This small benchmark compares the performance of the base64 encoding/decoding in package base64url
with the implementations in the packages base64enc
and openssl
.
library(base64url)
library(base64enc)
library(openssl)
library(microbenchmark)
x = "plain text"
microbenchmark(
base64url = base64_urlencode(x),
base64enc = base64encode(charToRaw(x)),
openssl = base64_encode(x)
)
## Unit: nanoseconds
## expr min lq mean median uq max neval
## base64url 598 769.5 1540.96 943.5 1018.5 30277 100
## base64enc 3264 3516.0 6035.51 4011.5 4323.5 120576 100
## openssl 9329 9845.5 11977.05 10171.0 10801.5 110423 100
x = "N0JBLlRaUTp1bi5KOW4xWStNWEJoLHRQaDZ3"
microbenchmark(
base64url = base64_urldecode(x),
base64enc = rawToChar(base64decode(x)),
openssl = rawToChar(base64_decode(x))
)
## Unit: nanoseconds
## expr min lq mean median uq max neval
## base64url 712 862.5 1425.16 1102.5 1272.5 22033 100
## base64enc 4728 4996.5 7176.57 5781.5 6137.5 63003 100
## openssl 17927 18564.0 21402.33 18947.5 20211.0 128580 100
Here, the task has changed from encoding/decoding a single string to processing multiple strings stored inside a character vector. First, we create a small utility function which returns n
random strings with a random number of characters (between 1 and 32) each.
rand = function(n, min = 1, max = 32) {
chars = c(letters, LETTERS, as.character(0:9), c(".", ":", ",", "+", "-", "*", "/"))
replicate(n, paste0(sample(chars, sample(min:max, 1), replace = TRUE), collapse = ""))
}
set.seed(1)
rand(10)
## [1] "zN.n9+TRe" "mVA1IX/"
## [3] "1,oSisAaA8xHP" "m5U2hXC4S2MK2bGY"
## [5] "G7EqegvJTC.uFwSrH0f8x5x" "G97A1-DXBw0"
## [7] "XiqjqeS" "13FC3PTys/RoiG:P*YyDkaXhES/IH"
## [9] "0FJopP" "fcS,PMK*JVPqrYFmZh7"
Only base64url
is vectorized for string input, the alternative implementations need wrappers to process character vectors:
base64enc_encode = function(x) {
vapply(x, function(x) base64encode(charToRaw(x)), NA_character_, USE.NAMES = FALSE)
}
openssl_encode = function(x) {
vapply(x, function(x) base64_encode(x), NA_character_, USE.NAMES = FALSE)
}
base64enc_decode = function(x) {
vapply(x, function(x) rawToChar(base64decode(x)), NA_character_, USE.NAMES = FALSE)
}
openssl_decode = function(x) {
vapply(x, function(x) rawToChar(base64_decode(x)), NA_character_, USE.NAMES = FALSE)
}
The following benchmark measures the runtime to encode 1000 random strings and then decode them again:
set.seed(1)
x = rand(1000)
microbenchmark(
base64url = base64_urldecode(base64_urlencode(x)),
base64enc = base64enc_decode(base64enc_encode(x)),
openssl = openssl_decode(openssl_encode(x))
)
## Unit: microseconds
## expr min lq mean median uq max
## base64url 216.926 267.953 351.5029 348.9325 421.912 594.132
## base64enc 7139.334 8248.340 9306.8484 9067.0465 10182.337 13086.887
## openssl 22105.490 24446.610 27098.2167 25850.6455 29033.659 60137.814
## neval
## 100
## 100
## 100