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Vignette for ‘blocksdesign’ package  

Introduction 
Comparative experiments in agriculture and biology involve comparisons between unstructured 

treatments such as varieties or comparisons between factorial treatments such as combinations of 

different fertilizer types or comparisons between quantitative level treatments such as rates of 

fertilizer application. Treatment design for unstructured treatments is usually pre-determined by the 

requirements of the experiment but the best choice of design for a set of factorial or functional 

treatments can be complex and may require computer methods. A common feature of agricultural and 

biological experiments is the high background variability of individual plots or units and the effective 

control of background variability is usually essential for efficient estimation of treatment effects. The 

most common method for the control of non-treatment variability is to arrange treatments into 

homogeneous blocks of plots so that the precision of comparison of treatments within individual 

blocks is improved. Good block design may also require computer methods and the 

‘blocksdesign’package is intended to provide an integrated general purpose design package for both 

treatment and block design, especially for field and crop experiments. 

Treatment designs 

Unstructured treatments 

Unstructured treatments have no underlying treatment model and the only meaningful comparisons 

are pairwise differences between individual pairs of treatments. Treatment design for unstructured 

treatments is chiefly concerned with the choice of individual treatments and individual treatment 

replication and these choices usually depend on the purposes and economics of a trial. Replication 

need not be equal for all treatments and often it is desirable to increase the replication on certain 

individual treatments, for example when certain treatments are controls or standards against which the 

remaining treatments are to be compared. Sometimes, due say to lack of resources or lack of 

experimental material, some treatments may be un-replicated (conventionally they have a single 

‘replication’). Usually, the choice of replication will be decided by the experimenter on pragmatic 

grounds and it is important that any good block design algorithm should be able to provide an 

efficient block design for any arbitrary pattern of treatment replication. 

Structured treatments 

Structured treatments have an underlying model such as a response surface model for quantitative 

level factors or a factorial model for qualitative level factors. Response surface designs and factorial 

designs assume an empirical linear model for treatment effects and efficient design is usually based on 

the optimization of a design criterion derived from the information matrix of the assumed empirical 

linear model. The most general design criterion is D-optimality (see Atkinson et. al. 2007), which 

maximizes the determinant of the design information matrix. D-optimality is the criterion used by 

‘blocksdesign’ for the numerical optimization of all general, non-orthogonal, treatment designs.  
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Treatment design algorithm 

The treatment design algorithm used by ‘blocksdesign’ finds a D-optimal treatment design by 

selecting an optimal set of treatment combinations from a candidate set of treatments. The candidate 

set contains all feasible treatment combinations that might occur in the final optimized design and the 

design algorithm selects those treatment combinations that optimize the treatment information matrix. 

Treatments are selected from the candidate set with replacement except when the size of the candidate 

set exactly equals the size of the required design and the treatments model is null in which case the 

entire candidate set is selected as the treatment design. Allowing the entire candidate set to be selected 

allows any arbitrary pre-selected design to be used as a treatment design. For example, if a design 

with arbitrary replication of individual treatments is required, then using that design as the candidate 

set and using a null treatment model will force the full candidate set to be used as the required design 

and will preserve the required replication. If selection with replacement is required, it is merely 

necessary to define a non-null treatments model. If the candidate set is different in size from the 

required design, selection with replacement is automatic. 

Treatment models 

The treatments model can be either a single formula for a single design matrix or a compound formula 

for two or more design matrices. A compound formula contains one or more occurrences of a splitting 

operator | which splits-off a partial design formula on the left-hand side of each |. Assuming the left-

hand part of each split is a well-defined model design formula and replacing all remaining | by + in 

each partial design formula gives a hierarchical set of design matrices for sequential model fitting. 

The advantage of sequential model fitting is that it provides improved flexibility for fitting factors or 

variables of different status or importance and allows a wider range of choices of optimized design for 

different situations (see examples below). Assuming each formula in a hierarchical set contains at 

least one variable or factor not contained in any preceding formula, the resulting set of design 

matrices can be conditionally optimized from the smallest to the largest.  

The hierarchical fitting process provides flexibility for treatment design optimization and allows 

model terms to be fitted in order of importance. For example, if a treatment design has a set of one or 

more qualitative level factors such as varieties in a field trial together with a number of interacting 

polynomial fertilizer factors it may be desirable to ensure that all the varieties are as near equally 

replicated as possible. However, global optimization of a single design matrix is not guaranteed to 

give an equal or balanced representation of all individual factor levels in a design. To ensure equal or 

near-equal representation for each variety, it may be desirable to fit the variety design first to ensure a 

balanced allocation of varieties. Then the full design can be fitted by the full model formula but with 

the variety factor levels held constant to maintain the required variety design.  

Examples 

The following examples are constructed by the design{blocksdesign} function which is a general-

purpose design function for general qualitative or quantitative level factorial models. The design 

inputs are a candidate set of treatments, a treatments model and a set of block factors. The design size 

is determined by the length of the block factors, if defined, otherwise by the length of the candidate 

set. If the number of candidate treatments exactly equals the design size and the treatments_model is 

null, the full candidate set is selected, otherwise selection with replacement is used.  
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Example 1a: Treatment design for 2 varieties x 3 levels of N x 3 levels of K in 12 plots assuming a 

model with first-order interaction effects. This example optimizes the whole treatment design 

simultaneously using a single model formula 

## single treatment model formula; 
treatments = expand.grid(Variety = factor(rep(1:2)), N = 1:3, K = 1:3); 
variety = "~ Variety"; 
model = " ~ (Variety + N + K)^2  + I(N^2) + I(K^2)"; 
blocks=data.frame(main=gl(1,12)); 
design(treatments,blocks,treatments_model=model,searches=10);  
 
$treatments_model 
                            Treatment.model Model.DF D.Efficiency 
1  ~ (Variety + N + K)^2  + I(N^2) + I(K^2)        8     1.013173 
 
$treatments 
   Variety N K freq 
1        1 1 1    1 
2        1 1 2    1 
3        1 1 3    1 
4        1 2 1    1 
5        1 3 1    1 
6        1 3 2    1 
7        1 3 3    1 
8        2 1 1    1 
9        2 1 3    1 
10       2 2 2    1 
11       2 3 1    1 
12       2 3 3    1 
_________________________________________________________________________________________ 
 
 
 

Example 1b: Treatment design for 2 varieties x 3 levels of N x 3 levels of K in 12 plots assuming a 

model with first-order interaction effects. This example optimizes the variety design first and then 

optimizes the full treatment design with the variety factor effects held fixed 

## sequentially fitted treatment model formulae; 
model = " ~ Variety | (Variety + N + K)^2  + I(N^2) + I(K^2)"; 
design(treatments,blocks,treatments_model=model,searches=10);  
 
$treatments_model 
                                      Treatment.model Model.DF D.Efficiency 
1                                          ~ Variety         1            1 
2  ~ Variety + (Variety + N + K)^2  + I(N^2) + I(K^2)        8    0.9955825 
 
$treatments 
   Variety N K freq 
1        1 1 1    1 
2        1 1 2    1 
3        1 1 3    1 
4        1 2 3    1 
5        1 3 1    1 
6        1 3 3    1 
7        2 1 1    1 
8        2 1 3    1 
9        2 2 2    1 
10       2 2 3    1 
11       2 3 1    1 
12       2 3 3    1 
_________________________________________________________________________________________ 

 

Example 1a gives an unequal 7 + 5 split of variety plots which is likely to be undesirable whereas 

Example 1b forces a 6 + 6 split. The D-efficiency of the full model in Example 1a is slightly higher 

than the D-efficiency of the full model in Example 1b but for most practical purposes Example 1b will 

be the preferred design 
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Example 2a Second-order response surface for three 3-level factors assuming a 10-point design 

treats = expand.grid(A = 1:3, B = 1:3, C = 1:3);  

block = data.frame(main=gl(1,10));  

model = " ~ ( A + B + C)^2 + I(A^2) + I(B^2) + I(C^2)"; 

design(treats,block,treatments_model=model); 

 
                               Treatment.model Model.DF D.Efficiency 
1  ~ ( A + B + C)^2 + I(A^2) + I(B^2) + I(C^2)        9    0.9262674 
 
$treatments 
   A B C freq 
1  1 1 1    1 
2  1 1 3    1 
3  1 2 2    1 
4  1 3 1    1 
5  2 1 2    1 
6  2 2 1    1 
7  2 3 3    1 
8  3 1 1    1 
9  3 2 3    1 
10 3 3 1    1 
___________________________________________________________________________________________________ 

 

Example 2a shows the D-optimum choice of 10 treatments from a complete factorial design for three 

3-level factors assuming a second-order response surface model. The second-order model has nine 

parameters (and a mean) therefore a design based on only 10 point is saturated and is not useful for 

model checking. The D-efficiency has no special meaning as the full candidate set is not a natural 

choice of design for this treatment model.  

 

Example 2b Same design as 2a but with sequential model fitting. 

Input 
 
model = " ~ A + I(A^2) | (A + B)^2 + I(B^2) | (A + B + C)^2 + I(C^2)"; 

repeat {z=design(treats,block,treatments_model=model); 

if (z$treatments_model[3,3]>0.92) break}; print(z); 

 

                                              Treatment.model Model.DF D.Efficiency 
1                                               ~ A + I(A^2)         2    0.9905782 
2                          ~ A + I(A^2) + (A + B)^2 + I(B^2)         5    0.9931412 
3  ~ A + I(A^2) + (A + B)^2 + I(B^2) + (A + B + C)^2 + I(C^2)        9    0.9262674 
 
$treatments 
   A B C freq 
1  1 1 1    1 
2  1 1 3    1 
3  1 2 2    1 
4  1 3 1    1 
5  2 1 2    1 
6  2 2 1    1 
7  2 3 3    1 
8  3 1 1    1 
9  3 2 3    1 
10 3 3 1    1 
__________________________________________________________________________________________________ 

Example 2b shows sequential fitting of treatment models for the three treatment factors A, B and C in 

that order. In this example, the D-efficiency of the best full sequential model is equal to the D-

efficiency of the full simultaneous model but only after a large number of complete replicate searches.   
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Nested block designs 

 In many situations, comparability between treatments can be improved by grouping the experimental 

units into blocks. Blocks should be as homogeneous as possible and the choice of blocks design can 

be critical for the success of an experiment. The most basic type of block design is the complete 

randomized blocks design where each block contains one or more complete replicate sets of 

treatments. Complete randomized blocks estimate all treatment effects fully within blocks and are 

usually the best choice for small experiments. However, for large experiments, variability within 

complete blocks can be large and then it may be beneficial to further sub-divide complete replicate 

block into smaller nested sub-blocks to improve the precision of the within-sub-block comparisons. 

Nested blocks 

Complete replicate blocks with a single level of nesting are called resolvable incomplete blocks and 

are widely used in practical research. Treatment information is estimated both within and between the 

incomplete blocks and a fully informative analysis requires the combination of within and between-

block treatment information using some form of mixed-model analysis, see, for example, Piepho and 

Edmondson (2018). The aim of good block design is to maximize the precision of estimation of 

treatment effects and for a single level of nesting block designs can be optimized by maximizing the 

information content of the incomplete blocks design. Various design criteria have been considered for 

block designs (see, for example, John & Williams 1998) but the most general design criterion is D-

optimality. The D-optimality criterion maximizes the determinant of the design information matrix 

and is the criterion of choice used by the ‘blocksdesign’ algorithm. 

Large designs 

Although resolvable block designs with a single level of nesting work well for small or moderate 

numbers of experimental units, a single level of nesting may be inadequate for large experiments such 

as field variety trials which may involve scores or hundreds of treatments. Small or moderate sized 

experiments with nested blocks of reasonable size will confound only a small amount of treatment 

information between blocks and should have good efficiency even when the inter- to intra-block 

variance ratio is high. For large sized experiments with heterogeneous variability, however, if the 

nested blocks are small enough to give good within-block homogeneity of variance, the inter-block 

space will be large and heterogeneous and will confound a substantial amount of treatment 

information between blocks. In that situation, the efficiency of recovery of inter-block treatment 

information will be low and the overall efficiency of the block design will be sub-optimal. 

Multi-level nesting 

Multi-level nesting gives a series of nested blocks where the nested inter-block space at each level of 

nesting can be assumed to have good homogeneity of variance and where only a small amount of 

useful treatment information is confounded within each nested inter-block space. In many situations, 

the variability will decrease with depth of nesting and in those situations top-down optimization 

should ensure that the minimum possible amount of treatment information is confounded within each 

inter-block space taken in order from the top down. A mixed model analysis of a multi-level nested 

block design using modern mixed model design is straightforward and allows the proper weighted 

combination of treatment information from each inter-block space.  
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Examples 

The following examples use the blocks{blocksdesign} function which is a special recursive function 

for simple multi-level nested block designs for unstructured treatment sets. The function generates 

designs for treatments with arbitrary levels of replication and arbitrary depth of nesting and each 

successive set of blocks is optimized within the levels of each preceding set of blocks using 

conditional D-optimality. Special block designs such as lattice designs or latin or Trojan square 

designs are constructed algebraically using mutually orthogonal Latin squares (MOLS). Designs 

based on prime-power MOLS require the ‘crossdes’ package, see Sailer (2013). The block sizes are 

chosen automatically by the algorithm dependent on the block and treatment design and the block 

sizes for any particular set of blocks will always be as nearly equal as possible and will never differ by 

more than one unit. The outputs from the blocks function include a data frame showing the allocation 

of treatments to blocks for each plot of the design and a table showing the achieved D- and A-

efficiency factors for each set of nested blocks together with A-efficiency upper bounds, where 

available. A plan showing the allocation of treatments to blocks in the bottom level of the design is 

also included in the output. See John and Williams (1998) for a definition of A-efficiency.   

 

 

Example 3. Two replicates of 128 treatments with two main blocks and four levels of nesting with 

two nested sub-blocks in each level of nesting. 

In this example, the attained efficiencies of the first five levels of nesting are close to or equal to their 

upper bounds which shows that these nested designs are close to optimal. The agreement for the 

bottom level of nesting is less good but it is known that the reliability of efficiency bounds decreases 

as the efficiency decreases so the reliability of the bound for the bottom level of nesting is probably 

poor. In summary, this example shows that for equi-replicate design with regular block sizes the 

efficiency of multi-level nesting is close to the expected upper-bound suggesting that there is little 

loss of efficiency due to the constraints imposed by multi-level blocking. 

 
blocks(treatments = 128, replicates =  2, blocks =  c(2, 2, 2, 2, 2, 2)); 
 
$blocks_model 
    Level Blocks D-Efficiency A-Efficiency   A-Bound 
1 Level_1      2            1            1         1 
2 Level_2      4    0.9891437    0.9844961 0.9883226 
3 Level_3      8    0.9677833    0.9548872 0.9601815 
4 Level_4     16    0.9264364    0.9007092 0.9057052 
5 Level_5     32    0.8419961     0.786915 0.7898712 
6 Level_6     64    0.6654802    0.5427813  0.566227 
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$Plan 
    Level_1  Level_2  Level_3  Level_4  Level_5  Level_6 Blocks.Plots:   1   2   3   4 
1  Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_1                79  24  33  14 
2  Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_2                29  42  34 115 
3  Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_1                18  41  94   5 
4  Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_2                26  21  30  39 
5  Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_1                36 112  82  72 
6  Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_2                81 110 106  78 
7  Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_1                65 113  23  63 
8  Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_2                99   8 125  84 
9  Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_1                52  58 117 127 
10 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_2                11 116  19  10 
11 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_1                91 126  59  75 
12 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_2               104 107   4  64 
13 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_1                85  98  28 123 
14 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_2                49 120  16 118 
15 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_1                71 100  67 102 
16 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_2                68  17  95  77 
17 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_1                87  53   2  69 
18 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_2                61 108  76  66 
19 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_1                96  88  15 128 
20 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_2                31  54  92  62 
21 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_1               101  25  37 109 
22 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_2                89  73 111  43 
23 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_1                22  86  97  13 
24 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_2                74   3  83  90 
25 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_1                56   1  38 105 
26 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_2                45  60 103  47 
27 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_1                57 121  44  35 
28 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_2                93   6  27   7 
29 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_1                46   9  55  20 
30 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_2               114  32 122  40 
31 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_1               119  80 124  50 
32 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_2                51  70  12  48 
33 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_1                64  16 101  94 
34 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_2                54   9  61  22 
35 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_1                81  85  20  41 
36 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_2               117   8  47   7 
37 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_1                36  56  69  31 
38 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_2                19  32  98 124 
39 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_1               105  25 123  42 
40 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_2                84  91  90  18 
41 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_1               108  30  33 109 
42 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_2                77  38  58 128 
43 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_1                63  55  70   1 
44 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_2               126  89 112  67 
45 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_1               100  97  28  60 
46 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_2                96 119   2  99 
47 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_1                72  13  11  39 
48 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_2                48  45  14 107 
49 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_1                86 118  29  15 
50 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_2               127  35  37  82 
51 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_1               102 110  27  50 
52 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_2                24  46  88  75 
53 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_1               121  66 103  95 
54 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_2               122  52   4   3 
55 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_1                78  68  21  74 
56 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_2                40  79  23  62 
57 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_1               120  43  44 106 
58 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_2                26  71  12  53 
59 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_1                73 104  80  92 
60 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_2                 5   6 116 113 
61 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_1               111 114  51  34 
62 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_2                57  87  65  83 
63 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_1                49  10 125  76 
64 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_2                59  93  17 115 
 
 
 
 
___________________________________________________________________________________________ 
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Example 4. Two replicates of 50 treatments (1 to 50) and 50 replicates of one treatment (51) with two 

main replicate blocks of size 75 and 25 blocks of size 3 nested within each main block. Treatment 51 

is a control treatment and should occur once in every nested block. 

Inputs 
blocks(treatments=c(50,1),replicates=c(2,50),blocks=c(2,25)); 
 
Outputs 
$blocks_model 
    Level Blocks D-Efficiency A-Efficiency A-Bound 
1 Level_1      2            1            1    <NA> 
2 Level_2     50    0.6358266    0.5909988    <NA> 
 
$Plan 
    Level_1   Level_2 Blocks.Plots:  1  2  3 
1  Blocks_1  Blocks_1               37 12 51 
2  Blocks_1  Blocks_2               20  1 51 
3  Blocks_1  Blocks_3               38 51 17 
4  Blocks_1  Blocks_4                9 51 32 
5  Blocks_1  Blocks_5               19 26 51 
6  Blocks_1  Blocks_6               51 50 48 
7  Blocks_1  Blocks_7               31 43 51 
8  Blocks_1  Blocks_8               22 51  8 
9  Blocks_1  Blocks_9               51 18 10 
10 Blocks_1 Blocks_10               51 36 11 
11 Blocks_1 Blocks_11               29 51 13 
12 Blocks_1 Blocks_12               51  2 42 
13 Blocks_1 Blocks_13               47 16 51 
14 Blocks_1 Blocks_14                6 51  4 
15 Blocks_1 Blocks_15               39 28 51 
16 Blocks_1 Blocks_16               33 51 27 
17 Blocks_1 Blocks_17                7 40 51 
18 Blocks_1 Blocks_18               51 25 45 
19 Blocks_1 Blocks_19               24 46 51 
20 Blocks_1 Blocks_20               44 51 35 
21 Blocks_1 Blocks_21               51 21 30 
22 Blocks_1 Blocks_22               51  3 23 
23 Blocks_1 Blocks_23               34 51 15 
24 Blocks_1 Blocks_24               51 49 41 
25 Blocks_1 Blocks_25               51 14  5 
26 Blocks_2  Blocks_1               41  4 51 
27 Blocks_2  Blocks_2               10 29 51 
28 Blocks_2  Blocks_3               50 16 51 
29 Blocks_2  Blocks_4                6 51 21 
30 Blocks_2  Blocks_5               24 31 51 
31 Blocks_2  Blocks_6               20 51 22 
32 Blocks_2  Blocks_7               32 51 47 
33 Blocks_2  Blocks_8               45 51  3 
34 Blocks_2  Blocks_9               46 19 51 
35 Blocks_2 Blocks_10               38 28 51 
36 Blocks_2 Blocks_11               51 26 40 
37 Blocks_2 Blocks_12               23 51 11 
38 Blocks_2 Blocks_13               51 35 33 
39 Blocks_2 Blocks_14               48 18 51 
40 Blocks_2 Blocks_15                1 51 15 
41 Blocks_2 Blocks_16                5 27 51 
42 Blocks_2 Blocks_17               17 42 51 
43 Blocks_2 Blocks_18               13 51 25 
44 Blocks_2 Blocks_19               36 44 51 
45 Blocks_2 Blocks_20                2 51 43 
46 Blocks_2 Blocks_21               49 51 34 
47 Blocks_2 Blocks_22               12 51 14 
48 Blocks_2 Blocks_23                7 30 51 
49 Blocks_2 Blocks_24               39 51  9 
50 Blocks_2 Blocks_25               37  8 51 
___________________________________________________________________ 
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Factorial block designs 

Sometimes it can be advantageous to use a fully crossed factorial block design. In field trials, for 

example, factorial row-and-column blocks are sometimes used to accommodate physical rows and 

columns in a field layout. Factorial blocks are often assumed to fit a simple additive main effects 

model but additivity of main effects is a very strong assumption and may not be fully valid for blocks 

with many crossed levels. 

Polynomial block models 

One approach with spatial designs such as row-and-column field trials is to fit a model with low-order 

polynomial interactions between rows and columns (see Edmondson R. N. 1993).  The ‘blocksdesign’ 

package assumes block effects are qualitative therefore polynomial block effects cannot be fitted 

either by the ‘blocksdesign::blocks’ function or by the ‘blocksdesign::design function. However, an 

alternative approach is to fit the dual of the design regarding the factorial row and column blocks and 

the linear rows by linear columns interaction effect as treatments and the original treatments as 

blocks. As the original treatments are additive, the dual blocks are also additive and can therefore be 

optimized by the blocks design algorithm. The following example first sets-up a skeleton 6 x 6 Latin 

square using the data frame LS_grid and then defines a Latin square treatment model with a linear 

row by linear column interaction effect using the treatments model formula.  

The fitted treatments design is an orthogonal design with 11 degrees of freedom which shows that the 

rows, columns and linear rows by linear columns contrasts are orthogonal and that the dual treatment 

design is indeed a Latin square. Finally, the dual block design is optimized conditional on the 

treatments design which means that the allocation of the actual treatments to the Latin square design 

is optimized after allowing for the presence of a linear row by linear column interaction effect. A 

substantial number of repeat optimizations was needed to find a stable maximum optimum but after a 

sufficient number of optimizations a Latin square design with a fixed linear rows by linear columns 

interaction was found with a D-efficiency factor of about 94% (92% A-efficiency) which means that 

the best treatment design is about 94% D-efficient (92% A-efficient) for treatment effects after 

allowing for a linear rows by linear columns interaction effect. 

Example 5 Six varieties in a 6 x 6 row-and-column design with polynomial linear row by linear 

column interaction effect. 

 
Inputs 
LS_grid   = expand.grid(rows=factor(1:6), cols=factor(1:6)); 

blocks = data.frame(varieties=factor(rep(1:6,6))); 

lin_rows = as.numeric(levels(LS_grid$rows))[LS_grid$rows]; 

lin_cols = as.numeric(levels(LS_grid$cols))[LS_grid$cols]; 

latin_sq = "~  rows | cols + lin_rows:lin_cols "; 

d = design(LS_grid,blocks,latin_sq,searches=2000);  

 

Outputs 
 
$treatments_model 

                      Treatment model Model DF D-Efficiency 

1                            ~  rows         5            1 

2 ~  rows + cols + lin_rows:lin_cols        11            1 

 

$blocks_model 

     Blocks levels D-Efficiency A-Efficiency Interactions levels D-Efficiency A-Efficiency 

 

varieties      5    0.9404422    0.9193536    varieties      5    0.9404422   0.9193536 
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$design 

   varieties rows cols 

1          1    4    2 

2          2    2    4 

3          3    4    1 

4          4    4    3 

5          5    3    3 

6          6    2    5 

7          1    3    4 

8          2    4    6 

9          3    6    6 

10         4    3    6 

11         5    1    4 

12         6    6    3 

13         1    6    5 

14         2    3    5 

15         3    1    5 

16         4    2    2 

17         5    5    1 

18         6    5    2 

19         1    2    1 

20         2    5    3 

21         3    3    2 

22         4    5    5 

23         5    6    2 

24         6    3    1 

25         1    5    6 

26         2    1    2 

27         3    2    3 

28         4    1    1 

29         5    4    5 

30         6    1    6 

31         1    1    3 

32         2    6    1 

33         3    5    4 

34         4    6    4 

35         5    2    6 

36         6    4    4 

_______________________________________________________________________________ 
 
 

Factorial block interactions 

Assuming that the rows-by-columns intersection blocks of a row-and-column field trial are estimable, 

another approach is to fit a factorial blocks effects model for the blocks design with block main 

effects and block interaction effects weighted according to their relative importance. Let 𝑻 represent 

the treatment effects matrix of a factorial crossed blocks design and let 𝑩 represent an orthogonalized 

matrix of factorial block effects. Assuming that all block effects are estimable, the information matrix 

of the factorial blocks design model is  𝑻′(𝑰 − 𝑩𝑩′)𝑻. Maximization of the determinant of this matrix 

gives a D-optimal design for the factorial blocks design model.  

The blocks matrix 𝐵 can he partitioned into a set of columns, 𝑩𝟏, representing the block factor main 

effects and a set of columns, 𝑩𝟐,representing the block interaction effects and letting 𝑤 represent a 

weighting factor between 0 and 1, a weighted crossed blocks interaction effects matrix can be written:   

𝑰𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 = 𝑻′(𝑰 − 𝑩𝟏𝑩𝟏
′ − 𝑩𝟐𝑩𝟐

′ 𝒘𝟐)𝑻                        (𝟏)  

For 𝑤 = 0 the information matrix in (1) is the usual additive crossed blocks model whereas if 𝑤 = 1, 

the information matrix is a full factorial blocks model. Intermediate values of 𝑤, down-weight the 

block interaction effects 𝑩𝟐𝑩𝟐
′  by the square of the weighting parameter w. The best choice of  𝑤 will 
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be unknown at the design stage but the effects of different choices on the attained efficiency factors of 

the various factorial block effects can be found by trial error at the design stage, as shown in examples 

6a, 6b and 6c below. 

 

Example 6 Crossed blocks design for 4 replicates of 12 treatments with 4 rows and 4 columns and 

blocks of size 3 nested within each row-by-column intersection.  

6a) Weighting = 0 giving an additive main effects design for rows and columns  
 
treatments = factor(1:12); 
blocks = data.frame(Rows = gl(4,12), Cols = gl(4,3,48)); 

design(treatments,blocks,searches=200,weighting=0)$blocks_model; 

 

  Blocks Levels D_Effic A_Effic Interactions Int_levs Int_D_Effic Int_A_Effic 

1   Rows      4       1       1         Rows        4    1.000000   1.0000000 

2   Cols      4       1       1    Rows*Cols       16    0.682796   0.6316198 
________________________________________________________________________________________ 

6b) Weighting = 0.5 giving a compromise design for rows, columns and rows:columns blocks 
 

design(treatments,blocks,searches=200,weighting=0.5)$blocks_model; 

 

  Blocks Levels D_Effic A_Effic Interactions Int_levs Int_D_Effic Int_A_Effic 

1   Rows      4       1       1         Rows        4   1.0000000   1.0000000 

2   Cols      4       1       1    Rows*Cols       16   0.7176709   0.7096774 

________________________________________________________________________________________ 

 

6c) Weighting = 1 giving a fully crossed rows-by-columns design 
 

design(treatments,blocks,searches=200,weighting=1)$blocks_model; 

 

  Blocks Levels   D_Effic   A_Effic Interactions Int_levs Int_D_Effic Int_A_Effic 

1   Rows      4 1.0000000 1.0000000         Rows        4   1.0000000   1.0000000 

2   Cols      4 0.9144364 0.9034965    Rows*Cols       16   0.7176709   0.7096774 

________________________________________________________________________________________ 

 

The row blocks are always added before the column blocks and are always orthogonal irrespective of 

the choice of w. The column blocks are added after the row blocks and the efficiency of the column 

blocks and the row-by-column interaction blocks will depend on the value of weighting factor w.  

Example 6a has w = 0 therefore the main column blocks are optimized with efficiency 1. The rows-

by-columns blocks are not optimized in this design. 

Example 6c has w = 1 therefore the rows-by-columns blocks are optimized with D-efficiency 

0.7176709 and A-efficiency 0.7096774. The column blocks are not optimized in this design. 

Example 6b has w = 0.5 and both the column blocks and the rows-by-columns blocks are optimized 

simultaneously.  

Usually for crossed blocks designs, not all rows, columns and rows-by-columns can be optimized 

simultaneously but Example 6 is a special design called a Trojan square (Edmondson 1998) which has 

special optimality properties. In the general case, trial and error methods can be used to find a good 

choice of weighting that gives a good compromise design with good efficiencies on all the required 

block structures.  
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Some additional examples  

Example 7 Four replicates of 12 treatments in 4 complete blocks with 4 sub-blocks nested in each 

main block (this corresponds to a rectangular lattice design see Plan 10.10 Cochran and Cox 1957) 

Inputs 
blocks(treatments = 12, replicates = 4 ,blocks = c(4, 4)); 
 
Outputs 
$blocks_model 
    Level Blocks D-Efficiency A-Efficiency   A-Bound 
1 Level_1      4            1            1         1 
2 Level_2     16    0.7176709    0.7096774 0.7096774 
 
$Plan 
    Level_1  Level_2 Blocks.Plots:  1  2  3 
1  Blocks_1 Blocks_1                4  6  5 
2  Blocks_1 Blocks_2                1  3 12 
3  Blocks_1 Blocks_3                8 10 11 
4  Blocks_1 Blocks_4                7  9  2 
5  Blocks_2 Blocks_1                7  6 12 
6  Blocks_2 Blocks_2                3  5 10 
7  Blocks_2 Blocks_3               11  4  9 
8  Blocks_2 Blocks_4                8  2  1 
9  Blocks_3 Blocks_1               11  3  7 
10 Blocks_3 Blocks_2                8 12  4 
11 Blocks_3 Blocks_3                6  2 10 
12 Blocks_3 Blocks_4                9  5  1 
13 Blocks_4 Blocks_1                8  5  7 
14 Blocks_4 Blocks_2                4  2  3 
15 Blocks_4 Blocks_3               10 12  9 
16 Blocks_4 Blocks_4                6  1 11 
 
______________________________________________________________________________________________________________ 

This design is constructed algebraically from MOLS and because it is a balanced rectangular lattice 

will always attain the theoretical A-efficiency upper bound. 

 

Example 8a Four replicates of 12 treatments with 4 main replicate rows and 4 main replicate columns 

and 3 sub-column blocks nested in each main column. 

This design extends Example 6 by nesting 3 sub-columns in each main column to give a physical 

layout for an experiment with four rows and 12 columns where the 12 columns are arranged in sets of 

four replicate main columns blocks. The main rows, main columns and main intersection block 

efficiencies are unchanged from Example 6 because the sub-column blocks have been optimized by 

swaps made within the main row-by-column intersection blocks.  

Inputs 

 
treatments = factor(rep(1:12,4)); 

blocks = data.frame(Rows = gl(4,12), Cols = gl(4,3,48), subCols = gl(12,1,48)); 

design(treatments,blocks,searches=200)$blocks_model; 

 

Outputs 

   Blocks Levels   D_Effic   A_Effic      Interactions Int_levs Int_D_Effic Int_A_Effic 

1    Rows      4 1.0000000 1.0000000              Rows        4   1.0000000   1.0000000 

2    Cols      4 1.0000000 1.0000000         Rows*Cols       16   0.7176709   0.7096774 

3 subCols     12 0.8053142 0.7925806 Rows*Cols*subCols       48   0.0000000   0.0000000 
__________________________________________________________________________________________ 
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Example 8b Four replicates of 12 treatments with 4 main blocks and 3 sub-blocks in each main block 

The efficiency factors for the sub-column blocks in Example 8a can be compared with the efficiencies 

of a simple nested block design for 4 replicates of 12 treatments with 4 main blocks and 3 sub-blocks 

in each main block. This example shows that the sub-column blocks of Example 8a are fully efficient 

compared with a simple nested blocks design with blocks of the same size so, for this special case, 

there is no loss of efficiency due to the additional constraints of the row and column layout. 

Inputs 

blocks(12,4,c(4,3))$blocks_model;  

Outputs 

Level Blocks D-Efficiency A-Efficiency   A-Bound 
1 Level_1      4            1            1         1 
2 Level_2     12    0.8053142    0.7925806 0.8133803 
__________________________________________________________________________ 

 

 

 

Example 9 Two replicates of 272 treatments in a 16 x 34 design with nested rows and columns 

 

Inputs 

 
data(durban);  

durban=durban[c(3,1,2,4,5)]; 

durban=durban[ do.call(order, durban), ]; 

treatments=data.frame(gen=durban$gen); 

Reps = factor(rep(1:2,each=272)); 

Rows = factor(rep(1:16,each=34)); 

Col1 = factor(rep(rep(1:4,c(9,8,8,9)),16)); 

Col2 = factor(rep(rep(1:8,c(5,4,4,4,4,4,4,5)),16)); 

Col3 = factor(rep(1:34,16)); 

blocks = data.frame(Reps,Rows,Col1,Col2,Col3); 

design(treatments,blocks,searches=1)$blocks_model; 

 

Outputs 

 
Blocks levels D-Efficiency A-Efficiency         Interactions levels D-Efficiency A-Efficiency 

Reps      2   1.0000000   1.0000000                     Reps      2    1.0000000    1.0000000 

Rows     16   0.9647882   0.9507384                Reps*Rows     16    0.9647882    0.9507384 

Col1      4   0.9955180   0.9944849           Reps*Rows*Col1     64    0.8437030    0.7812191 

Col2      8   0.9853798   0.9800796      Reps*Rows*Col1*Col2    128    0.6768033    0.5419516 

Col3     34   0.9207093   0.8915016 Reps*Rows*Col1*Col2*Col3    544    0.0000000    0.0000000 
 

______________________________________________________________________________________________________________ 

 

This example shows an alternative blocking system for a real experimental design. The original 

design (see see Durban et al 2003) was a simple additive row-and-column design with rows 

comprising 34 plots and columns comprising 16 plots. Examination of the data (not shown here) 

suggests that these assumptions were highly unrealistic and that even after eliminating additive row 

and column effects the treatment adjusted residuals for each individual row were far from 

homogeneous. The example design shows the efficiency factors for a nested blocks design with three 

levels of nesting within columns which would have provided additional control of trends within rows. 

For comparison, the efficiency factors of the actual treatments design (see data set ‘durban’) assuming 

the block model shown above can be found from the following analysis: 
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Inputs 
blockEfficiencies(treatments,blocks); 

 

Outputs 

Blocks levels D-Efficiency A-Efficiency         Interactions levels D-Efficiency A-Efficiency 
Reps      2            1            1                    Reps    2            1            1 
Rows     16    0.9640685    0.9479535               Reps*Rows   16    0.9640685    0.9479535 
Col1      4    0.9922603    0.9888487          Reps*Rows*Col1   64    0.8407711    0.7710131 
Col2      8    0.9826103    0.9752815     Reps*Rows*Col1*Col2  128    0.6748665    0.5368455 
Col3     34    0.9161031    0.8809427 Reps*Rows*Col1*Col2*Col3 544         <NA>         <NA> 
 
______________________________________________________________________________________________________________ 

 

Every efficiency measure in the first analysis is an improvement on the corresponding efficiency 

measure in the second analysis. The first design gives more protection against unforeseen or 

unpredicted trends or patterns in the spatial layout of the design and therefore should provide a more 

robust design for a practical experiment. 

 

 

 

Example 10 Second-order model for a 1/3rd fraction of five qualitative 3-level factors in 3 blocks of 

size 27 

 

This example is a classical regular fraction of a second-order model for five 3-level factors arranged 

in 3 blocks each of size 27. An orthogonal design is easily constructed algebraically so it provides a 

useful test of the algorithmic method. The algorithm quickly constructs a 1/3rd fraction of a full 

factorial design for the required model but not all such fractions can be divided into three orthogonal 

blocks and increasing the number of searches will not always help because once the algorithm finds 

an orthogonal treatment fraction it uses that fraction exclusively when searching for an orthogonal 

block design. For that reason, the example shows how to repeatedly re-construct the entire design 

until the required orthogonal block design is found.    

 

Inputs 

 
treatments = expand.grid(F1 = factor(1:3), F2 = factor(1:3), F3 = factor(1:3),  

F4 = factor(1:3), F5 = factor(1:3)); 

blocks=data.frame(main=gl(3,27)); 

model = " ~ (F1 + F2 + F3 + F4 + F5)^2"; 

repeat { 

z=design(treatments,blocks,treatments_model=model,searches=5); 

if ( z$blocks_model[1,3] == 1) break }; 

print(z); 

 

Outputs 

$treatments_model 
 
Treatment.model    D.Efficiency 
 ~ (F1 + F2 + F3 + F4 + F5)^2            1 
 
$blocks_model 
 
Blocks levels D-Efficiency A-Efficiency Interactions levels D-Efficiency A-Efficiency 
main      2            1            1         main      2            1            1 
 
_____________________________________________________________________________________________________________ 
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