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Bojan Mihaljević, Concha Bielza, Pedro Larrañaga
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Abstract

Many algorithms for learning discrete Bayesian network classifiers from data have been devel-
oped so far. Yet, only a handful are available for the R statistical environment. The bnclassify
package helps filling this gap by providing such learning algorithms. Besides the naive Bayes,
it implements a well-known adaptation of the Chow-Liu algorithm and multiple variants of the
greedy hill-climbing search, producing one-dependence estimators and semi-naive Bayes models.
These algorithms can maximize either data-intrinsic or wrapper network scores. bnclassify

also implements fast prediction for complete data and cross-validation. This vignette provides
details on the implemented functionalities and serves as a reference for understanding them.
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1 Introduction

Many algorithms for learning Bayesian network classifiers [Friedman et al., 1997] from data have
been developed over the last 40 years [Bielza and Larrañaga, 2014]. However, only a handful are
available in the R environment for statistical computing [R Core Team, 2015]. The bnclassify

package helps filling this gap by implementing state-of-the-art algorithms for learning discrete
Bayesian network classifiers, including both structure and parameter learning methods, as well
as functions for using these classifiers for prediction, assessing their predictive performance, and
inspecting and analyzing their properties.

2 Package overview

Structure learning algorithms:

• Naive Bayes [Minsky, 1961]

• Chow-Liu’s algorithm for one-dependence estimators (CL-ODE) [Friedman et al., 1997]

• Forward sequential selection and joining (FSSJ) [Pazzani, 1996]

• Backward sequential elimination and joining (BSEJ) [Pazzani, 1996]

• Hill-climbing tree augmented naive Bayes (TAN-HC) [Keogh and Pazzani, 2002]

• Hill-climbing super-parent tree augmented naive Bayes (TAN-HCSP) [Keogh and Pazzani,
2002]

Parameter learning methods:

• Bayesian and maximum likelihood estimation

• Attribute-weighted naive Bayes (AWNB) [Hall, 2007]

• Model averaged naive Bayes (MANB) [Dash and Cooper, 2002]

Model evaluating:

• Cross-validated estimate of accuracy
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• Log likelihood

• Akaike information criterion (AIC) [Akaike, 1974]

• Bayesian information criterion (BIC) [Schwarz, 1978]

Predicting:

• Fast prediction for augmented naive Bayes models with complete data

In addition, it implements functions for querying models properties, enables network structure plot-
ting through the Rgraphviz package [Hansen et al., 2015], uses gRain for inference with incomplete
data, and provides additional utility functions.

3 Background

3.1 Bayesian networks

A Bayesian network is a pair B = (G, θ) which encodes a joint distribution over a random vector
X = (X1, . . . , Xm). The directed acyclic graph G (its structure), which has a node per each variable
in X, encodes conditional independences among triplets of variables (e.g., X1 is independent of X3

given X2), breaking the joint distribution into multiple smaller, local ones, over subsets of variables.
The parameters θ specify the local distributions. The joint probability distribution is factorized as

P (X) =
m∏
i=1

P (Xi | Pa(Xi)),

where Pa(Xi) is the set of parents of Xi in G and m is the number of variables.

When learning a Bayesian network from data we are given a data set D = {x1, . . . ,xN} of N
observations of X from which we aim to learn G and θ. Learning θ is generally straightforward
given a structure. To learn the structure, G, there are basically two methods: by testing for
conditional independence among triplets of variables (e.g., is X1 independent of X3 given X2?)
and by searching in the space of structures guided by a network quality score. In general, learning
Bayesian networks by searching in the structure space is NP-hard [Chickering et al., 2004] and thus
a plethora of algorithms exist for the task, both specific for Bayesian networks, such as the K2
[Cooper and Herskovits, 1992], and general purpose search algorithms, such as genetic algorithms.

Learning the parameters θ of a local conditional distribution θijk = P (Xi = k | Pa(Xi) = j) is
relatively straightforward. Assuming a Dirichlet prior over θ with all hyperparameters equal to α,
and fully observed data, we get the Bayesian parameter estimates in closed form,

θijk =
Nijk + α

N·j· + riα
, (1)

where Nijk is the number of instances in D in which Xi = k and Pa(Xi) = j, N·j· is the number of
instances in which Pa(Xi) = j, while ri is the cardinality of Xi. When α = 0, Equation (1) yields
the maximum likelihood estimate of θijk.

3



3.2 Bayesian network classifiers

A Bayesian network classifier is a Bayesian network that is used for classifying instances into classes
(e.g., classifying images as tumor or not tumor). Thus, we distinguish between predictor variables
(or features), which describe the objects to classify, and which we label as X, and a discrete class
variable C. In this setting we are learning from a supervised data set D = {(x1, c1), . . . , (xN , cN )}.

A Bayesian network classifiers encodes the joint over X and C as

P (X, C) = P (C | Pa(C))
n∏

i=1

P (Xi | Pa(Xi)),

where n = m − 1 is the number of predictors. The classifier assigns an instance x to the most
probable class:

c∗ = arg max
c

P (c | x) = arg max
c

P (x, c).

Many search algorithms that produce Bayesian network classifiers traverse a restricted search space,
considering only structures where the class node is a root node and parent of each feature. These are
augmented naive Bayes [Friedman et al., 1997] models and all structures in Figure 1 are examples
of it. The best known example is the naive Bayes [Minsky, 1961] (Figure 1a), a special case with
no augmenting arcs (i.e., arcs between the features). Thus, the augmented naive Bayes factorizes
the joint distribution as

P (X, C) = P (C)

n∏
i=1

P (Xi | Pa(Xi)), (2)

where C ∈ Pa(Xi) for all Xi.

4 Structure learning

4.1 Models

All models produced by bnclassify are augmented naive Bayes models. These can be organized
hierarchically according to their complexity.

The simplest is the naive Bayes, which assumes that the predictors are independent given the
class (Figure 1a). One-dependence estimators (ODE) allow each predictor to depend on at most
one other predictor. A well-known example is the tree augmented naive Bayes (TAN) [Friedman
et al., 1997], which has n− 1 augmenting arcs, forming a tree in the predictors’ subgraph (Figure
1b). Another variant is the forest augmented naive Bayes (FAN), with possibly less than n − 1
augmenting arcs (Figure 1c). The semi-naive model (Semi) [Pazzani, 1996] allows for more complex
dependencies among features. It partitions the predictor set into subsets that are fully dependent
within them but mutually independent among them given the class. In other words, it forms
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a complete directed graph across each feature subset, with no arcs among the different subsets
(Figure 1d).1 The semi-naive Bayes model does not necessarily include all features (X3 is omitted
from the model in Figure 1d), i.e., it allows for feature selection [Liu and Motoda, 2007] embedded
in the process of model construction.

C

X1 X2 X3 X4 X5 X6

(a) p(c,x) = p(c)p(x1|c)p(x2|c)p(x3|c)p(x4|c)
p(x5|c)p(x6|c)

C

X1 X2 X3 X4 X5 X6

(b) p(c,x) = p(c)p(x1|c, x2)p(x2|c, x3)p(x3|c, x4)p(x4|c)
p(x5|c, x4)p(x6|c, x5)

C

X1 X2 X3 X4 X5 X6

(c) p(c,x) = p(c)p(x1|c, x2)p(x2|c)p(x3|c)p(x4|c)
p(x5|c, x4)p(x6|c, x5)

C

X1 X2 X3 X4 X5 X6

(d) p(c,x) = p(c)p(x1|c, x2)p(x2|c)p(x4|c)
p(x5|c, x4)p(x6|c, x4, x5)

Figure 1: Augmented naive Bayes models of different complexity produced by the bnclassify

package. (a) A naive Bayes; (b) a tree augmented naive Bayes; (c) a forest augmented naive Bayes;
(d) a semi-naive Bayes. Here X3 is omitted from the model.

4.2 Fixed structure

The naive Bayes has a fixed structure and its learning amounts to estimating its parameters.

4.3 Chow-Liu for one-dependence estimators

The CL-ODE algorithm by [Friedman et al., 1997] adapts the Chow-Liu [Chow and Liu, 1968]
algorithm in order to find the maximum likelihood TAN model in time quadratic in n. Since
the same method can be used to find ODE models which maximize decomposable penalized log-
likelihood scores, bnclassify uses it to maximize Akaike’s information criterion (AIC) [Akaike,
1974] and BIC [Schwarz, 1978]. While maximizing likelihood will always render a TAN, i.e., a
network with n− 1 augmenting arcs, maximizing penalized log-likelihood may render a FAN, since
the inclusion of some arcs might degrade the penalized log-likelihood score.

Note that when data is incomplete bnclassify does not necessarily return the optimal (with
respect to penalized log-likelihood) ODE. Namely, that requires the computationally expensive cal-
culation of the sufficient statistics Nijk which maximize parameter likelihood; instead, bnclassify
approximates these statistics with the available case analysis heuristic (see Section 5).

1Note that, equivalently to this formulation, the original paper proposes forming ‘supernodes’ by joining features
by means of the Cartesian product of their domains; these supernodes correspond to the complete subgraphs across
predictor nodes in our formulation. There are two such supernodes in Figure 1d: (X1, X2) and (X4, X5, X6).
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4.4 Greedy hill-climbing

bnclassify implements four greedy hill-climbing algorithms for learning Bayesian network classi-
fiers.

The following produce a TAN model:

• TAN-HC

• TAN-HCSP

Both algorithms start from a naive Bayes structure and add arcs until there is no improvement in
network score. TAN-HCSP uses a reduced search space and should be less time-consuming.

The following algorithms produce a semi-naive Bayes model:

• BSEJ

• FSSJ

BSEJ starts from a naive Bayes structure and adds augmenting arcs and removes features from
the model until no improvement in network score. On the contrary, FSSJ starts from a structure
containing just the class node and proceeds by incorporating features features and augmenting arcs.

All greedy algorithms maximize the cross-validated estimate of accuracy as objective function, i.e.,
they are wrapper algorithms.

5 Parameter learning

5.1 Bayesian parameter estimation

With fully observed data, bnclassify estimates parameters with maximum likelihood or Bayesian
estimation, according to Equation (1), with all prior hyperparameters α = a for a specified a
(provided by the user). When N·j· = 0 and a = 0, that is, when the model’s probability of
observing Pa(Xi) = j is 0, bnclassify assigns a uniform distribution to P (Xi | Pa(Xi) = j).

When data is incomplete, the parameters of local distributions are no longer independent and we
cannot separately maximize the likelihood of each one as in Equation 1. Optimizing (heuristically)
the likelihood would require a time-consuming algorithm like expectation maximization [Dempster
et al., 1977]. Instead, we use available case analysis [Pigott, 2001] and estimate the parameters
independently, substituting N·j· in Equation 1 with Nij· =

∑ri
k=1Nijk, i.e., with the count of

instances in which Pa(Xi) = j and Xi is observed, regardless of the observation of other variables.
That is,

θijk =
Nijk + α

Nij· + riα
. (3)

Thus, the parameter estimates are not maximum likelihood nor Bayesian when data is incomplete.
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5.2 Attribute-weighted naive Bayes

The AWNB parameter estimation method is intended for the naive Bayes but in bnclassify it
can be applied to any model. It exponentiates the conditional probability of a predictor,

P (X, C) ∝ P (C)
n∏

i=1

P (Xi | Pa(Xi))
wi ,

reducing or maintaining its effect on the class posterior, since wi ∈ [0, 1] (note that a weight wi = 0
omits Xi from the model, rendering it independent from the class.). This is equivalent to updating
parameters of θijk given by Equation (3) as

θAWNB
ijk =

θwi
ijk∑ri

k=1 θ
wi
ijk

,

and plugging those estimates into Equation (2). Weights wi are computed as

wi =
1

M

M∑
t=1

1√
dti
,

where M is the number of bootstrap [Efron, 1979] subsamples from D and dti is the minimum
testing depth of Xi in an unpruned classification tree learned from the t-th subsample (dti = 0 if
Xi is omitted from t-th tree).

5.3 Exact model averaging for naive Bayes

The MANB parameter estimation method corresponds to exact Bayesian model averaging over the
naive Bayes models obtained from all 2n subsets of the n features, yet it is computed in time linear
in n. The implementation in bnclassify follows the online appendix of Wei et al. [2011], extending
it to the cases where α 6= 1 in Equation (3).

The estimate for a particular parameter θMANB
ijk is:

θMANB
ijk = θijkP (GC 6⊥⊥Xi

| D) + θikP (GC⊥⊥Xi
),

where P (GC 6⊥⊥Xi
| D) is the local posterior probability of an arc from C to Xi, whereas P (GC⊥⊥Xi

) =
1 − P (GC 6⊥⊥Xi

| D) is that of the absence of such an arc (which is equivalent to omitting Xi from
the model), while θijk and θik are the Bayesian parameter estimates obtained with Equation (3)
given the corresponding structures (i.e., with and without the arc from C to Xi).

Using Bayes’ theorem,

P (GC 6⊥⊥Xi
| D) =

P (GC 6⊥⊥Xi
)P (D | GC 6⊥⊥Xi

)

P (GC 6⊥⊥Xi
)P (D | GC 6⊥⊥Xi

) + P (GC⊥⊥Xi
)P (D | GC⊥⊥Xi

)
.
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Assuming a Dirichlet prior with hyperparameter α = 1 in Equation 3, Equation (6) and Equation (7)
in the online appendix of Wei et al. [2011] give formulas for P (D | GC 6⊥⊥Xi

) and P (D | GC⊥⊥Xi
):

P (D | GC 6⊥⊥Xi
) =

rC∏
j=1

(ri − 1)!

(Nij· + ri − 1)!

ri∏
k=1

Nijk!,

P (D | GC⊥⊥Xi
) =

(ri − 1)!

(Ni + ri − 1)!

ri∏
k=1

Ni·k!,

where Ni·k =
∑rC

j=1Nijk. Noting that the above are special cases of Equation (8) in Dash and
Cooper [2002], we can generalize this for any hyperparameter α > 0 as follows:

P (D | GC 6⊥⊥Xi
) =

rC∏
j=1

Γ(riα)

Γ(Nij + riα)

ri∏
k=1

Γ(Nijk + α)

Γ(α)
,

and

P (D | GC 6⊥⊥Xi
) =

Γ(riα)

Γ(Ni + riα)

ri∏
k=1

Γ(Nik + α)

Γ(α)
.

Following Wei et al. [2011], bnclassify asumes that the local prior probability of an arc from the
class to a feature Xi, P (GC 6⊥⊥Xi

), is given by the user. The prior of a naive Bayes structure G, with
arcs from the class to a out of n, features and no arcs to the remaining n− a features is, then,

P (G) = P (GC 6⊥⊥Xi
)a(1− P (GC 6⊥⊥Xi

))(n−a). (4)

Note that bnclassify computes the above in logarithmic space to reduce numerical errors.

6 Cross-validation

bnclassify implements stratified cross-validation. It is possible to cross-validate the entire two-
step learning process –learning the structure and the parameters– or parameter learning alone,
keeping the structure fixed across the different subsamples.

7 Prediction

bnclassify implements prediction for augmented naive Bayes models with complete data. This
amounts to multiplying the corresponding entries in the local distributions and is performed effi-
ciently, with computations done in logarithmic space to reduce numerical error.

With incomplete data this cannot be done and therefore bnclassify uses the gRain package
[Højsgaard, 2012] to perform exact inference. Such inference is time-consuming and, therefore,
wrapper algorithms can be very slow when applied on incomplete data sets.
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8 Future work

Future work involves handling real-valued data, via, for example, conditional Gaussian models.
Straightforward extensions include additional variants of the greedy hill-climbing algorithm, such
as the k-DB [Sahami, 1996] algorithm, or adding more flexibility to the hill-climbing algorithm,
such as enabling the choice of the initial structure (e.g., whether a naive Bayes or a model with
no arcs), when applicable. Useful parameter learning methods to implement include Zaidi et al.
[2013].
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