglogLik) is that the
conditional likelihood treats everything as "fixed effects" i.e., conditions on them. These include
the latent variables zi and other parameters that were included in the model as random effects e.g.,
row effects if row.eff = "random", regression coefficients related to X if traits were included in the
model, and so on.

The conditional DIC, WAIC, EAIC, and EBIC returned from get.measures are based on the condi-
tional likelihood calculated from this function. Additionally, get.measures returns the conditional
likelihood evaluated at all MCMC samples of a fitted model.

Value

A list with the following components:

logLik Value of the conditional log-likelihood.

logLik.comp A matrix of the log-likelihood values for each element in y,
such that sum(logLik.comp) = logLik.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

See Also

calc.logLik.lv0 to calculate the conditional/marginal log-likelihood for a model with no latent
variables; calc.marglogLik for calculation of the marginal log-likelihood;

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")
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library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
n <- nrow(y)
p <- ncol(y)

## Example 1 - model with 2 latent variables, site effects,
## and no environmental covariates
spiderfit_nb <- boral(y, family = "negative.binomial",

lv.control = list(num.lv = 2), row.eff = "fixed",
save.model = TRUE, mcmc.control = example_mcmc_control,
model.name = testpath)

## Extract all MCMC samples
fit_mcmc <- get.mcmcsamples(spiderfit_nb)
mcmc_names <- colnames(fit_mcmc)

## Find the posterior medians
coef_mat <- matrix(apply(fit_mcmc[,grep("lv.coefs",mcmc_names)],

2,median),nrow=p)
site_coef <- list(ID1 = apply(fit_mcmc[,grep("row.coefs.ID1", mcmc_names)],

2,median))
lvs_mat <- matrix(apply(fit_mcmc[,grep("lvs",mcmc_names)],2,median),nrow=n)

## Calculate the conditional log-likelihood at the posterior median
calc.condlogLik(y, family = "negative.binomial",

lv.coefs = coef_mat, row.coefs = site_coef, lv = lvs_mat)

## Example 2 - model with no latent variables and environmental covariates
X <- scale(spider$x)
spiderfit_nb2 <- boral(y, X = X, family = "negative.binomial",

save.model = TRUE, mcmc.control = example_mcmc_control,
model.name = testpath)

## Extract all MCMC samples
fit_mcmc <- get.mcmcsamples(spiderfit_nb2)
mcmc_names <- colnames(fit_mcmc)

## Find the posterior medians
coef_mat <- matrix(apply(fit_mcmc[,grep("lv.coefs",mcmc_names)],

2,median),nrow=p)
X_coef_mat <- matrix(apply(fit_mcmc[,grep("X.coefs",mcmc_names)],

2,median),nrow=p)

## Calculate the log-likelihood at the posterior median
calc.condlogLik(y, X = X, family = "negative.binomial",

lv.coefs = coef_mat, X.coefs = X_coef_mat)

## End(Not run)



calc.logLik.lv0 33

calc.logLik.lv0 Log-likelihood for a model fitted with no latent variables

Description

Soft-deprecated
Calculates the log-likelihood for a set of parameter estimates from a model with no latent variables.
If the row effects are assumed to be random, they are integrated over using Monte Carlo integration.

Usage

calc.logLik.lv0(y, X = NULL, family, trial.size = 1, lv.coefs,
X.coefs = NULL, row.eff = "none", row.params = NULL,
row.ids = NULL, offset = NULL, cutoffs = NULL,
powerparam = NULL)

Arguments

y The response matrix the model was fitted to.
X The model matrix used in the model. Defaults to NULL, in which case it is as-

sumed no model matrix was used.
family Either a single element, or a vector of length equal to the number of columns

in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial" (with log link), "normal" (with identity link), "lnormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression).
Please see about.distributions for information on distributions available in
boral overall.

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

lv.coefs The column-specific intercept, coefficient estimates relating to the latent vari-
ables, and dispersion parameters from the fitted model.

X.coefs The coefficients estimates relating to X from the fitted model. Defaults to NULL,
in which it is assumed there are no covariates in the model.

row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),
random effects ("random") or not included ("none") in the fitted model. If fixed
effects, then for parameter identifiability the first row effect is set to zero, which
analogous to acting as a reference level when dummy variables are used. If
random effects, they are drawn from a normal distribution with mean zero and
standard deviation given by row.params. Defaults to "none".
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row.params Parameters corresponding to the row effect from the fitted model. If
row.eff = "fixed", then these are the fixed effects and should have length
equal to the number of columns in y. If row.eff = "random", then this is
the standard deviation for the random effects normal distribution. If row.eff
= "none", then this argument is ignored.

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (i, j) indicates to the cluster ID of row i in y for random effect
eqnj; please see boral for details. Defaults to NULL, so that if row.params =
NULL then the argument is ignored, otherwise if row.params is supplied then
row.ids = matrix(1:nrow(y),ncol = 1) i.e., a single, row effect unique to
each row. An internal check is done to see row.params and row.ids are con-
sistent in terms of arguments supplied.

offset A matrix with the same dimensions as the response matrix y, specifying an a-
priori known component to be included in the linear predictor during fitting.
Defaults to NULL.

cutoffs Common cutoff estimates from the fitted model when any of the columns of y
are ordinal responses. Defaults to NULL.

powerparam Common power parameter from the fitted model when any of the columns of y
are tweedie responses. Defaults to NULL.

Details

For an nxp response matrix y, the log-likelihood for a model with no latent variables included is
given by,

log(f) =

n∑
i=1

p∑
j=1

log{f(yij |β0j , αi, . . .)},

where f(yij |·) is the assumed distribution for column j, β0j is the column-specific intercepts, αi
is the row effect, and . . . generically denotes anything else included in the model, e.g. row effects,
dispersion parameters etc...

Please note the function is written conditional on all regression coefficients. Therefore, if traits
are included in the model, in which case the regression coefficients β0j ,βj become random effects
instead (please see about.traits), then the calculation of the log-likelihood does NOT take this
into account, i.e. does not marginalize over them!

Likewise if more than two columns are ordinal responses, then the regression coefficients β0j cor-
responding to these columns become random effects, and the calculation of the log-likelihood also
does NOT take this into account, i.e. does not marginalize over them!

When a single αi random row effect is inclued, then the log-likelihood is calculated by integrating
over this,

log(f) =

n∑
i=1

log(

∫ p∏
j=1

{f(yij |β0j , αi, . . .)}f(αi)dαi),
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where f(αi) is the random effects distribution with mean zero and standard deviation given by the
row.params. The integration is performed using standard Monte Carlo integration. This naturally
extends to multiple random row effects structures.

Value

A list with the following components:

logLik Value of the log-likelihood

logLik.comp A vector of the log-likelihood values for each row of y,
such that sum(logLik.comp) = logLik.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

See Also

calc.marglogLik for calculation of the log-likelihood marginalizing over one or more latent vari-
ables, and calc.condlogLik for calculation of the conditional log-likelihood for models where
everything is treated as "fixed effects", including latent variables, row effects, and so on.

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
n <- nrow(y)
p <- ncol(y)

## Example 1 - NULL model with site effects only
spiderfit_nb <- boral(y, family = "negative.binomial", row.eff = "fixed",

save.model = TRUE, mcmc.control = example_mcmc_control,
model.name = testpath)

## Extract all MCMC samples
fit_mcmc <- get.mcmcsamples(spiderfit_nb)
mcmc_names <- colnames(fit_mcmc)

## Find the posterior medians
coef_mat <- matrix(apply(fit_mcmc[,grep("lv.coefs",mcmc_names)],
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2,median),nrow=p)
site_coef <- list(ID1 = apply(fit_mcmc[,grep("row.coefs.ID1", mcmc_names)],

2,median))

## Calculate the log-likelihood at the posterior median
calc.logLik.lv0(y, family = "negative.binomial",

lv.coefs = coef_mat, row.eff = "fixed", row.params = site_coef)

## Example 2 - Model with environmental covariates and random row effects
X <- scale(spider$x)
spiderfit_nb2 <- boral(y, X = X, family = "negative.binomial", row.eff = "random",

save.model = TRUE, mcmc.control = example_mcmc_control,
model.name = testpath)

## Extract all MCMC samples
fit_mcmc <- get.mcmcsamples(spiderfit_nb2)
mcmc_names <- colnames(fit_mcmc)

## Find the posterior medians
coef_mat <- matrix(apply(fit_mcmc[,grep("lv.coefs",mcmc_names)],

2,median),nrow=p)
X_coef_mat <- matrix(apply(fit_mcmc[,grep("X.coefs",mcmc_names)],

2,median),nrow=p)
site.sigma <- list(ID1 =

median(fit_mcmc[,grep("row.sigma.ID1", mcmc_names)]))

## Calculate the log-likelihood at the posterior median
calc.logLik.lv0(y, X = spider$x, family = "negative.binomial",

row.eff = "random",lv.coefs = coef_mat, X.coefs = X_coef_mat,
row.params = site.sigma)

## End(Not run)

calc.marglogLik Marginal log-likelihood for a fitted model

Description

Deprecated

Calculates the marginal log-likelihood for a set of parameter estimates from a fitted model, whereby
the latent variables and random effects (if applicable) are integrated out. The integration is per-
formed using Monte Carlo integration. WARNING: As of version 1.6, this function is longer up-
dated!

Usage

calc.marglogLik(y, X = NULL, family, trial.size = 1, lv.coefs,
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X.coefs = NULL, row.eff = "none", row.params = NULL,
row.ids = NULL,offset = NULL, num.lv, lv.mc = NULL,
cutoffs = NULL, powerparam = NULL)

Arguments

y The response matrix that the model was fitted to.
X The model matrix used in the model. Defaults to NULL, in which case it is as-

sumed no model matrix was used.
family Either a single element, or a vector of length equal to the number of columns

in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial" (with log link), "normal" (with identity link), "lnormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression).
Please see about.distributions for information on distributions available in
boral overall.

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

lv.coefs The column-specific intercept, coefficient estimates relating to the latent vari-
ables, and dispersion parameters from the fitted model.

X.coefs The coefficients estimates relating to X from the fitted model. Defaults to NULL,
in which it is assumed there are no covariates in the model.

row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),
random effects ("random") or not included ("none") in the fitted model. If fixed
effects, then for parameter identifiability the first row effect is set to zero, which
analogous to acting as a reference level when dummy variables are used. If
random effects, they are drawn from a normal distribution with mean zero and
standard deviation given by row.params. Defaults to "none".

row.params Parameters corresponding to the row effect from the fitted model. If
row.eff = "fixed", then these are the fixed effects and should have length
equal to the number of columns in y. If row.eff = "random", then this is stan-
dard deviation for the random effects normal distribution. If row.eff = "none",
then this argument is ignored.

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (i, j) indicates to the cluster ID of row i in y for random effect
eqnj; please see boral for details. Defaults to NULL, so that if row.params =
NULL then the argument is ignored, otherwise if row.params is supplied then
row.ids = matrix(1:nrow(y),ncol = 1) i.e., a single, row effect unique to
each row. An internal check is done to see row.params and row.ids are con-
sistent in terms of arguments supplied.
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offset A matrix with the same dimensions as the response matrix y, specifying an a-
priori known component to be included in the linear predictor during fitting.
Defaults to NULL.

num.lv The number of latent variables used in the fitted model. For models with no
latent variables, please use calc.logLik.lv0 to calculate the log-likelihood.

lv.mc A matrix used for performing the Monte Carlo integration. Defaults to NULL, in
which case a matrix is generated within the function.

cutoffs Common cutoff estimates from the fitted model when any of the columns of y
are ordinal responses. Defaults to NULL.

powerparam Common power parameter from the fitted model when any of the columns of y
are tweedie responses. Defaults to NULL.

Details

For an nxp response matrix y, suppose we fit a model with one or more latent variables. If we
denote the latent variables by zi; i = 1, . . . , n, then the marginal log-likelihood is given by

log(f) =

n∑
i=1

log(

∫ p∏
j=1

{f(yij |zi, β0j ,θj , . . .)}f(zi)dzi),

where f(yij |·) is the assumed distribution for column j, β0j are the column-specific intercepts, θj
are the column-specific latent variable coefficients, and . . . generically denotes anything else in-
cluded in the model, e.g. row effects, dispersion parameters etc... The quantity f(zi) denotes the
distribution of the latent variable, which is assumed to be standard multivariate Gaussian. Standard
Monte Carlo integration is used for calculating the marginal likelihood. If lv.mc = NULL, the func-
tion automatically generates a matrix as
lv.mc <-rmvnorm(1000,rep(0,num.lv)). If there is a need to apply this function numerous times,
we recommend a matrix be inserted into lv.mc to speed up computation.

The key difference between this and the conditional likelihood (see calc.condlogLik) is that the
marginal likelihood treats the latent variables as "random effects" and integrates over them, whereas
the conditional likelihood treats the latent variables as "fixed effects".

Please note the function is written conditional on all regression coefficients. Therefore, if traits
are included in the model, in which case the regression coefficients β0j ,βj become random effects
instead (please see about.traits), then the calculation of the log-likelihood does NOT take this
into account, i.e. does not marginalize over them! Likewise if more than two columns are ordinal
responses, then the regression coefficients β0j corresponding to these columns become random
effects, and the calculation of the log-likelihood also does NOT take this into account, i.e. does not
marginalize over them!

When a single αi random row effect is inclued, then the log-likelihood is calculated by integrating
over this,

log(f) =

n∑
i=1

log(

∫ p∏
j=1

{f(yij |zi, β0j , αi, . . .)}f(zi)f(αi)dαi),

where f(αi) is the random effects distribution with mean zero and standard deviation given by
the row.params. The integration is again performed using standard Monte Carlo integration. This
naturally extends to multiple random row effects structures.
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Value

A list with the following components:

logLik Value of the marginal log-likelihood.

logLik.comp A vector of the log-likelihood values for each row of y,
such that sum(logLik.comp) = logLik.

Warnings

As of version 1.6, this function is longer updated!

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

See Also

calc.condlogLik for calculation of the conditional log-likelihood; calc.logLik.lv0 to calculate
the conditional/marginal log-likelihood for a model with no latent variables.

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
n <- nrow(y)
p <- ncol(y)

## Example 1 - model with two latent variables, site effects,
## and no environmental covariates
spiderfit_nb <- boral(y, family = "negative.binomial",

lv.control = list(num.lv = 2), row.eff = "fixed", save.model = TRUE,
mcmc.control = example_mcmc_control, model.name = testpath)

## Extract all MCMC samples
fit_mcmc <- get.mcmcsamples(spiderfit_nb)
mcmc_names <- colnames(fit_mcmc)

## Find the posterior medians
coef_mat <- matrix(apply(fit_mcmc[,grep("lv.coefs",mcmc_names)],

2,median),nrow=p)
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site_coef <- list(ID1 = apply(fit_mcmc[,grep("row.coefs.ID1", mcmc_names)],
2,median))

## Calculate the marginal log-likelihood at the posterior median
calc.marglogLik(y, family = "negative.binomial",

lv.coefs = coef_mat, row.eff = "fixed", row.params = site_coef,
num.lv = 2)

## Example 2 - model with one latent variable, no site effects,
## and environmental covariates
spiderfit_nb2 <- boral(y, X = spider$x, family = "negative.binomial",

lv.control = list(num.lv = 2), save.model = TRUE,
mcmc.control = example_mcmc_control, model.name = testpath)

## Extract all MCMC samples
fit_mcmc <- get.mcmcsamples(spiderfit_nb2)
mcmc_names <- colnames(fit_mcmc)

## Find the posterior medians
coef_mat <- matrix(apply(fit_mcmc[,grep("lv.coefs",mcmc_names)],

2,median),nrow=p)
X_coef_mat <- matrix(apply(fit_mcmc[,grep("X.coefs",mcmc_names)],

2,median),nrow=p)

## Calculate the log-likelihood at the posterior median
calc.marglogLik(y, X = spider$x, family = "negative.binomial",

lv.coefs = coef_mat, X.coefs = X_coef_mat, num.lv = 2)

## End(Not run)

calc.varpart Variance partitioning for a latent variable model

Description

Stable

For each response (species), partition the variance of the linear predictor into components associated
with (groups of) the covariates, the latent variables, any row effects. If traits are also included
in the model, then it also calculates an R-squared value for the proportion of the variance in the
environmental response (due to the covariates) which can be explained by traits.

Usage

calc.varpart(object, groupX = NULL)
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Arguments

object An object of class "boral".

groupX A vector of group indicator variables, which allows the variance partitioning to
be done for groups of covariates (including the intercept) i.e., how much of the
total variation does a certain subset of the covariates explain. Defaults to NULL,
in whih case all the covariates are treated as single group.

Details

As an alternative to looking at differences in trace of the residual covariance matrix (Hui et al., 2014;
Warton et al., 2015), an alternative way to quantify the amount of variance explained by covariates,
traits, row effects, is to perform a variance decomposition of the linear predictor of a latent variable
model. In particular, for a general model the linear predictor for response j = 1, . . . , p at row
i = 1, . . . , n is given by

ηij = αi + β0j + x>
i βj ,+z

>
i θj ,

where β0j +x>
i βj is the component of the linear predictor due to the covariates X plus an intercept,

z>i θj is the component due to the latent variables, and αi is the component due to one or more
fixed or random row effects. The regression coefficients βj may be further as random effects and
regressed against traits; please see about.traits for further information on this.

For the response, a variation partitioning of the linear is performed by calculating the variance due
to component in ηij and then rescaling them to ensure that they sum to one. The general details
of this type of variation partitioning is given in Ovaskainen et al., (2017); see also Nakagawa and
Schielzeth (2013) for R-squared and proportion of variance explained in the case of generalized
linear mixed model. In brief, for response j = 1, . . . , p: 1) the variance due to the X covariates
and intercept is given by the variance of β0j + x>

i βj calculated across the n rows; 2) the variance
due the latent variables is given by the diagonal elements of θ>j θj ; 3) the variance due to (all)
the random effects is given by variance of αi calculated across the n rows for fixed row effects
(row.eff = "fixed"), and given by the (sum of the) variance σ2

α for random row effects (row.eff
= "random"). After scaling, we can then obtain the proportion of variance for each response which
is explained by the variance components. These proportions are calculated for each MCMC sample
and then acrossed them to calculate a posterior mean variance partitioning.

If groupX is supplied, the variance due to the X covariates is done based on subsets of X variables
(including the intercept) as identified by codegroupX, and then rescaled correspondingly. This is
useful if one was to, for example, quantify the proportion of variation in each species which is
explained by each X covariate.

If a fitted model also containing traits, which are included to help explain/mediate differences in
species environmental responses, then the function calculates R2 value for the proportion of vari-
ance in the X variables which is explained by the traits. In brief, this is calculated based the cor-
relation between β0j + x>

i βj and τ0j + x>
i τj , where τ0j and τj are the “predicted" values of the

species coefficients based on values i.e., τ0j = κ01 + traits>j κ1 and τjk = κ0k + traits>j κk for
element k in τj .

Value

A list containing the following components if applicable:



42 calc.varpart

varpart.X Vector containing the proportion of variance (in the linear predictor) for each
response which is explained by X.

varpart.lv Vector containing the proportion of variance (in the linear predictor) for each
response which is explained by the latent variables.

varpart.row Vector containing the proportion of variance (in the linear predictor) for each
response which is explained by the row effects.

R2.traits Vector containing the proportion of variance due to the covariates for each re-
sponse, which can be explained by traits for each response.

Warnings

There is considerable controversy over exactly what quantities such as R-squared and proportion
of variance explained are in the case mixed models and latent variable models, and how they can
interpreted e.g., what is considered a high value for the proportion of variance by X variables, is it
consistent with whether the coefficients are significantly different from zero or not; see for instance
R2 controversy.

When reporting these values, researchers should be at least aware of this and that there are multiple
ways of manufacturing such quantities with no single best approach e.g., using relative changes in
trace of the residual covariance matrix, relative changes in marginal and conditional log-likelihoods
are other possible approaches.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References

• Nakagawa, S., and Schielzeth, H. (2013). A general and simple method for obtaining R2 from
generalized linear mixed-effects models. Methods in Ecology and Evolution 4, 133-142.

• Ovaskainen, et al. (2017). How to make more out of community data? A conceptual frame-
work and its implementation as models and software. Ecology Letters 20, 561-576.

• Hui et al. (2014). Model-based approaches to unconstrained ordination. Methods in Ecology
and Evolution, 6, 399-411.

• Warton et al. (2015). So Many Variables: Joint Modeling in Community Ecology. Trends in
Ecology and Evolution, 30, 766-779.

Examples

## Not run:
library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
X <- scale(spider$x)
n <- nrow(y)
p <- ncol(y)

## NOTE: The values below MUST NOT be used in a real application;

https://stats.stackexchange.com/questions/111150/calculating-r2-in-mixed-models-using-nakagawa-schielzeths-2013-r2glmm-me
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## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

## Example 1 - model with X variables, two latent variables, and no row effects
spiderfit_nb <- boral(y, X = X, family = "negative.binomial",

lv.control = list(num.lv = 2),
save.model = TRUE, mcmc.control = example_mcmc_control,
model.name = testpath)

## Partition variance for each species into that explained by covariates
## and by the latent variables
dovar <- calc.varpart(spiderfit_nb)

## Consider the intercept and first two covariates in X as one group,
## and remaining four covariates in X as another group,
## then partition variance for each species based on these groups.
dovar <- calc.varpart(spiderfit_nb, groupX = c(1,1,1,2,2,2,2))

## Example 2 - model fitted to count data, no site effects, and
## two latent variables, plus traits included to explain environmental responses
data(antTraits)
y <- antTraits$abun
X <- as.matrix(scale(antTraits$env))
## Include only traits 1, 2, and 5
traits <- as.matrix(antTraits$traits[,c(1,2,5)])
example_which_traits <- vector("list",ncol(X)+1)
for(i in 1:length(example_which_traits))

example_which_traits[[i]] <- 1:ncol(traits)
## Just for fun, the regression coefficients for the second column of X,
## corresponding to the third element in the list example_which_traits,
## will be estimated separately and not regressed against traits.
example_which_traits[[3]] <- 0

fit_traits <- boral(y, X = X, traits = traits, which.traits = example_which_traits,
family = "negative.binomial", mcmc.control = example_mcmc_control,
save.model = TRUE, model.name = testpath)

## Partition variance for each species due to covariates in X
## and latent variables. Also calculate proportion of variance
## due to the covariates which can be explained by traits
dovar <- calc.varpart(fit_traits)

## End(Not run)
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coefsplot Caterpillar plots of the regression coefficients from a fitted model

Description

Stable
Constructs horizontal line plot (point estimate and HPD intervals), otherwise known as "caterpillar
plots", for the column-specific regression coefficients corresponding to a covariate in X fitted in the
model.

Usage

coefsplot(covname, x, labely = NULL, est = "median", ...)

Arguments

covname The name of one of the covariates in the fitted model. That is, it must be a char-
acter vector corresponding to one of the elements in colnames(x)$X.coefs.median.

x An object for class "boral".
labely Controls the labels on the y-axis for the line plot. If it is not NULL, then it must

be a vector either of length 1 or the same length as the number of columns in the
y in the fitted boral object. In the former, it is treated as the y-axis label. In the
latter, it is used in place of the column names of y to label each line. Defaults to
NULL, in which the each line in the plot is labeled according to the columns of y,
or equivalently rownames(x$X.coefs.median).

est A choice of either the posterior median (est = "median") or posterior mean
(est = "mean"), which are then used as the point estimates in the lines. Default
is posterior median.

... Additional graphical options to be included in. These include values for
cex,cex.lab,cex.axis,cex.main,lwd, and so on.

Details

For each species (column of y), the horizontal line or "caterpillar" is constructed by first marking
the point estimate (posterior mean or median) with an "x" symbol. Then the line is construed
based on the lower and upper limits of the highest posterior density (HPD) intervals as found in
x$hpdintervals. By default these intervals of 95% HPD intervals. To complete the plot, a vertical
dotted line is drawn to denote the zero value. All HPD intervals that include zero are colored gray,
while HPD intervals that exclude zero are colored black.

The graph is probably better explained by, well, plotting it using the toy example below =P

Thanks to Robert O’Hara for suggesting and providing the original code for this function.

Value

If SSVS was applied individually to each coefficient of X when fitting the model, then the posterior
probabilities of including the specified covariate are printed out i.e.,
those from x$ssvs.indcoefs.mean.
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Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

See Also

caterplot from the mcmcplots package for other, sexier caterpillar plots.

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
n <- nrow(y)
p <- ncol(y)

X <- scale(spider$x)
spiderfit_nb <- boral(y, X = X, family = "negative.binomial",

lv.control = list(num.lv = 2), mcmc.control = example_mcmc_control,
model.name = testpath)

## Do separate line plots for all the coefficients of X
par(mfrow=c(2,3), mar = c(5,6,1,1))
sapply(colnames(spiderfit_nb$X), coefsplot,

spiderfit_nb)

## End(Not run)

create.life Stable Simulate a Multivariate Response Matrix

Description

Simulate a multivariate response matrix, given parameters such as but not necessarily all of: family,
number of latent variables and related coefficients, an matrix of explanatory variables and related
coefficients, row effects, cutoffs for cumulative probit regression of ordinal responses.
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Usage

create.life(true.lv = NULL, lv.coefs,
lv.control = list(num.lv = 0, type = "independent",
lv.covparams = NULL, distmat = NULL),
X = NULL, X.coefs = NULL,
traits = NULL, traits.coefs = NULL, family, row.eff = "none",
row.params = NULL, row.ids = NULL, offset = NULL,
trial.size = 1, cutoffs = NULL, powerparam = NULL,
manual.dim = NULL, save.params = FALSE)

## S3 method for class 'boral'
simulate(object, nsim = 1, seed = NULL, new.lvs = FALSE, distmat = NULL,

est = "median", ...)

Arguments

object An object of class "boral".
nsim Number of multivariate response matrices to simulate. Defaults to 1.
seed Seed for dataset simulation. Defaults to NULL, in which case no seed is set.
new.lvs If FALSE, then true latent variables are obtained from the object. If TRUE, then

new true latent variables are generated.
distmat A distance matrix required to calculate correlations across sites when a non-

independent correlation structure on the latent variables is imposed, when new.lvs
= TRUE and object$lv.type != "independent".

est A choice of either the posterior median (est == "median") or posterior mean
(est == "mean"), which are then treated as estimates and the fitted values are
calculated from. Default is posterior median.

true.lv A matrix of true latent variables. With multivariate abundance data in ecology
for instance, each row corresponds to the true site ordination coordinates. If
supplied, then simulation is based of these true latent variables. If NULL, then
the function looks to the argument lv.control to see what to do. Defaults to
NULL.

lv.coefs A matrix containing column-specific intercepts, latent variable coefficients re-
lating to true.lv, and dispersion parameters.

lv.control This argument is utilized if true.lv = NULL, in which case the function uses
this argument to determine how to simulate new, true latent variables. A list
(currently) with the following arguments:

• num.lv: which specifies the number of true latent variables to generate.
Defaults to 0.

• type: which specifies the type the correlation structure of the latent vari-
ables (across sites). Defaults to independence correlation structure.

• lv.covparams: which is a vector containing one or two elements required
if parameterizing a non-independence spatial correlation structure of the
latent variables.
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• distmat: which a distance matrix required to calculate correlations across
sites when a non-independence correlation structure on the latent variables
is imposed.

Please see about.lvs for more information.

X An model matrix of covariates, which can be included as part of the data gen-
eration. Defaults to NULL, in which case no model matrix is used. No intercept
column should be included in X.

X.coefs The coefficients relating to X. Defaults to NULL. This argument needs to be sup-
plied if X is supplied and no traits are supplied.

traits A model matrix of species traits, which can be included as part of the model.
Defaults to NULL, in which case no matrix was used. No intercept column should
be included in traits, as it is included automatically.

traits.coefs A matrix of coefficients that are used to generate "new" column-specific inter-
cepts and X.coefs. The number of rows should equal to (ncol(X)+1) and the
number of columns should equal to (ncol(traits)+2).
How this argument works is as follows: when both traits and traits.coefs
are supplied, then new column-specific intercepts (i.e. the first column of lv.coefs
is overwritten) are generated by simulating from a normal distribution with mean
equal to
crossprod(c(1,traits),traits.coefs[1,1:(ncol(traits.coefs)-1)]) and
standard deviation
traits.coefs[1,ncol(traits.coefs)]. In other words, the last column of
trait.coefs provides the standard deviation of the normal distribution, with
the other columns being the regression coefficients in the mean of the normal
distribution. Analogously, new X.coefs are generated in the same manner us-
ing the remaining rows of trait.coefs. Please see about.traits for more
information.
It is important that highlight then with in this data generation mechanism, the
new column-specific intercepts and X.coefs are now random effects, being
drawn from a normal distribution.
Defaults to NULL, in conjuction with traits = NULL.

family Either a single element, or a vector of length equal to the number of columns
in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial" (with log link), "normal" (with identity link), "lnormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression), "ztpoisson" (zero truncated Poisson with log link), "ztnegative.binomial"
(zero truncated negative binomial with log link).
Please see about.distributions for information on distributions available in
boral overall.

row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),
random effects ("random") or not included ("none") in the fitted model. If fixed
effects, then for parameter identifiability the first row effect is set to zero, which
analogous to acting as a reference level when dummy variables are used. If
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random effects, they are drawn from a normal distribution with mean zero and
standard deviation given by row.params. Defaults to "none".

row.params Parameters corresponding to the row effect from the fitted model. If
row.eff = "fixed", then these are the fixed effects and should have length
equal to the number of columns in y. If row.eff = "random", then this is the
standard deviation for the random effects normal distribution.
If row.eff = "none", then this argument is ignored.

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (i, j) indicates to the cluster ID of row i in y for random effect
eqnj; please see boral for details. Defaults to NULL, so that if row.params =
NULL then the argument is ignored, otherwise if row.params is supplied then
row.ids = matrix(1:nrow(y),ncol = 1) i.e., a single, row effect unique to
each row. An internal check is done to see row.params and row.ids are con-
sistent in terms of arguments supplied.

offset A matrix with the same dimensions as the response matrix y, specifying an a-
priori known component to be included in the linear predictor during fitting.
Defaults to NULL.

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

cutoffs A vector of common common cutoffs for proportional odds regression when any
of family is ordinal. They should be increasing order. Defaults to NULL.

powerparam A common power parameter for tweedie regression when any of family is
tweedie. Defaults to NULL.

manual.dim A vector of length 2, containing the number of rows (n) and columns (p) for the
multivariate response matrix. This is a "backup" argument only required when
create.life can not determine how many rows or columns the multivariate
response matrix should be.

save.params If save.params = TRUE, then all parameters provided as input and/or generated
(e.g. when traits and traits.coefs are supplied then X.coefs is generated
internally; please see traits.coefs argument above) are returned, in addition
to the simulated multivariate response matrix. Defaults to FALSE.

... Not used.

Details

create.life gives the user full capacity to control the true parameters of the model from which the
multivariate responses matrices are generated from. If true.lv is supplied, then the data generation
mechanism is based on this. If true.lv = NULL, then the function looks to lv.control to determine
whether and how the true latent variables are to be simulated.

simulate makes use of the generic function of the same name in R: it takes a fitted model, treats ei-
ther the posterior medians and mean estimates from the model as the true parameters, and generates
response matrices based off that.
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Value

If create.life is used, then: 1) if save.params = FALSE, a n by p multivariate response matrix
is returned only, 2) if save.params = TRUE, then a list containing the element resp which is a n
times p multivariate response matrix, as well as other elements for the parameters used in the true
model, e.g. true.lv,lv.coefs = lv.coefs,traits.coef, is returned.

If simulate is used, then a three dimensional array of dimension n by p by nsim is returned. The
same latent variables can be used each time (new.lvs = FALSE), or new true latent variables can be
generated each time (new.lvs = TRUE).

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

See Also

boral for the default function for model fitting.

Examples

## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

## Example 1a - Simulate a response matrix of normally distributed data
library(mvtnorm)

## 30 rows (sites) with two latent variables
true.lv <- rbind(rmvnorm(n=15,mean=c(1,2)),rmvnorm(n=15,mean=c(-3,-1)))
## 30 columns (species)
lv.coefs <- cbind(matrix(runif(30*3),30,3),1)

X <- matrix(rnorm(30*4),30,4)
## 4 explanatory variables
X.coefs <- matrix(rnorm(30*4),30,4)

simy <- create.life(true.lv = true.lv, lv.coefs = lv.coefs,
X = X, X.coefs = X.coefs, family = "normal")

## Not run:
fit.boral <- boral(simy, X = X, family = "normal", lv.control = list(num.lv = 2),

mcmc.control = example_mcmc_control, model.name = testpath)

summary(fit.boral)

## End(Not run)
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## Example 1b - Include a nested random row effect
## 30 subregions nested within six regions
example_row_ids <- cbind(1:30, rep(1:6,each=5))
## Subregion has a small std deviation; region has a larger one
true.row.sigma <- list(ID1 = 0.5, ID2 = 2)

simy <- create.life(true.lv = true.lv, lv.coefs = lv.coefs,
X = X, X.coefs = X.coefs, row.eff = "random",
row.params = true.row.sigma, row.ids = example_row_ids, family = "normal",
save.params = TRUE)

## Example 1c - Same as example 1b except new, true latent variables are generated
simy <- create.life(true.lv = NULL, lv.coefs = lv.coefs,

X = X, X.coefs = X.coefs, row.eff = "random",
row.params = true.row.sigma, row.ids = example_row_ids, family = "normal",
save.params = TRUE)

## Example 1d - Same as example 1a except new, true latent variables are generated
## with a non-independent correlation structure using a fake distance matrix
makedistmat <- as.matrix(dist(1:30))
simy <- create.life(true.lv = NULL, lv.coefs = lv.coefs,

lv.control = list(num.lv = 2, type = "exponential", lv.covparams = 5,
distmat = makedistmat),

X = X, X.coefs = X.coefs, row.eff = "random",
row.params = true.row.sigma, row.ids = example_row_ids, family = "normal",
save.params = TRUE)

## Example 2 - Simulate a response matrix of ordinal data
## 30 rows (sites) with two latent variables
true.lv <- rbind(rmvnorm(15,mean=c(-2,-2)),rmvnorm(15,mean=c(2,2)))
## 10 columns (species)
true.lv.coefs <- rmvnorm(10,mean = rep(0,3));
## Cutoffs for proportional odds regression (must be in increasing order)
true.ordinal.cutoffs <- seq(-2,10,length=10-1)

simy <- create.life(true.lv = true.lv, lv.coefs = true.lv.coefs,
family = "ordinal", cutoffs = true.ordinal.cutoffs, save.params = TRUE)

## Not run:
fit.boral <- boral(y = simy$resp, family = "ordinal", lv.control = list(num.lv = 2),

mcmc.control = example_mcmc_control, model.name = testpath)

## End(Not run)

## Not run:
## Example 3 - Simulate a response matrix of count data based off
## a fitted model involving traits (ants data from mvabund)
library(mvabund)
data(antTraits)
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y <- antTraits$abun
X <- as.matrix(antTraits$env)
## Include only traits 1, 2, and 5, plus an intercept
traits <- as.matrix(antTraits$traits[,c(1,2,5)])
## Please see help file for boral regarding the use of which.traits
example_which_traits <- vector("list",ncol(X)+1)
for(i in 1:length(example_which_traits))

example_which_traits[[i]] <- 1:ncol(traits)

fit_traits <- boral(y, X = X, traits = traits, which.traits = example_which_traits,
family = "negative.binomial", lv.control = list(num.lv = 2),
mcmc.control = example_mcmc_control, model.name = testpath)

## The hard way
simy <- create.life(true.lv = fit_traits$lv.mean,

lv.coefs = fit_traits$lv.coefs.median, X = X,
X.coefs = fit_traits$X.coefs.median, traits = traits,
traits.coefs = fit_traits$traits.coefs.median, family = "negative.binomial")

## The easy way, using the same latent variables as the fitted model
simy <- simulate(object = fit_traits)

## The easy way, generating new latent variables
simy <- simulate(object = fit_traits, new.lvs = TRUE)

## End(Not run)

## Example 4 - simulate Bernoulli data, based on a model with two latent variables,
## no site variables, with two traits and one environmental covariates
## This example is a proof of concept that traits can used
## to explain environmental responses
library(mvtnorm)

n <- 100; s <- 50
X <- as.matrix(scale(1:n))
colnames(X) <- c("elevation")

traits <- cbind(rbinom(s,1,0.5), rnorm(s))
## one categorical and one continuous variable
colnames(traits) <- c("thorns-dummy","SLA")

simfit <- list(lv.coefs = cbind(rnorm(s), rmvnorm(s, mean = rep(0,2))),
lv.control = list(num.lv = 2, type = "independent"),
traits.coefs = matrix(c(0.1,1,-0.5,1,0.5,0,-1,1), 2, byrow = TRUE))

rownames(simfit$traits.coefs) <- c("beta0","elevation")
colnames(simfit$traits.coefs) <- c("kappa0","thorns-dummy","SLA","sigma")

simy <- create.life(lv.control = simfit$lv.control, lv.coefs = simfit$lv.coefs,
X = X, traits = traits, traits.coefs = simfit$traits.coefs,
family = "binomial")
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## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!

example_which_traits <- vector("list",ncol(X)+1);
for(i in 1:length(example_which_traits))

example_which_traits[[i]] <- 1:ncol(traits)
fit_traits <- boral(y = simy, X = X, traits = traits,

which.traits = example_which_traits, family = "binomial",
lv.control = list(num.lv = 2), save.model = TRUE,
mcmc.control = example_mcmc_control, model.name = testpath)

## End(Not run)

ds.residuals Dunn-Smyth Residuals for a fitted model

Description

Stable
Calculates the Dunn-Smyth residuals for a fitted model and, if some of the responses are ordinal, a
confusion matrix between predicted and true levels.

Usage

ds.residuals(object, est = "median")

Arguments

object An object for class "boral".

est A choice of either the posterior median (est == "median") or posterior mean
(est == "mean"), which are then treated as parameter estimates and the residuals
are calculated from. Default is posterior median.

Details

Details regarding Dunn-Smyth residuals, based on the randomized quantile residuals of Dunn and
Smyth (1996), can be found in plot.manyglm function in the mvabund package (Wang et al., 2012)
where they are implemented in all their glory. Due their inherent stochasticity, Dunn-Smyth resid-
uals will be slightly different each time this function is run. As with other types of residuals,
Dunn-Smyth residuals can be used in the context of residual analysis.

For ordinal responses, a single confusion matrix between the predicted levels (as based on the class
with the highest probability) and true levels is aso returned. The table pools the results over all
columns assumed to be ordinal.

The Dunn-Smyth residuals are calculated based on a point estimate of the parameters, as determined
by the argument est. A fully Bayesian approach would calculate the residuals by averaging over
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the posterior distribution of the parameters i.e., ergodically average over the MCMC samples. In
general however, the results (as in the trends seen in residual analysis) from either approach should
be very similar.

Value

A list containing agree.ordinal which is a single confusion matrix for ordinal columns, and
residuals which contains Dunn-Smyth residuals.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References

• Dunn, P. K., and Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computa-
tional and Graphical Statistics, 5, 236-244.

• Wang, Y. et al. (2012). mvabund-an R package for model-based analysis of multivariate
abundance data. Methods in Ecology and Evolution, 3, 471-474.

See Also

plot.boral for constructing residual analysis plots directly; fitted.boral which calculated fitted
values from a model.

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun

spiderfit_nb <- boral(y, family = "negative.binomial", lv.control = list(num.lv = 2),
row.eff = "fixed", mcmc.control = example_mcmc_control, model.name = testpath)

ds.residuals(spiderfit_nb)

## End(Not run)
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fitted.boral Extract Model Fitted Values for an boral object

Description

Stable
Calculated the predicted mean responses based on the fitted model, by using the posterior medians
or means of the parameters.

Usage

## S3 method for class 'boral'
fitted(object, est = "median", linear.predictor = FALSE, ...)

Arguments

object An object of class "boral".

est A choice of either the posterior median (est == "median") or posterior mean
(est == "mean"), which are then treated as estimates and the fitted values are
calculated from. Default is posterior median.

linear.predictor

Determines the scale on which to return the fitted values. When set to TRUE, it
returns the fitted mean values on the linear predictor scale. When set to FALSE,
which is the defaul behavior, the fitted mean values are on the response scale.
Note things are slightly more complicated for zero truncated distributions be-
cause, the log-link connects the mean of the untruncated distribution to the lin-
ear predictor. Therefore if linear.predictor = TRUE, then the linear predictor
is returned. But if linear.predictor = FALSE, then actual fitted mean value is
returned.

... Not used.

Details

This fitted values here are calculated based on a point estimate of the parameters, as determined by
the argument est. A fully Bayesian approach would calculate the fitted values by averaging over
the posterior distribution of the parameters i.e., ergodically average over the MCMC samples. For
simplicity and speed though (to avoid generation of a large number of predicted values), this is not
implemented.

Value

A list containing ordinal.probs which is an array with dimensions (no. of rows of y) x (no. of
rows of y) x (no. of levels) containing the predicted probabilities for ordinal columns, and out
which is a matrix of the same dimension as the original response matrix y containing the fitted
values. For ordinal columns, the "fitted values" are defined as the level/class that had the highest
fitted probability.
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Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

See Also

plot.boral which uses the fitted values calculated from this function to construct plots for residual
analysis; ds.residuals for calculating the Dunn-Smyth residuals for a fitted model.

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun

spiderfit_nb <- boral(y, family = "negative.binomial", lv.control = list(num.lv = 2),
row.eff = "fixed", mcmc.control = example_mcmc_control, model.name = testpath)

fitted(spiderfit_nb)

## End(Not run)

get.dic Extract Deviance Information Criterion for a fitted model

Description

Stable

Calculates the Deviance Information Criterion (DIC) for a model fitted using JAGS.

Usage

get.dic(jagsfit)

Arguments

jagsfit The jags.model component of the output, from a model fitted using boral with
save.model = TRUE.
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Details

Details regarding the Deviance Information Criterion may be found in (Spiegelhalter et al., 2002;
Ntzoufras, 2011; Gelman et al., 2013). The DIC here is based on the conditional log-likelihood i.e.,
the latent variables (and row effects if applicable) are treated as "fixed effects". A DIC based on the
marginal likelihood is obtainable from get.more.measures, although this requires a much longer
time to compute. For models with overdispered count data, conditional DIC may not perform as
well as marginal DIC (Millar, 2009)

Value

DIC value for the jags model.

Note

This function and consequently the DIC value is automatically returned when a model is fitted using
boral with calc.ics = TRUE.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References

• Gelman et al. (2013). Bayesian data analysis. CRC press.

• Millar, R. B. (2009). Comparison of hierarchical Bayesian models for overdispersed count
data using DIC and Bayes’ factors. Biometrics, 65, 962-969.

• Ntzoufras, I. (2011). Bayesian modeling using WinBUGS (Vol. 698). John Wiley & Sons.

• Spiegelhalter, et al. (2002). Bayesian measures of model complexity and fit. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 64, 583-639.

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
n <- nrow(y)
p <- ncol(y)

spiderfit_nb <- boral(y, family = "negative.binomial", lv.control = list(num.lv = 2),
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save.model = TRUE, calc.ics = TRUE, mcmc.control = example_mcmc_control,
model.name = testpath)

spiderfit_nb$ics ## DIC returned as one of several information criteria.

## End(Not run)

get.enviro.cor Extract covariances and correlations due to shared environmental re-
sponses

Description

Stable

Calculates the correlation between columns of the response matrix, due to similarities in the re-
sponse to explanatory variables i.e., shared environmental response

Usage

get.enviro.cor(object, est = "median", prob = 0.95)

Arguments

object An object for class "boral".

est A choice of either the posterior median (est = "median") or posterior mean
(est = "mean"), which are then treated as estimates and the fitted values are
calculated from. Default is posterior median.

prob A numeric scalar in the interval (0,1) giving the target probability coverage of
the intervals, by which to determine whether the correlations are "significant".
Defaults to 0.95.

Details

In both independent response and correlated response models, where the each of the columns of
the response matrix y are fitted to a set of explanatory variables given by X, the covariance and thus
between two columns j and j′ due to similarities in their response to the model matrix is calculated
based on the linear predictors x>

i βj and x>
i βj′), where βj are column-specific coefficients relating

to the explanatory variables.

For multivariate abundance data, the correlation calculated by this function can be interpreted as
the correlation attributable to similarities in the environmental response between species. Such
correlation matrices are discussed and found in Ovaskainen et al., (2010), Pollock et al., 2014.
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Value

A list with the following components:

cor, cor.lower, cor.upper

A set of p × p correlation matrices, containing either the posterior median or
mean estimate plus lower and upper limits of the corresponding 95% highest
posterior interval.

sig.cor A p× p correlation matrix containing only the “significant" correlations whose
95% highest posterior interval does not contain zero. All non-significant corre-
lations are set to zero.

cov A p× p covariance matrix.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References

• Ovaskainen et al. (2010). Modeling species co-occurrence by multivariate logistic regression
generates new hypotheses on fungal interactions. Ecology, 91, 2514-2521.

• Pollock et al. (2014). Understanding co-occurrence by modelling species simultaneously with
a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution, 5, 397-406.

See Also

get.residual.cor, which calculates the residual correlation matrix for models involving latent
variables.

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
library(corrplot) ## For plotting correlations
data(spider)
y <- spider$abun
X <- scale(spider$x)
n <- nrow(y)
p <- ncol(y)

spiderfit_nb <- boral(y, X = X, family = "negative.binomial",
save.model = TRUE, mcmc.control = example_mcmc_control,
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model.name = testpath)

enviro.cors <- get.enviro.cor(spiderfit_nb)

corrplot(enviro.cors$sig.cor, title = "Shared response correlations",
type = "lower", diag = FALSE, mar = c(3,0.5,2,1), tl.srt = 45)

## End(Not run)

get.hpdintervals Highest posterior density intervals for a fitted model

Description

Stable
Calculates the lower and upper bounds of the highest posterior density intervals for parameters and
latent variables in a fitted model.

Usage

get.hpdintervals(y, X = NULL, traits = NULL, row.ids = NULL,
fit.mcmc, lv.control, prob = 0.95, num.lv = NULL)

Arguments

y The response matrix that the model was fitted to.

X The model matrix used in the model. Defaults to NULL, in which case it is as-
sumed no model matrix was used.

traits The matrix of species traits used in the model. Defaults to NULL, in which case
it is assumed no traits were included.

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (i, j) indicates to the cluster ID of row i in y for random effect
eqnj; please see boral for details. Defaults to NULL, in which case iti assumed
no random effects were included in the model.

fit.mcmc All MCMC samples for the fitted model. These can be extracted by fitting a
model using boral with save.model = TRUE, and then applying get.mcmcsamples(fit).

lv.control A list (currently) with the following arguments:

• num.lv: which specifies the number of true latent variables to generate.
Defaults to 0.

• type: which specifies the type the correlation structure of the latent vari-
ables (across sites). Defaults to independence correlation structure.

• distmat: which a distance matrix required to calculate correlations across
sites when a non-independence correlation structure on the latent variables
is imposed.
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Please see about.lvs for more information.

prob A numeric scalar in the interval (0,1) giving the target probability coverage of
the intervals. Defaults to 0.95.

num.lv Old argument superceded by lv.control. Defaults to NULL and ignored.

Details

The function uses the HPDinterval function from the coda package to obtain the HPD intervals.
See HPDinterval for details regarding the definition of the HPD interval.

Value

A list containing the following components where applicable:

lv.coefs A three dimensional array giving the lower lv.coefs[,,"lower"] and upper
lv.coefs[,,"upper"] bounds of the HPD intervals for the column-specific
intercepts, latent variable coefficients, and dispersion parameters if appropriate.

lv A three dimensional array giving the lv.coefs[,,"lower"] and upper lv.coefs[,,"upper"]
bounds of the HPD intervals for the latent variables.

lv.covparams A matrix giving the lower and upper bounds of the HPD intervals for the param-
eters characterizing the correlation structure of the latent variables when they
are assumed to be non-independent across rows.

row.coefs A list with each element being a matrix giving the lower and upper bounds of
the HPD intervals for row effects. The number of elements in the list should
equal the number of row effects included in the model i.e., ncol(row.ids).

row.sigma A list with each element being a vector giving the lower and upper bounds of
the HPD interval for the standard deviation of the normal distribution for the
row effects. The number of elements in the list should equal the number of row
effects included in the model i.e., ncol(row.ids).

X.coefs A three dimensional array giving the lower lv.coefs[,,"lower"] and upper
lv.coefs[,,"upper"] bounds of the HPD intervals for coefficients relating to
X.

traits.coefs A three dimensional array giving the lower lv.coefs[,,"lower"] and upper
lv.coefs[,,"upper"] bounds of the HPD intervals for coefficients and stan-
dard deviation relating to the traits matrix traits.

cutoffs A matrix giving the lower and upper bounds of the HPD intervals for common
cutoffs in proportional odds regression.

powerparam A vector giving the lower and upper bounds of the HPD interval for common
power parameter in tweedie regression.

Warnings

• HPD intervals tend to be quite wide, and inference is somewhat tricky with them. This is
made more difficult by the multiple comparison problem due to the construction one interval
for each parameter!
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• Be very careful with interpretation of coefficients and HPD intervals if different columns of y
have different distributions!

• HPD intervals for the cutoffs in proportional odds regression may be poorly estimated for
levels with few data.

Note

boral fits the model and returns the HPD intervals by default.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
n <- nrow(y)
p <- ncol(y)

## Example 1 - model with two latent variables, site effects,
## and no environmental covariates
spiderfit_nb <- boral(y, family = "negative.binomial", lv.control = list(num.lv = 2),

row.eff = "fixed", save.model = TRUE, mcmc.control = example_mcmc_control,
model.name = testpath)

## Returns a list with components corresponding to values described above.
spiderfit_nb$hpdintervals

## Example 2 - model with two latent variable, site effects,
## and environmental covariates
spiderfit_nb2 <- boral(y, X = spider$x, family = "negative.binomial",

lv.control = list(num.lv = 2), row.eff = "fixed", save.model = TRUE,
mcmc.control = example_mcmc_control, model.name = testpath)

## Returns a list with components corresponding to values described above.
spiderfit_nb2$hpdintervals

## End(Not run)
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get.mcmcsamples Extract MCMC samples from models

Description

Stable
Extract the MCMC samples from fitted models, taking into account the burnin period and thinning.

Usage

get.mcmcsamples(object)

Arguments

object An object for class "boral".

Details

For the function to work, the JAGS model file (containing the MCMC samples from the call to
JAGS) has to have been saved when fitting the model, that is, save.model = TRUE. The function
will throw an error if it cannot find the the JAGs model file.

Value

A matrix containing the MCMC samples, with the number of rows equal to the number of MCMC
samples after accounting the burnin period and thinning (i.e., number of rows = (n.iteration -
n.burnin)/n.thin), and the number of columns equal to the number of parameters in the fitted model.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
library(corrplot) ## For plotting correlations
data(spider)
y <- spider$abun
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X <- scale(spider$x)
n <- nrow(y)
p <- ncol(y)

spiderfit_nb <- boral(y, X = X, family = "negative.binomial",
mcmc.control = example_mcmc_control, model.name = testpath,
save.model = TRUE)

mcmcsamps <- get.mcmcsamples(spiderfit_nb)

## End(Not run)

get.measures Information Criteria for models

Description

Deprecated
Calculates some information criteria for a fitted model, which could be used for model selection.
WARNING: As of version 1.6, this function is no longer updated!

Usage

get.measures(y, X = NULL, family, trial.size = 1, row.eff = "none",
row.ids = NULL, offset = NULL, num.lv, fit.mcmc)

Arguments

y The response matrix that the model was fitted to.
X The model matrix used in the model. Defaults to NULL, in which case it is as-

sumed no model matrix was used.
family Either a single element, or a vector of length equal to the number of columns

in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial" (with log link), "normal" (with identity link), "lnormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression), "ztpoisson" (zero truncated Poisson with log link), "ztnegative.binomial"
(zero truncated negative binomial with log link).
Please see about.distributions for information on distributions available in
boral overall.

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.
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row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),
random effects ("random") or not included ("none") in the fitted model. If fixed
effects, then for parameter identifiability the first row effect is set to zero, which
analogous to acting as a reference level when dummy variables are used. If
random effects, they are drawn from a normal distribution with mean zero and
estimated standard deviation. Defaults to "none".

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (i, j) indicates to the cluster ID of row i in y for random effect
eqnj; please see boral for details. Defaults to NULL, so that if row.eff = "none"
then the argument is ignored, otherwise if
row.eff = "fixed" or "random",
then row.ids = matrix(1:nrow(y),ncol = 1) i.e., a single, row effect unique
to each row.

offset A matrix with the same dimensions as the response matrix y, specifying an a-
priori known component to be included in the linear predictor during fitting.
Defaults to NULL.

num.lv The number of latent variables used in the model.

fit.mcmc All MCMC samples for the fitted model. These can be extracted by fitting a
model using boral with save.model = TRUE, and then applying get.mcmcsamples(fit).

Details

The following information criteria are currently calculated, when permitted: 1) Widely Applicable
Information Criterion (WAIC, Watanabe, 2010) based on the conditional log-likelihood; 2) ex-
pected AIC (EAIC, Carlin and Louis, 2011); 3) expected BIC (EBIC, Carlin and Louis, 2011); 4)
AIC (using the marginal likelihood) evaluated at the posterior median; 5) BIC (using the marginal
likelihood) evaluated at the posterior median.

1) WAIC has been argued to be more natural and extension of AIC to the Bayesian and hierarchical
modeling context (Gelman et al., 2013), and is based on the conditional log-likelihood calculated at
each of the MCMC samples.

2 & 3) EAIC and EBIC were suggested by (Carlin and Louis, 2011). Both criteria are of the form
-2*mean(conditional log-likelihood) + penalty*(no. of parameters in the model), where the mean
is averaged all the MCMC samples. EAIC applies a penalty of 2, while EBIC applies a penalty of
log(n).

4 & 5) AIC and BIC take the form -2*(marginal log-likelihood) + penalty*(no. of parameters
in the model), where the log-likelihood is evaluated at the posterior median. If the parameter-
wise posterior distributions are unimodal and approximately symmetric, these will produce similar
results to an AIC and BIC where the log-likelihood is evaluated at the posterior mode. EAIC applies
a penalty of 2, while EBIC applies a penalty of log(n).

Intuitively, comparing models with and without latent variables (using information criteria such as
those returned) amounts to testing whether the columns of the response matrix y are correlated. With
multivariate abundance data for example, where y is a matrix of n sites and p species, comparing
models with and without latent variables tests whether there is any evidence of correlation between
species.
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Please note that criteria 4 and 5 are not calculated all the time. In models where traits are included
in the model (such that the regression coefficients β0j ,βj are random effects), or more than two
columns are ordinal responses (such that the intercepts β0j for these columns are random effects),
then criteria 4 and 5 are will not calculated. This is because the calculation of the marginal log-
likelihood in such cases currently fail to marginalize over such random effects; please see the details
in calc.logLik.lv0 and calc.marglogLik.

Value

A list with the following components:

waic WAIC based on the conditional log-likelihood.

eaic EAIC based on the mean of the conditional log-likelihood.

ebic EBIC based on the mean of the conditional log-likelihood.
all.cond.logLik

The conditional log-likelihood evaluated at all MCMC samples. This is done
via repeated application of calc.condlogLik.

cond.num.params

Number of estimated parameters used in the fitted model, when all parameters
are treated as "fixed" effects.

do.marglik.ics A boolean indicating whether marginal log-likelihood based information criteria
are calculated.

If do.marglik.ics = TRUE, then we also have:

median.logLik The marginal log-likelihood evaluated at the posterior median.
marg.num.params

Number of estimated parameters used in the fitted model, when all parameters
are treated as "fixed" effects.

aic.median AIC (using the marginal log-likelihood) evaluated at the posterior median.

bic.median BIC (using the marginal log-likelihood) evaluated at the posterior median.

Warning

As of version 1.6, this function is no longer updated!

Using information criterion for variable selection should be done with extreme caution, for two
reasons: 1) The implementation of these criteria are both heuristic and experimental. 2) Deciding
what model to fit for ordination purposes should be driven by the science. For example, it may be
the case that a criterion suggests a model with 3 or 4 latent variables. However, if we interested
in visualizing the data for ordination purposes, then models with 1 or 2 latent variables are far
more appropriate. As an another example, whether or not we include row effects when ordinating
multivariate abundance data depends on if we are interested in differences between sites in terms
of relative species abundance (row.eff = FALSE) or in terms of species composition (row.eff =
"fixed").

Also, the use of information criterion in the presence of variable selection using SSVS is question-
able.
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Note

When a model is fitted using boral with calc.ics = TRUE, then this function is applied and the
information criteria are returned as part of the model output.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References

• Carlin, B. P., and Louis, T. A. (2011). Bayesian methods for data analysis. CRC Press.

• Gelman et al. (2013). Understanding predictive information criteria for Bayesian models.
Statistics and Computing, 1-20.

• Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. The Journal of Machine Learning Research,
11, 3571-3594.

See Also

get.dic for calculating the Deviance Information Criterion (DIC) based on the conditional log-
likelihood; get.more.measures for even more information criteria.

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
n <- nrow(y)
p <- ncol(y)

spiderfit_pois <- boral(y, family = "poisson",
lv.control = list(num.lv = 2), row.eff = "random",
mcmc.control = example_mcmc_control)

spiderfit_pois$ics ## Returns information criteria

spiderfit_nb <- boral(y, family = "negative.binomial",
lv.control = list(num.lv = 2), row.eff = "random",
mcmc.control = example_mcmc_control, model.name = testpath)
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spiderfit_nb$ics ## Returns the information criteria

## End(Not run)

get.more.measures Additional Information Criteria for models

Description

Deprecated
Calculates some information criteria beyond those from get.measures for a fitted model, although
this set of criteria takes much longer to compute! WARNING: As of version 1.6, this function is
longer updated!

Usage

get.more.measures(y, X = NULL, family, trial.size = 1,
row.eff = "none", row.ids = NULL, offset = NULL,
num.lv, fit.mcmc, verbose = TRUE)

Arguments

y The response matrix that the model was fitted to.
X The model matrix used in the model. Defaults to NULL, in which case it is as-

sumed no model matrix was used.
family Either a single element, or a vector of length equal to the number of columns

in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial" (with log link), "normal" (with identity link), "lnormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression), "ztpoisson" (zero truncated Poisson with log link), "ztnegative.binomial"
(zero truncated negative binomial with log link).
Please see about.distributions for information on distributions available in
boral overall.

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),
random effects ("random") or not included ("none") in the fitted model. If fixed
effects, then for parameter identifiability the first row effect is set to zero, which
analogous to acting as a reference level when dummy variables are used. If
random effects, they are drawn from a normal distribution with mean zero and
estimated standard deviation. Defaults to "none".
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row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (i, j) indicates to the cluster ID of row i in y for random effect
eqnj; please see boral for details. Defaults to NULL, so that if row.eff = "none"
then the argument is ignored, otherwise if
row.eff = "fixed" or "random",
then row.ids = matrix(1:nrow(y),ncol = 1) i.e., a single, row effect unique
to each row.

offset A matrix with the same dimensions as the response matrix y, specifying an a-
priori known component to be included in the linear predictor during fitting.
Defaults to NULL.

num.lv The number of latent variables used in the fitted model.

fit.mcmc All MCMC samples for the fitted model. These can be extracted by fitting a
model using boral with save.model = TRUE, and then applying get.mcmcsamples(fit).

verbose If TRUE, a notice is printed every 100 samples indicating progress in calculation
of the marginal log-likelihood. Defaults to TRUE.

Details

Currently, four information criteria are calculated using this function, when permitted: 1) AIC (us-
ing the marginal likelihood) evaluated at the posterior mode; 2) BIC (using the marginal likelihood)
evaluated at the posterior mode; 3) Deviance information criterion (DIC) based on the marginal
log-likelihood; 4) Widely Applicable Information Criterion (WAIC, Watanabe, 2010) based on the
marginal log-likelihood. When uninformative priors are used in fitting models, then the posterior
mode should be approximately equal to the maximum likelihood estimates.

All four criteria require computing the marginal log-likelihood across all MCMC samples. This
takes a very long time to run, since Monte Carlo integration needs to be performed for all MCMC
samples. Consequently, this function is currently not implemented as an argument in main boral
fitting function, unlike get.measures which is available via the calc.ics = TRUE argument.

Moreover, note these criteria are not calculated all the time. In models where traits are included
in the model (such that the regression coefficients β0j ,βj are random effects), or more than two
columns are ordinal responses (such that the intercepts β0j for these columns are random effects),
then these extra information criteria are will not calculated, and the function returns nothing except
a simple message. This is because the calculation of the marginal log-likelihood in such cases
currently fail to marginalize over such random effects; please see the details in calc.logLik.lv0
and calc.marglogLik.

The two main differences between the criteria and those returned from get.measures are:

• The AIC and BIC computed here are based on the log-likelihood evaluated at the posterior
mode, whereas the AIC and BIC from get.measures are evaluated at the posterior median.
The posterior mode and median will be quite close to one another if the component-wise
posterior distributions are unimodal and symmetric. Furthermore, given uninformative priors
are used, then both will be approximate maximum likelihood estimators.

• The DIC and WAIC computed here are based on the marginal log-likelihood, whereas the DIC
and WAIC from get.measures are based on the conditional log-likelihood. Criteria based on
the two types of log-likelihood are equally valid, and to a certain extent, which one to use
depends on the question being answered i.e., whether to condition on the latent variables or



get.more.measures 69

treat them as "random effects" (see discussions in Spiegelhalter et al. 2002, and Vaida and
Blanchard, 2005).

Value

If calculated, then a list with the following components:

marg.aic AIC (using on the marginal log-likelihood) evaluated at posterior mode.

marg.bic BIC (using on the marginal log-likelihood) evaluated at posterior mode.

marg.dic DIC based on the marginal log-likelihood.

marg.waic WAIC based on the marginal log-likelihood.
all.marg.logLik

The marginal log-likelihood evaluated at all MCMC samples. This is done via
repeated application of calc.marglogLik.

num.params Number of estimated parameters used in the fitted model.

Warning

As of version 1.6, this function is no longer updated!

Using information criterion for variable selection should be done with extreme caution, for two
reasons: 1) The implementation of these criteria are both heuristic and experimental. 2) Deciding
what model to fit for ordination purposes should be driven by the science. For example, it may be
the case that a criterion suggests a model with 3 or 4 latent variables. However, if we interested
in visualizing the data for ordination purposes, then models with 1 or 2 latent variables are far
more appropriate. As an another example, whether or not we include row effects when ordinating
multivariate abundance data depends on if we are interested in differences between sites in terms
of relative species abundance (row.eff = FALSE) or in terms of species composition (row.eff =
"fixed").

Also, the use of information criterion in the presence of variable selection using SSVS is question-
able.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References

• Spiegelhalter et al. (2002). Bayesian measures of model complexity and fit. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 64, 583-639.

• Vaida, F., and Blanchard, S. (2005). Conditional Akaike information for mixed-effects mod-
els. Biometrika, 92, 351-370.

• Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. The Journal of Machine Learning Research,
11, 3571-3594.
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See Also

get.measures for several information criteria which take considerably less time to compute, and
are automatically implemented in boral with calc.ics = TRUE.

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
n <- nrow(y)
p <- ncol(y)

spiderfit_nb <- boral(y, family = "negative.binomial", lv.control = list(num.lv = 2),
row.eff = "fixed", save.model = TRUE, calc.ics = TRUE,
mcmc.control = example_mcmc_control, model.name = testpath)

## Extract MCMC samples
fit_mcmc <- get.mcmcsamples(spiderfit_nb)

## NOTE: The following takes a long time to run!
get.more.measures(y, family = "negative.binomial",

num.lv = spiderfit_nb$num.lv, fit.mcmc = fit_mcmc,
row.eff = "fixed", row.ids = spiderfit_nb$row.ids)

## Illustrating what happens in a case where these criteria will
## not be calculated.
data(antTraits)
y <- antTraits$abun
X <- as.matrix(scale(antTraits$env))
## Include only traits 1, 2, and 5
traits <- as.matrix(antTraits$traits[,c(1,2,5)])
example_which_traits <- vector("list",ncol(X)+1)
for(i in 1:length(example_which_traits))

example_which_traits[[i]] <- 1:ncol(traits)

fit_traits <- boral(y, X = X, traits = traits, lv.control = list(num.lv = 2),
which.traits = example_which_traits, family = "negative.binomial",
save.model = TRUE, mcmc.control = example_mcmc_control,
model.name = testpath)

## Extract MCMC samples
fit_mcmc <- get.mcmcsamples(fit_traits)
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get.more.measures(y, X = X, family = "negative.binomial",
num.lv = fit_traits$num.lv, fit.mcmc = fit_mcmc)

## End(Not run)

get.residual.cor Extract residual correlations and precisions from models

Description

Stable
Calculates the residual correlation and precision matrices from models that include latent variables.

Usage

get.residual.cor(object, est = "median", prob = 0.95)

Arguments

object An object for class "boral".

est A choice of either the posterior median (est = "median") or posterior mean
(est = "mean"), which are then treated as estimates and the fitted values are
calculated from. Default is posterior median.

prob A numeric scalar in the interval (0,1) giving the target probability coverage of
the intervals, by which to determine whether the correlations and precisions are
"significant". Defaults to 0.95.

Details

In models with latent variables, the residual covariance matrix is calculated based on the matrix of
latent variables regression coefficients formed by stacking the rows of θj . That is, if we denote
Θ = (θ1 . . .θp)

′, then the residual covariance and hence residual correlation matrix is calculated
based on ΘΘ′.

For multivariate abundance data, the inclusion of latent variables provides a parsimonious method
of accounting for correlation between species. Specifically, the linear predictor,

β0j + x>
i βj + z>i θj

is normally distributed with a residual covariance matrix given by ΘΘ′. A strong residual co-
variance/correlation matrix between two species can then be interpreted as evidence of species
interaction (e.g., facilitation or competition), missing covariates, as well as any additional species
correlation not accounted for by shared environmental responses (see also Pollock et al., 2014, for
residual correlation matrices in the context of Joint Species Distribution Models).

The residual precision matrix (also known as partial correlation matrix, Ovaskainen et al., 2016)
is defined as the inverse of the residual correlation matrix. The precision matrix is often used
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to identify direct or causal relationships between two species e.g., two species can have a zero
precision but still be correlated, which can be interpreted as saying that two species do not directly
interact, but they are still correlated through other species. In other words, they are conditionally
independent given the other species. It is important that the precision matrix does not exhibit the
exact same properties of the correlation e.g., the diagonal elements are not equal to 1. Nevertheless,
relatively larger values of precision imply a stronger direct relationships between two species.

In addition to the residual correlation and precision matrices, the median or mean point estimator

of trace of the residual covariance matrix is returned,
p∑
j=1

[ΘΘ′]jj . Often used in other areas of

multivariate statistics, the trace may be interpreted as the amount of covariation explained by the
latent variables. One situation where the trace may be useful is when comparing a pure LVM versus
a model with latent variables and some predictors (correlated response models) – the proportional
difference in trace between these two models may be interpreted as the proportion of covariation
between species explained by the predictors. Of course, the trace itself is random due to the MCMC
sampling, and so it is not always guranteed to produce sensible answers!

Value

A list with the following components:

cor, cor.lower, cor.upper

A set of p × p correlation matrices, containing either the posterior median or
mean estimate plus lower and upper limits of the corresponding 95% highest
posterior interval.

sig.cor A p× p correlation matrix containing only the “significant" correlations whose
95% highest posterior interval does not contain zero. All non-significant corre-
lations are set to zero.

cov A p× p covariance matrix.
prec, prec.lower, prec.upper

A set of p×p precision matrices, containing either the posterior median or mean
estimate plus lower and upper limits of the corresponding 95% highest posterior
interval.

sig.prec A p × p residual precision matrix containing only the “significant" precisions
whose 95% highest posterior interval does not contain zero. All non-significant
precision are set to zero.

trace The median/mean point estimator of the trace (sum of the diagonal elements) of
the residual covariance matrix.

Note

Residual correlation and precision matrices are reliably modeled only with two or more latent vari-
ables i.e., num.lv > 1 when fitting the model using boral.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>
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References

• Ovaskainen et al. (2016). Using latent variable models to identify large networks of species-
to-species associations at different spatial scales. Methods in Ecology and Evolution, 7, 549-
555.

• Pollock et al. (2014). Understanding co-occurrence by modelling species simultaneously with
a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution, 5, 397-406.

See Also

get.enviro.cor, which calculates the correlation matrix due to similarities in the response to the
explanatory variables (i.e., similarities due to a shared environmental response).

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
library(corrplot) ## For plotting correlations
data(spider)
y <- spider$abun
n <- nrow(y)
p <- ncol(y)

spiderfit_nb <- boral(y, X = spider$x, family = "negative.binomial",
lv.control = list(num.lv = 2), save.model = TRUE,
mcmc.control = example_mcmc_control, model.name = testpath)

res.cors <- get.residual.cor(spiderfit_nb)

corrplot(res.cors$sig.cor, title = "Residual correlations",
type = "lower", diag = FALSE, mar = c(3,0.5,2,1), tl.srt = 45)

## End(Not run)

lvsplot Plot the latent variables from a fitted model

Description

Stable
Construct a 1-D index plot or 2-D scatterplot of the latent variables, and their corresponding coeffi-
cients i.e., a biplot, from a fitted model.
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Usage

lvsplot(x, jitter = FALSE, biplot = TRUE, ind.spp = NULL, alpha = 0.5,
main = NULL, est = "median", which.lvs = c(1,2), return.vals = FALSE, ...)

Arguments

x An object for class "boral".

jitter If jitter = TRUE, then some jittering is applied so that points on the plots do not
overlap exactly (which can often occur with discrete data, small sample sizes,
and if some sites are identical in terms species co-occurence). Please see jitter
for its implementation. Defaults to FALSE.

biplot If biplot = TRUE, then a biplot is construct such that both the latent variables
and their corresponding coefficients are plotted. Otherwise, only the latent vari-
able scores are plotted. Defaults to TRUE.

ind.spp Controls the number of latent variable coefficients to plot if biplot = TRUE. If
ind.spp is an integer, then only the first ind.spp "most important" latent vari-
able coefficients are included in the biplot, where "most important" means the la-
tent variable coefficients with the largests L2-norms. Defaults to NULL, in which
case all latent variable coefficients are included in the biplot.

alpha A numeric scalar between 0 and 1 that is used to control the relative scaling of
the latent variables and their coefficients, when constructing a biplot. Defaults
to 0.5, and we typically recommend between 0.45 to 0.55 so that the latent
variables and their coefficients are on roughly the same scale.

main Title for resulting ordination plot. Defaults to NULL, in which case a "standard"
title is used.

est A choice of either the posterior median (est = "median") or posterior mean
(est = "mean"), which are then treated as estimates and the ordinations based
off. Default is posterior median.

which.lvs A vector of length two, indicating which latent variables (ordination axes) to plot
which x is an object with two or more latent variables. The argument is ignored
is x only contains one latent variables. Defaults to which.lvs = c(1,2).

return.vals If TRUE, then the scaled latent variables scores and corresponding scaled coef-
ficients are returned (based on the value of alpha used). This is useful if the
user wants to construct their own custom model-based ordinations. Defaults to
FALSE.

... Additional graphical options to be included in. These include values for
cex,cex.lab,cex.axis,cex.main,lwd, and so on.

Details

This function allows an ordination plot to be constructed, based on either the posterior medians
and posterior means of the latent variables respectively depending on the choice of est. The latent
variables are labeled using the row index of the response matrix y. If the fitted model contains more
than two latent variables, then one can specify which latent variables i.e., ordination axes, to plot
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based on the which.lvs argument. This can prove useful (to check) if certain sites are outliers on
one particular ordination axes.

If the fitted model did not contain any covariates, the ordination plot can be interpreted in the exactly
same manner as unconstrained ordination plots constructed from methods such as Nonmetric Multi-
dimensional Scaling (NMDS, Kruskal, 1964) and Correspondence Analysis (CA, Hill, 1974). With
multivariate abundance data for instance, where the response matrix y consists of n sites and p
species, the ordination plots can be studied to look for possible clustering of sites, location and/or
dispersion effects, an arch pattern indicative of some sort species succession over an environmental
gradient, and so on.

If the fitted model did include covariates, then a “residual ordination" plot is produced, which can
be interpreted can offering a graphical representation of the (main patterns of) residual covarations,
i.e. covariations after accounting for the covariates. With multivariate abundance data for instance,
these residual ordination plots represent could represent residual species co-occurrence due to phy-
logency, species competition and facilitation, missing covariates, and so on (Warton et al., 2015)

If biplot = TRUE, then a biplot is constructed so that both the latent variables and their correspond-
ing coefficients are included in their plot (Gabriel, 1971). The latent variable coefficients are shown
in red, and are indexed by the column names of y. The number of latent variable coefficients to plot
is controlled by ind.spp. In ecology for example, often we are only be interested in the "indicator"
species, e.g. the species with most represent a particular set of sites or species with the strongest
covariation (see Chapter 9, Legendre and Legendre, 2012, for additional discussion). In such case,
we can then biplot only the ind.spp "most important" species, as indicated by the the L2-norm of
their latent variable coefficients.

As with correspondence analysis, the relative scaling of the latent variables and the coefficients in
a biplot is essentially arbitrary, and could be adjusted to focus on the sites, species, or put even
weight on both (see Section 9.4, Legendre and Legendre, 2012). In lvsplot, this relative scaling is
controlled by the alpha argument, which basically works by taking the latent variables to a power
alpha and the latent variable coefficients to a power 1-alpha.

For latent variable models, we are generally interested in "symmetric plots" that place the latent
variables and their coefficients on the same scale. In principle, this is achieved by setting alpha =
0.5, the default value, although sometimes this needs to be tweaked slighlty to a value between 0.45
and 0.55 (see also the corresp function in the MASS package that also produces symmetric plots, as
well as Section 5.4, Borcard et al., 2011 for more details on scaling).

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References

• Borcard et al. (2011). Numerical Ecology with R. Springer.
• Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal

component analysis. Biometrika, 58, 453-467.
• Hill, M. O. (1974). Correspondence analysis: a neglected multivariate method. Applied statis-

tics, 23, 340-354.
• Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychome-

trika, 29, 115-129.
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• Legendre, P. and Legendre, L. (2012). Numerical ecology, Volume 20. Elsevier.

• Warton et al. (2015). So Many Variables: Joint Modeling in Community Ecology. Trends in
Ecology and Evolution, to appear

Examples

## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
n <- nrow(y)
p <- ncol(y)

spiderfit_nb <- boral(y, family = "negative.binomial", lv.control = list(num.lv = 2),
row.eff = "fixed", mcmc.control = example_mcmc_control, model.name = testpath)

lvsplot(spiderfit_nb)

make.jagsboralmodel Write a text file containing a model for use into JAGS

Description

Stable

This function is designed to write models with one or more latent variables.

Usage

make.jagsboralmodel(family, num.X = 0, X.ind = NULL, num.traits = 0,
which.traits = NULL, lv.control = list(num.lv = 2, type = "independent"),
row.eff = "none", row.ids = NULL, offset = NULL, trial.size = 1,
n, p, model.name = NULL,
prior.control = list(type = c("normal","normal","normal","uniform"),

hypparams = c(10, 10, 10, 30), ssvs.index = -1, ssvs.g = 1e-6,
ssvs.traitsindex = -1),

num.lv = NULL)
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Arguments

family Either a single element, or a vector of length equal to the number of columns
in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial" (with log link), "normal" (with identity link), "lnormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression), "ztpoisson" (zero truncated Poisson with log link), "ztnegative.binomial"
(zero truncated negative binomial with log link).
Please see about.distributions for information on distributions available in
boral overall.

num.X Number of columns in X. Defaults to 0, in which case it is assumed that no
covariates are included in the model. Recall that no intercept should be included
in X.

X.ind An matrix of 1s and 0s, indicating whether a particular covariate should be in-
cluded (1) or excluded (0) in the mean structure of a particular response. The
matrix should the number of rows equal to the number of columns in y, and the
number of columns equal to the number of columns in X. Defaults to NULL, in
which case it is assumed that all covariates are included in the mean structure of
all responses i.e., all 1s.

num.traits Number of columns in the model matrix traits. Defaults to 0, in which case
it is assumed no traits are included in model. Recall that no intercept should be
included in traits.

which.traits A list of length equal to (number of columns in X + 1), informing which columns
of traits the column-specific intercepts and each of the column-specific re-
gression coefficients should be regressed against. The first element in the list
applies to the column-specific intercept, while the remaining elements apply to
the regression coefficients. Each element of which.traits is a vector indicating
which traits are to be used.
For example, if which.traits[[2]] = c(2,3), then the regression coefficients
corresponding to the first column in X are regressed against the second and third
columns of traits. If which.traits[[2]][1] = 0, then the regression coeffi-
cients for each column are treated as independent. Please see about.traits for
more details.
Defaults to NULL, and used in conjunction with traits and
prior.control$ssvs.traitsindex.

lv.control A list (currently) with the following arguments:

• num.lv: which specifies the number of true latent variables to generate.
Defaults to 0.

• type: which specifies the type the correlation structure of the latent vari-
ables (across sites). Defaults to independence correlation structure.

Please see about.lvs for more information.

row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),
random effects ("random") or not included ("none") in the fitted model. If fixed
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effects, then for parameter identifiability the first row effect is set to zero, which
analogous to acting as a reference level when dummy variables are used. If
random effects, they are drawn from a normal distribution with mean zero and
unknown standard deviation. Defaults to "none".

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (i, j) indicates to the cluster ID of row i in y for random effect
eqnj; please see boral for details. Defaults to NULL, so that if row.eff = "none"
then the argument is ignored, otherwise if
row.eff = "fixed" or "random",
then row.ids = matrix(1:nrow(y),ncol = 1) i.e., a single, row effect unique
to each row.

offset A matrix with the same dimensions as the response matrix y, specifying an a-
priori known component to be included in the linear predictor during fitting.
Defaults to NULL.

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

n The number of rows in the response matrix y.
p The number of columns in the response matrix y.
model.name Name of the text file that the JAGS script is written to. Defaults to NULL, in

which case the default of "jagsboralmodel.txt" is used.
prior.control A list of parameters for controlling the prior distributions. These include:

• type: Vector of four strings indicating the type of prior distributions to use.
In order, these are: 1) priors for all column-specific intercepts, row effects,
and cutoff points for ordinal data; 2) priors for the latent variable coeffi-
cients and covariance parameters. This is ignored if lv.control$num.lv
= 0; 3) priors for all column-specific coefficients relating to X (ignored if
X = NULL). When traits are included in the model, this is also the prior for
the trait regression coefficients (please see about.traits for more infor-
mation); 4) priors for any dispersion parameters and variance (standard de-
viation, to be precise) parameters in the model.
For elements 1-3, the prior distributions currently available include: I) “nor-
mal", which is a normal prior with the variance controlled by elements 1-3
in hypparams; II) “cauchy", which is a Cauchy prior with variance con-
trolled by elements 1-3 in hypparams. Gelman, et al. (2008) considers
using Cauchy priors with variance 2.52 as weakly informative priors for
coefficients in logistic and potentially other generalized linear models; III)
“uniform", which is a symmetric uniform prior with minimum and maxi-
mum values controlled by element 1-3 in hypparams.
For element 4, the prior distributions currently available include: I) “uni-
form", which is uniform prior with minimum zero and maximum controlled
by element 4 in hypparmas; II) “halfnormal", which is half-normal prior
with variance controlled by hypparams; III) “halfcauchy", which is a half-
Cauchy prior with variance controlled by element 4 in hypparams.
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Defaults to the vector c("normal","normal","normal","uniform").

• hypparams: Vector of four hyperparameters used in the set up of prior
distributions. In order, these are: 1) affects the prior distribution for all
column-specific intercepts, row effects, and cutoff points for ordinal data;
2) affects the prior distribution for all latent variable coefficients and cor-
relation parameters. This is ignored if lv.control$num.lv = 0; 3) affects
the prior distribution for column-specific coefficients relating to X (ignored
if X = NULL). When traits are included in the model, it also affects the prior
distribution for the trait regression coefficients; 4) affects the prior distribu-
tion for any dispersion parameters, as well as the prior distributions for the
standard deviation of the random effects normal distribution if row.eff =
"random", the standard deviation of the column-specific random intercepts
for these columns if more than two of the columns are ordinal, and the stan-
dard deviation of the random effects normal distribution for trait regression
coefficients when traits are included in the model.
Defaults to the vector c(10,10,10,30). The use of normal distributions
with mean zero and variance 10 as priors is seen as one type of (very)
weakly informative prior, according to Prior choice recommendations.

• ssvs.index: Indices to be used for stochastic search variable selection (SSVS,
George and McCulloch, 1993). Either a single element or a vector with
length equal to the number of columns in the implied model matrix X. Each
element can take values of -1 (no SSVS is performed on this covariate), 0
(SSVS is performed on individual coefficients for this covariate), or any in-
teger greater than 0 (SSVS is performed on collectively all coefficients on
this covariate/s.)
Please see about.ssvs for more information regarding the implementation
of SSVS. Defaults to -1, in which case SSVS is not performed on X vari-
ables.

• ssvs.g: Multiplicative, shrinkage factor for SSVS, which controls the strength
of the "spike" in the SSVS mixture prior. In summary, if the coefficient is
included in the model, the "slab" prior is a normal distribution with mean
zero and variance given by element 3 in hypparams, while if the coefficient
is not included in the model, the "spike" prior is normal distribution with
mean zero and variance given by element 3 in hypparams multiplied by
ssvs.g. Please see about.ssvs for more information regarding the imple-
mentation of SSVS. Defaults to 1e-6.

• ssvs.traitsindex: Used in conjunction with traits and which.traits, this
is a list of indices to be used for performing SSVS on the trait coefficients.
Should be a list with the same length as which.traits, and with each ele-
ment a vector of indices with the same length as the corresponding element
in which.traits. Each index either can take values of -1 (no SSVS on this
trait coefficient) or 0 (no SSVS on this trait coefficient).
Please see about.ssvs for more information regarding the implementation
of SSVS. Defaults to -1, in which case SSVS is not performed on any of
the trait coefficients, if they are included in the model.

num.lv Old argument superceded by lv.control. Defaults to NULL and ignored.

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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Details

This function is automatically executed inside boral, and therefore does not need to be run sepa-
rately before fitting the model. It can however be run independently if one is: 1) interested in what
the actual JAGS file for a particular model looks like, 2) wanting to modify a basic JAGS model file
to construct more complex model e.g., include environmental variables.

Please note that boral currently does not allow the user to manually enter a script to be run.

When running the main function boral, setting save.model = TRUE which automatically save the
JAGS model file as a text file (with name based on the model.name) in the current working directory.

Value

A text file is created, containing the model to be called by the boral function for entering into JAGS.
This file is automatically deleted once boral has finished running save.model = TRUE.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References

• Gelman, et al. (2008). A weakly informative default prior distribution for logistic and other
regression models. The Annals of Applied Statistics, 2, 1360-1383.

See Also

make.jagsboralnullmodel for writing JAGS scripts for models with no latent variables i.e., so-
called "null models".

Examples

library(mvtnorm)
library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
n <- nrow(y)
p <- ncol(y)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

## Example 1 - Create a JAGS model file, where distributions alternative
## between Poisson and negative binomial distributions
## across the rows of y.
make.jagsboralmodel(family = rep(c("poisson","negative.binomial"),length=p),

row.eff = "fixed", num.X = 0, n = n, p = p, model.name = testpath)

## Example 2 - Create a JAGS model file, where distributions are all
## negative binomial distributions and covariates will be included.
make.jagsboralmodel(family = "negative.binomial", num.X = ncol(spider$x),
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n = n, p = p, model.name = testpath)

## Example 3 - Simulate some ordinal data and create a JAGS model file
## 30 rows (sites) with two latent variables
true.lv <- rbind(rmvnorm(15,mean=c(-2,-2)),rmvnorm(15,mean=c(2,2)))
## 10 columns (species)
true.lv.coefs <- rmvnorm(10,mean = rep(0,3));
true.lv.coefs[nrow(true.lv.coefs),1] <- -sum(true.lv.coefs[-nrow(true.lv.coefs),1])
## Impose a sum-to-zero constraint on the column effects
true.ordinal.cutoffs <- seq(-2,10,length=10-1)

simy <- create.life(true.lv = true.lv, lv.coefs = true.lv.coefs,
family = "ordinal", cutoffs = true.ordinal.cutoffs)

make.jagsboralmodel(family = "ordinal", num.X = 0,
row.eff = FALSE, n=30, p=10, model.name = testpath)

## Have a look at the JAGS model file for a model involving traits,
## based on the ants data from mvabund.
library(mvabund)
data(antTraits)

y <- antTraits$abun
X <- as.matrix(antTraits$env)
## Include only traits 1, 2, and 5, plus an intercept
traits <- as.matrix(antTraits$traits[,c(1,2,5)])
## Please see help file for boral regarding the use of which.traits
example_which_traits <- vector("list",ncol(X)+1)
for(i in 1:length(example_which_traits))

example_which_traits[[i]] <- 1:ncol(traits)

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

fit_traits <- boral(y, X = X, traits = traits, which.traits = example_which_traits,
family = "negative.binomial", lv.control = list(num.lv = 2),
model.name = testpath, mcmc.control = example_mcmc_control,
do.fit = FALSE)

## End(Not run)

make.jagsboralnullmodel

Write a text file containing a model for use into JAGS
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Description

Stable
This function is designed to write models with no latent variables i.e., so-called "null" models.

Usage

make.jagsboralnullmodel(family, num.X = 0, X.ind = NULL, num.traits = 0,
which.traits = NULL, row.eff = "none", row.ids = NULL,
offset = NULL, trial.size = 1, n, p, model.name = NULL,
prior.control = list(type = c("normal","normal","normal","uniform"),

hypparams = c(10, 10, 10, 30), ssvs.index = -1, ssvs.g = 1e-6,
ssvs.traitsindex = -1))

Arguments

family Either a single element, or a vector of length equal to the number of columns
in y. The former assumes all columns of y come from this distribution. The
latter option allows for different distributions for each column of y. Elements
can be one of "binomial" (with probit link), "poisson" (with log link), "nega-
tive.binomial" (with log link), "normal" (with identity link), "lnormal" for log-
normal (with log link), "tweedie" (with log link), "exponential" (with log link),
"gamma" (with log link), "beta" (with logit link), "ordinal" (cumulative probit
regression), "ztpoisson" (zero truncated Poisson with log link), "ztnegative.binomial"
(zero truncated negative binomial with log link).
Please see about.distributions for information on distributions available in
boral overall.

num.X Number of columns in X. Defaults to 0, in which case it is assumed that no
covariates are included in the model. Recall that no intercept should be included
in X.

X.ind An matrix of 1s and 0s, indicating whether a particular covariate should be in-
cluded (1) or excluded (0) in the mean structure of a particular response. The
matrix should the number of rows equal to the number of columns in y, and the
number of columns equal to the number of columns in X. Defaults to NULL, in
which case it is assumed that all covariates are included in the mean structure of
all responses i.e., all 1s.

num.traits Number of columns in the model matrix traits. Defaults to 0, in which case
it is assumed no traits are included in model. Recall that no intercept should be
included in traits.

which.traits A list of length equal to (number of columns in X + 1), informing which columns
of traits the column-specific intercepts and each of the column-specific re-
gression coefficients should be regressed against. The first element in the list
applies to the column-specific intercept, while the remaining elements apply to
the regression coefficients. Each element of which.traits is a vector indicating
which traits are to be used.
For example, if which.traits[[2]] = c(2,3), then the regression coefficients
corresponding to the first column in X are regressed against the second and third
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columns of traits. If which.traits[[2]][1] = 0, then the regression coeffi-
cients for each column are treated as independent. Please see about.traits for
more details.
Defaults to NULL, and used in conjunction with traits and
prior.control$ssvs.traitsindex.

row.eff Single element indicating whether row effects are included as fixed effects ("fixed"),
random effects ("random") or not included ("none") in the fitted model. If fixed
effects, then for parameter identifiability the first row effect is set to zero, which
analogous to acting as a reference level when dummy variables are used. If
random effects, they are drawn from a normal distribution with mean zero and
unknown standard deviation. Defaults to "none".

row.ids A matrix with the number of rows equal to the number of rows in y, and the
number of columns equal to the number of row effects to be included in the
model. Element (i, j) indicates to the cluster ID of row i in y for random effect
eqnj; please see boral for more details. for details. Defaults to NULL, so that if
row.eff = "none" then the argument is ignored, otherwise if
row.eff = "fixed" or "random",
then row.ids = matrix(1:nrow(y),ncol = 1) i.e., a single, row effect unique
to each row.

offset A matrix with the same dimensions as the response matrix y, specifying an a-
priori known component to be included in the linear predictor during fitting.
Defaults to NULL.

trial.size Either equal to a single element, or a vector of length equal to the number of
columns in y. If a single element, then all columns assumed to be binomially
distributed will have trial size set to this. If a vector, different trial sizes are al-
lowed in each column of y. The argument is ignored for all columns not assumed
to be binomially distributed. Defaults to 1, i.e. Bernoulli distribution.

n The number of rows in the response matrix y.

p The number of columns in the response matrix y.

model.name Name of the text file that the JAGS model is written to. Defaults to NULL, in
which case the default of "jagsboralmodel.txt" is used.

prior.control A list of parameters for controlling the prior distributions. These include:

• type: Vector of four strings indicating the type of prior distributions to use.
In order, these are: 1) priors for all column-specific intercepts, row effects,
and cutoff points for ordinal data; 2) priors for the latent variable coeffi-
cients and correlation parameters. This is ignored for this function; 3) pri-
ors for all column-specific coefficients relating to X (ignored if X = NULL).
When traits are included in the model, this is also the prior for the trait re-
gression coefficients (please see about.traits for more information); 4)
priors for any dispersion parameters and variance (standard deviation, to be
precise) parameters in the model.
For elements 1-3, the prior distributions currently available include: I) “nor-
mal", which is a normal prior with the variance controlled by elements 1-3
in hypparams; II) “cauchy", which is a Cauchy prior with variance con-
trolled by elements 1-3 in hypparams. Gelman, et al. (2008) considers
using Cauchy priors with variance 2.52 as weakly informative priors for
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coefficients in logistic and potentially other generalized linear models; III)
“uniform", which is a symmetric uniform prior with minimum and maxi-
mum values controlled by element 1-3 in hypparams.
For element 4, the prior distributions currently available include: I) “uni-
form", which is uniform prior with minimum zero and maximum controlled
by element 4 in hypparmas; II) “halfnormal", which is half-normal prior
with variance controlled by hypparams; III) “halfcauchy", which is a half-
Cauchy prior with variance controlled by element 4 in hypparams.
Defaults to the vector c("normal","normal","normal","uniform").

• hypparams Vector of four hyperparameters used in the set up of prior distri-
butions. In order, these are: 1) affects the prior distribution for all column-
specific intercepts, row effects, and cutoff points for ordinal data; 2) affects
the prior distribution for all latent variable coefficients and correlation pa-
rameters. This is ignored for this function; 3) affects the prior distribution
for column-specific coefficients relating to X (ignored if X = NULL). When
traits are included in the model, it also affects the prior distribution for the
trait regression coefficients; 4) affects the prior distribution for any disper-
sion parameters, as well as the prior distributions for the standard deviation
of the random effects normal distribution if row.eff = "random", the stan-
dard deviation of the column-specific random intercepts for these columns
if more than two of the columns are ordinal, and the standard deviation of
the random effects normal distribution for trait regression coefficients when
traits are included in the model.
Defaults to the vector c(10,10,10,30). The use of normal distributions
with mean zero and variance 10 as priors is seen as one type of (very)
weakly informative prior, according to Prior choice recommendations.

• ssvs.index: Indices to be used for stochastic search variable selection (SSVS,
George and McCulloch, 1993). Either a single element or a vector with
length equal to the number of columns in the implied model matrix X. Each
element can take values of -1 (no SSVS is performed on this covariate), 0
(SSVS is performed on individual coefficients for this covariate), or any in-
teger greater than 0 (SSVS is performed on collectively all coefficients on
this covariate/s.)
Please see about.ssvs for more information regarding the implementation
of SSVS. Defaults to -1, in which case SSVS is not performed on X vari-
ables.

• ssvs.g: Multiplicative, shrinkage factor for SSVS, which controls the strength
of the "spike" in the SSVS mixture prior. In summary, if the coefficient is
included in the model, the "slab" prior is a normal distribution with mean
zero and variance given by element 3 in hypparams, while if the coefficient
is not included in the model, the "spike" prior is normal distribution with
mean zero and variance given by element 3 in hypparams multiplied by
ssvs.g. Please see about.ssvs for more information regarding the imple-
mentation of SSVS. Defaults to 1e-6.

• ssvs.traitsindex: Used in conjunction with traits and which.traits, this
is a list of indices to be used for performing SSVS on the trait coefficients.
Should be a list with the same length as which.traits, and with each ele-
ment a vector of indices with the same length as the corresponding element

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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in which.traits. Each index either can take values of -1 (no SSVS on this
trait coefficient) or 0 (no SSVS on this trait coefficient).
Please see about.ssvs for more information regarding the implementation
of SSVS. Defaults to -1, in which case SSVS is not performed on any of
the trait coefficients, if they are included in the model.

Details

This function is automatically executed inside boral, and therefore does not need to be run sepa-
rately before fitting the model. It can however be run independently if one is: 1) interested in what
the actual JAGS file for a particular model looks like, 2) wanting to modify a basic JAGS model file
to construct more complex model e.g., include environmental variables.

Please note that boral currently does not allow the user to manually enter a script to be run.

When running the main function boral, setting save.model = TRUE which automatically save the
JAGS model file as a text file (with name based on the model.name) in the current working directory.

Value

A text file is created, containing the JAGS model to be called by the boral function for entering into
jags. This file is automatically deleted once boral has finished running unless save.model = TRUE.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References

• Gelman, et al. (2008). A weakly informative default prior distribution for logistic and other
regression models. The Annals of Applied Statistics, 2, 1360-1383.

See Also

make.jagsboralmodel for writing JAGS scripts for models with one or more latent variables.

Examples

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun
n <- nrow(y)
p <- ncol(y)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

## Create a "null" model JAGS script, where distributions alternative
## between Poisson and negative distributions
## across the rows of y.
make.jagsboralnullmodel(family = rep(c("poisson","negative.binomial"),length=p),
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num.X = ncol(spider$x), row.eff = "fixed", n = n, p = p,
model.name = testpath)

## Create a "null" model JAGS script, where distributions are all negative
## binomial distributions and covariates will be included!
make.jagsboralnullmodel(family = "negative.binomial",

num.X = ncol(spider$x), n = n, p = p,
model.name = testpath)

## Have a look at the JAGS model file for a model involving traits,
## based on the ants data from mvabund.
library(mvabund)
data(antTraits)

y <- antTraits$abun
X <- as.matrix(antTraits$env)
## Include only traits 1, 2, and 5, plus an intercept
traits <- as.matrix(antTraits$traits[,c(1,2,5)])
## Please see help file for boral regarding the use of which.traits
example_which_traits <- vector("list",ncol(X)+1)
for(i in 1:length(example_which_traits))

example_which_traits[[i]] <- 1:ncol(traits)

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

fit_traits <- boral(y, X = X, traits = traits, which.traits = example_which_traits,
family = "negative.binomial", model.name = testpath,
mcmc.control = example_mcmc_control, do.fit = FALSE)

## End(Not run)

plot.boral Plots of a fitted boral object

Description

Stable
Produces four plots relating to the fitted boral object, which can be used for residual analysis. If
some of the columns are ordinal, then a single confusion matrix is also produced.

Usage

## S3 method for class 'boral'
plot(x, est = "median", jitter = FALSE, ...)
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Arguments

x An object of class "boral".

est A choice of either the posterior median (est == "median") or posterior mean
(est == "mean") of the parameters, which are then treated as parameter esti-
mates and the fitted values/residuals used in the plots are calculated from. De-
fault is posterior median.

jitter If jitter = TRUE, then some jittering is applied so that points on the plots do not
overlap exactly (which can often occur with discrete data). Please see jitter
for its implementation.

... Additional graphical options to be included in. These include values for
cex,cex.lab,cex.axis,cex.main,lwd, and so on.

Details

Four plots are provided:

1. Plot of Dunn-Smyth residuals against the linear predictors. This can be useful to assess
whether the assumed mean-variance relationship is adequately satisfied, as well as to look
for particular outliers. For ordinal responses things are more ambiguous due to the lack of sin-
gle definition for "linear predictor". Therefore, instead of linear predictors the Dunn-Smyth
residuals are plotted against the fitted values (defined as the level with the highest fitted prob-
ability). It is fully acknowledged that this makes things VERY hard to interpret if only some
of your columns are ordinal.

2. Plot of Dunn-Smyth residuals against the row index/row names.

3. Plot of Dunn-Smyth residuals against the column index/column names. Both this and the
previous plot are useful for assessing how well each row/column of the response matrix is
being modeled.

4. A normal quantile plot of the Dunn-Smyth residuals, which can be used to assess the normality
assumption and overall goodness of fit.

For ordinal responses, a single confusion matrix between the predicted levels (as based on the class
with the highest probability) and true levels is aso returned. The table pools the results over all
columns assumed to be ordinal.

Note

Due the inherent stochasticity, Dunn-Smyth residuals and consequently the plots will be slightly
different time this function is run. Note also the fitted values and residuals are calculated from
point estimates of the parameters, as opposed to a fully Bayesian approach (please see details in
fitted.boral and ds.residuals). Consequently, it is recommended that this function is run
several times to ensure that any trends observed in the plots are consistent throughout the runs.

As mentioned above, for ordinal responses things are much more challenging as there is no single
definition for "linear predictor". Instead of linear predictors then, for the first plot the Dunn-Smyth
residuals are plotted against the fitted values, defined as the level with the highest fitted probability.
It is fully acknowledged that this makes things VERY hard to interpret if only some of your columns
are ordinal though. Suggestions to improve this are welcome!!!
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Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

See Also

fitted.boral to obtain the fitted values, ds.residuals to obtain Dunn-Smyth residuals and de-
tails as to what they are.

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun

spider.fit.p <- boral(y, family = "poisson", lv.control = list(num.lv = 2),
row.eff = "fixed", mcmc.control = example_mcmc_control
model.name = testpath)

par(mfrow = c(2,2))
plot(spider.fit.p)
## A distinct fan pattern is observed in the plot of residuals
## versus linear predictors plot.

spiderfit_nb <- boral(y, family = "negative.binomial", lv.control = list(num.lv = 2),
row.eff = "fixed", mcmc.control = example_mcmc_control,
model.name = testpath)

par(mfrow = c(2,2))
plot(spiderfit_nb)
## The fan shape is not as clear now,
## and the normal quantile plot also suggests a better fit to the data

## End(Not run)

predict.boral Predict using a model
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Description

Stable
Obtain predictions and associated intervals (lower and upper limits) on the linear scale from a fitted
boral object. Predictions can be made either conditionally on the predicted latent variables and any
random row effects included in the model, or marginally (averaged) on the latent variables and any
random effects included in the model.

Usage

## S3 method for class 'boral'
predict(object, newX = NULL, newrow.ids = NULL,

distmat = NULL, predict.type = "conditional", scale = "link",
est = "median", prob = 0.95, lv.mc = 1000, return.alllinpred = FALSE,
...)

Arguments

object An object of class "boral".

newX An optional model matrix of covariates for extrapolation to the same sites (under
different environmental conditions) or extrapolation to new sites. No intercept
column should be included in newX. Defaults to NULL, in which case the model
matrix of covariates is taken from the fitted boral object if found.

newrow.ids An optional matrix with the number of columns equal to the number of row
effects to be included in the model. Element (i, j) indicates to the cluster ID of
row i in y for random effect eqnj. Defaults to NULL, in which case row IDs are
taken from the fitted boral object itself (if required) i.e., from object$row.ids.

distmat A distance matrix required to calculate correlations across sites when a non-
independence correlation structure on the latent variables is imposed.

predict.type The type of prediction to be made. Either takes value "conditional" in which
case the prediction is made conditionally on the predicted latent variables and
any random row effects in the model, or "marginal" in which case the predic-
tion marginalizes (averages) over the latent variables and random row effects in
the model. Defaults to "conditional".

scale The type of prediction required. The default "link" is on the scale of the linear
predictors; the alternative scale == "response" is on the scale of the response
variable. For example, if the binomial family is used, then the default predictions
(and associated uncertainty intervals) provide probabilities on linear predictor
scale, while scale == "response" gives the predicted probabilities between 0
and 1.
Note things are slightly more complicated for zero truncated distributions be-
cause the log-link connects the mean of the untruncated distribution to the lin-
ear predictor. Therefore if scale = "link", then the linear predictor is returned.
But if scale = "response", then actual predicted mean is returned.

est A choice of either whether to print the posterior median (est == "median") or
posterior mean (est == "mean") of the parameters.
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prob A numeric scalar in the interval (0,1) giving the target probability coverage of
the intervals. Defaults to 0.95.

lv.mc If the predictions are made marginalizing over the latent variables, then number
of Monte-Carlo samples to take when performing the relevant integration.

return.alllinpred

If TRUE, then the full array of predicted linear predictions across all MCMC
samples is predicted. This is useful if the user wants to transform the predictions
onto a different scale (say). Defaults to FALSE.

... Not used.

Details

Due to the Bayesian MCMC framework, then predictive inference for models is based around the
posterior predictive distribution, which is the integral of the quantity one wants to predict on, inte-
grated or averaged over the posterior distribution of the parameters and latent variables. Currently,
all predictions are made on the linear predictor scale i.e.,

ηij = αi + β0j + x>
i βj + z>i θj ; i = 1, . . . , n; j = 1, . . . , p,

where zi are a vector of latent variables included in the model, θj are the column-specific coeffi-
cients relating to these latent variables, xi are covariates included in the model, and betaj being the
column-specific coefficients related to these covariates. The quantity beta0j denotes the column-
specific intercepts while alpha_i represents one or more optional row effects that may be treated
as a fixed or random effect.

Note that for the above to work, one must have saved the MCMC samples in the fitted boral object,
that is, set save.model = TRUE when fitting.

Two types of predictions are possible using this function:

• The first type is predict.type = "conditional", meaning predictions are made condition-
ally on the predicted latent variables and any (random) row effects in the model. This is
mainly used when predictions are made onto the same set of sites that the model was fitted to,
although a newX can be supplied in this case if we want to extrapolate on to the same set of
sites but under different environmental conditions.

• The second type of prediction is predict.type = "marginal", meaning predictions are made
marginally or averaging over the latent variables and any (random) row effects in the model.
This is mainly used when predictions are made onto a new set of sites where the latent vari-
ables and/or row effects are unknown. A newX and/or newrow.ids is often supplied since
we are extrapolating to new sites. The integration over the latent variables and random row
effects is done via Monte-Carlo integration. Please note however that, as mentioned before,
the integration will be done on the linear predictor scale.

More information on conditional versus marginal predictions in latent variable models can be found
in Warton et al., (2015). In both cases, the function returns a point prediction (either the posterior
mean or median depending on est) and the lower and upper bounds of a 100α% interval of the
posterior prediction. All of these quantities are calculated empirically based the MCMC samples
e.g., the posterior mean is the average of the predictions across the MCMC samples, and the lower
and upper bounds are based on quantiles.
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Value

A list containing the following components:

linpred A matrix containing posterior point predictions (either posterior mean or median
depending on est), on the linear predictor scale.

lower A matrix containing the lower bound of the 100alpha% interval of the posterior
predictions, on the linear predictor scale.

upper A matrix containing the upper bound of the 100alpha% interval of the posterior
predictions, on the linear predictor scale.

all.linpred If return.alllinpred = TRUE, then an array of predicted linear predictions
across all MCMC samples.

Warnings

• Marginal predictions can take quite a while to construct due to the need to perform Monte-
Carlo integration to marginalize over the latent variables and any random row effects in the
model.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

References

• Gelman et al. (2013) Bayesian Data Analysis. CRC Press.

• Warton et al. (2015). So Many Variables: Joint Modeling in Community Ecology. Trends in
Ecology and Evolution, 30, 766-779.

Examples

## Not run:
library(mvabund) ## Load a dataset from the mvabund package
library(mvtnorm)
data(spider)
y <- spider$abun
X <- scale(spider$x)
n <- nrow(y)
p <- ncol(y)

## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

## Example 1 - model with two latent variables, random site effects,
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## and environmental covariates
spiderfit_nb <- boral(y, X = X, family = "negative.binomial",

row.eff = "random", lv.control = list(num.lv = 2),
mcmc.control = example_mcmc_control, save.model = TRUE,
model.name = testpath)

## Predictions conditional on predicted latent variables
getcondpreds <- predict(spiderfit_nb)

## Predictions marginal on latent variables, random row effects
## The intervals for these will generally be wider than the
## conditional intervals.
getmargpreds <- predict(spiderfit_nb, predict.type = "marginal")

## Now suppose you extrpolate to new sites
newX <- rmvnorm(100, mean = rep(0,ncol(X)))

## Below won't work since conditional predictions are made to the same sites
#getcondpreds <- predict(spiderfit_nb, newX = newX)

## Marginal predictions will work though provided newrow.ids is set up
## properly. For example,
new_row_ids <- matrix(sample(1:28,100,replace=TRUE), 100, 1)
getmargpreds <- predict(spiderfit_nb, newX = newX, predict.type = "marginal",

newrow.ids = new_row_ids)

## Example 1b - Similar to 1a except with no random site effects,
## and a non-independence correlation structure for the latent variables
## based on a fake distance matrix
fakedistmat <- as.matrix(dist(1:n))
spiderfit_nb <- boral(y, X = X, family = "negative.binomial",

lv.control = list(type = "squared.exponential", num.lv = 2,
distmat = fakedistmat), model.name = testpath,

mcmc.control = example_mcmc_control, save.model = TRUE)

getmargpreds <- predict(spiderfit_nb, predict.type = "marginal",
distmat = fakedistmat)

## Now suppose you extrpolate to new sites
newfakedistmat <- as.matrix(dist(1:100))

getmargpreds <- predict(spiderfit_nb, newX = newX,
predict.type = "marginal", distmat = newfakedistmat)

## Example 2 - simulate count data, based on a model with two latent variables,
## no site variables, with two traits and one environmental covariates
library(mvtnorm)
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n <- 100; s <- 50
X <- as.matrix(scale(1:n))
colnames(X) <- c("elevation")

traits <- cbind(rbinom(s,1,0.5), rnorm(s))
## one categorical and one continuous variable
colnames(traits) <- c("thorns-dummy","SLA")

simfit <- list(true.lv = rmvnorm(n, mean = rep(0,2)),
lv.coefs = cbind(rnorm(s), rmvnorm(s, mean = rep(0,2)), 1),
traits.coefs = matrix(c(0.1,1,-0.5,0.1,0.5,0,-1,0.1), 2, byrow = TRUE))
rownames(simfit$traits.coefs) <- c("beta0","elevation")
colnames(simfit$traits.coefs) <- c("kappa0","thorns-dummy","SLA","sigma")

simy = create.life(true.lv = simfit$true.lv, lv.coefs = simfit$lv.coefs, X = X,
traits = traits, traits.coefs = simfit$traits.coefs, family = "normal")

example_which_traits <- vector("list",ncol(X)+1)
for(i in 1:length(example_which_traits))

example_which_traits[[i]] <- 1:ncol(traits)
fit_traits <- boral(y = simy, X = X, traits = traits,

which.traits = example_which_traits, family = "normal",
lv.control = list(num.lv = 2), save.model = TRUE,
mcmc.control = example_mcmc_control,
model.name = testpath)

## Predictions conditional on predicted latent variables
getcondpreds <- predict(fit_traits)

## Predictions marginal on latent variables
## The intervals for these will generally be wider than the
## conditional intervals.
getmargpreds <- predict(fit_traits, predict.type = "marginal")

## End(Not run)

summary.boral Summary of fitted boral object

Description

Stable

A summary of the fitted boral objects including the type of model fitted e.g., error distribution,
number of latent variables parameter estimates, and so on.
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Usage

## S3 method for class 'boral'
summary(object, est = "median", ...)

## S3 method for class 'summary.boral'
print(x,...)

Arguments

object An object of class "boral".

x An object of class "boral".

est A choice of either whether to print the posterior median (est == "median") or
posterior mean (est == "mean") of the parameters.

... Not used.

Value

Attributes of the model fitted, parameter estimates, and posterior probabilities of including individ-
ual and/or grouped coefficients in the model based on SSVS if appropriate.

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>

See Also

boral for the fitting function on which summary is applied.

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun

spiderfit_nb <- boral(y, family = "negative.binomial",
lv.control = list(num.lv = 2), row.eff = "fixed",
mcmc.control = example_mcmc_control, model.name = testpath)

summary(spiderfit_nb)
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## End(Not run)

tidyboral Reformats output from a boral fit

Description

Maturing

Reformats estimates from a fitted boral model to be in a slightly tidier format, meaning everything
is presented as a long data frame.

Usage

tidyboral(object)

Arguments

object An object of class "boral".

Details

Formatting the output into a long data frame maybe useful if one wishes to take the estimated
parameters (namely the posterior mean/median/interquartile range/standard deviation, and the lower
and upper limits of the HPD intervals), and subsequently wrangle them for presentation purposes
using packages from the tidyverse e.g., Wickham and Henry (2018), construct plots from them
using the ggplot2 package (Wickham, 2016), and so on.

It is important to note that this function is solely designed to format output from a fitted boral
model relating to the estimated parameters. It does not an additional information like model call
and MCMC samples. Please do NOT erase the original fitted model in place of this!

Value

A a list containing the following components where applicable:

lv.coefs A long format data frame containing the mean/median/standard deviation/interquartile
range of the posterior distributions of the latent variable coefficients. This also
includes the column-specific intercepts, and dispersion parameters if appropri-
ate.

lv A long format data frame containing the mean/median/standard deviation/interquartile
range of the posterior distributions of the latent variables.

lv.covparams A long format data frame containing the mean/median/standard deviation/interquartile
range of the posterior distributions for the parameters characterizing the correla-
tion structure of the latent variables when they are assumed to be non-independent
across rows.
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X.coefs A long format data frame containing the mean/median/standard deviation/interquartile
range of the posterior distributions of the column-specific coefficients relating
to X.

traits.coefs A long format data frame containing the mean/median/standard deviation/interquartile
range of the posterior distributions of the coefficients and standard deviation re-
lating to the species traits; please see about.traits.

cutoffs A long format data frame containing the mean/median/standard deviation/interquartile
range of the posterior distributions of the common cutoffs for ordinal responses
(please see the not-so-brief tangent on distributions above).

ordinal.sigma A long format data frame containing the mean/median/standard deviation/interquartile
range of the posterior distributions of the standard deviation for the random in-
tercept normal distribution corresponding to the ordinal response columns.

powerparam A long format data frame containing the mean/median/standard deviation/interquartile
range of the posterior distributions of the common power parameter for tweedie
responses (please see the not-so-brief tangent on distributions above).

row.coefs A list with each element being a long format data frame containing the mean/median/standard
deviation/interquartile range of the posterior distributions of the row effects. The
length of the list is equal to the number of row effects included i.e., ncol(row.ids).

row.sigma A list with each element being a long format data frame containing the mean/median/standard
deviation/interquartile range of the posterior distributions of the standard devi-
ation for the row random effects normal distribution. The length of the list is
equal to the number of row effects included i.e., ncol(row.ids).

ssvs.indcoefs A long format data frame containing posterior probabilities and associated stan-
dard deviation for individual SSVS of coefficients in X.

ssvs.gpcoefs A long format data frame containing posterior probabilities and associated stan-
dard deviation for group SSVS of coefficients in X.

ssvs.traitscoefs

A long format data frame containing posterior probabilities and associated stan-
dard deviation for individual SSVS of coefficients relating to species traits.

hpdintervals A list containing long format data frames corresponding to the lower and up-
per bounds of highest posterior density (HPD) intervals for all the parameters
indicated above. Please see get.hpdintervals for more details.

Warnings

• This function is solely designed to format output from a fitted boral model relating to the esti-
mated parameters. It does not an additional information like model call and MCMC samples.
Please do NOT erase the original fitted model in place of this!

Author(s)

Francis K.C. Hui [aut, cre], Wade Blanchard [aut]

Maintainer: Francis K.C. Hui <fhui28@gmail.com>
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References

• Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Springer.

• Wickham, H., & Henry, L. (2017). Tidyr: Easily tidy data with ‘spread ()’ and ‘gather ()’
functions.

See Also

boral for the fitting function on which tidyboral can be applied.

Examples

## Not run:
## NOTE: The values below MUST NOT be used in a real application;
## they are only used here to make the examples run quick!!!
example_mcmc_control <- list(n.burnin = 10, n.iteration = 100,

n.thin = 1)

testpath <- file.path(tempdir(), "jagsboralmodel.txt")

library(mvabund) ## Load a dataset from the mvabund package
data(spider)
y <- spider$abun

spiderfit_nb <- boral(y, family = "negative.binomial",
lv.control = list(num.lv = 2), row.eff = "fixed",
mcmc.control = example_mcmc_control, model.name = testpath)

spiderfit_nb_tidy <- tidyboral(spiderfit_nb)

## End(Not run)



Index

about.distributions, 3, 16, 21, 30, 33, 37,
47, 63, 67, 77, 82

about.lvs, 6, 17, 20, 47, 60, 77
about.ssvs, 8, 12, 13, 18, 19, 22, 79, 84, 85
about.traits, 9, 10, 12, 16, 18, 21, 22, 34,

38, 41, 47, 77, 78, 83, 96

boral, 3, 5, 7, 10, 13, 15, 30, 34, 37, 48, 49,
56, 59, 61, 64, 66, 68, 70, 78, 80, 83,
85, 94, 97

boral-package, 2

calc.condlogLik, 29, 35, 39, 65
calc.logLik.lv0, 31, 33, 38, 39
calc.marglogLik, 24, 31, 35, 36, 69
calc.varpart, 26, 40
coefsplot, 25, 43
create.life, 45

ds.residuals, 52, 55, 87, 88

fitted.boral, 53, 54, 87, 88

get.dic, 55, 66
get.enviro.cor, 25, 57, 73
get.hpdintervals, 23, 59, 96
get.mcmcsamples, 62
get.measures, 17, 23, 31, 63, 67, 68, 70
get.more.measures, 56, 66, 67
get.residual.cor, 21, 25, 58, 71

jitter, 74, 87

lvsplot, 20, 25, 73

make.jagsboralmodel, 76, 85
make.jagsboralnullmodel, 80, 81

plot.boral, 53, 55, 86
predict.boral, 26, 88
print.boral (boral), 15

print.summary.boral (summary.boral), 93

simulate.boral (create.life), 45
summary.boral, 25, 93

tidyboral, 95

98


	boral-package
	about.distributions
	about.lvs
	about.ssvs
	about.traits
	boral
	calc.condlogLik
	calc.logLik.lv0
	calc.marglogLik
	calc.varpart
	coefsplot
	create.life
	ds.residuals
	fitted.boral
	get.dic
	get.enviro.cor
	get.hpdintervals
	get.mcmcsamples
	get.measures
	get.more.measures
	get.residual.cor
	lvsplot
	make.jagsboralmodel
	make.jagsboralnullmodel
	plot.boral
	predict.boral
	summary.boral
	tidyboral
	Index

