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Abstract

This article presents an overview of the bartcs R package, which employs a Bayesian
additive regression tree-based method for selecting confounders. It uses a Dirichlet dis-
tribution as a common variable selection probability prior, updating both the exposure
and outcome models simultaneously while fitting BART priors for each. This data-driven
method determines which variables (i.e., confounders) affect both models by assigning
more posterior weight to them. It supports continuous and binary exposure variables, as
well as continuous outcome variables, and is written in C++ for improved computational
speed. Additionally, it can take advantage of multiple threads for parallel computing if
OpenMP is available on the platform.

Keywords: Bayesian nonparametric, causal inference, high-dimensional confounders, contin-
uous outcome.

1. Introduction: Confounder selection in R

In observational studies, drawing causality always relies on the ignorability assumption (Rosen-
baum and Rubin 1983b) that all confounders are included in the adjustment procedure. In
many recent applications, the number of potential confounders is often enormous, making
it difficult to select the optimal set of true confounders among them. In this context, the
optimal set is a confounder set with an appropriate level of uncertainty that reduces bias in
estimating the final causal effect.
The main distinction between confounder selection and the traditional variable selection
method is that variables that affect both exposure and outcome should be chosen. Several
criteria need to be met by the selected confounder in order to reduce the bias of estimated
causal effects. Among them, “disjunctive cause criterion"(VanderWeele 2019) requires that
the chosen variable be related to exposure and/or outcome. A better condition than this
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is “disjunctive cause criterion without instruments"(VanderWeele 2019), which removes the
variables related to exposure but not directly associated with outcome. Manually identifying
a set of confounders that meet these criteria among a large number of potential confounders
is challenging.
Methods based on data and statistical models for performing such confounder selection have
recently been proposed. One such method is the Bayesian adjustment for confounding (BAC)
proposed by Wang, Parmigiani, and Dominici (2012); Lefebvre, Delaney, and McClelland
(2014), which connects exposure and outcome models through common variable inclusion
indicator variables to identify confounders. Wang, Dominici, Parmigiani, and Zigler (2015))
later modified the BAC method to work with generalized linear outcome models. Wilson
and Reich (2014) suggested a method based on decision theory with a similar goal, which
performs well for a variety of sample sizes. In terms of selecting relevant covariates for use
in propensity score, Shortreed and Ertefaie (2017) proposed the outcome-adaptive LASSO
method. In addition, Häggström (2018) proposed a method for identifying the causal structure
and estimating the causal effect using a probability graphical model.
Despite the advantages of the previously mentioned methods, they each have limitations as
outlined in Table 1. To address these shortcomings, Kim, Tec, and Zigler (2023) proposed a
novel Bayesian non-parametric model that aims to overcome these limitations. This suggested
a new method that employs Bayesian additive regression trees (BART; Chipman, George,
McCulloch et al. (2010)) with a shared prior for the selection probabilities, which links the
exposure and outcome models. This approach allows for the flexibility and precision of a
Bayesian nonparametric model, while also identifying and integrating covariates that are
related to both the exposure and outcome into the final model. This paper introduces bartcs,
a new R (R Core Team 2021) package developed by Yoo (2022) that implements the Bayesian
additive regression trees method for confounder selection proposed by Kim et al. (2023).
The package, which is written in C++ and integrated into R via Rcpp for fast computation
and easy use, can be downloaded from the Comprehensive R Archive Network (CRAN) at
https://cran.r-project.org/package=bartcs.
In this paper, we provide an overview of the package, including installation instructions, usage
examples, and a demonstration of its performance on simulated data. We also include a com-
parison with other existing confounder selection methods. Our aim is to provide researchers
with a useful tool for identifying relevant covariates in their causal inference studies and to
enable them to make more accurate causal inferences.

2. Overview of Model
We first express causal estimation within a potential outcome framework (Rubin 1974). For
each unit i = 1, · · · , N , the potential outcome for the i-th unit is defined as Yi(a), representing
the potential value of the outcome Yi that could be observed under the exposure A = a. The
target causal estimand is

∆(a, a′) = E[Y (a) − Y (a′)],

which represents the average difference between two potential outcomes under two different
exposure levels a and a′. However, unlike randomized trials, the exposure assignment is not
randomized in observational studies, making it impossible to directly identify either E[Y (a)]
or E[Y (a′)] from observed data. With a proper set of confounders Xi, the following strong
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Package Prog. Lang. Description
bacr (Wang
et al. 2012,
2015)

R Assume (generalized-) linear models for expo-
sure and outcome. Supports binomial, Poisson,
Gaussian exposure and outcome.

BayesPen (Wil-
son and Reich
2014)

R Assume linear models for exposure and out-
come. Support continuous outcome.

CovSelHigh
(Häggström
2017)

R Confounder selection performed via either
Markov/Bayesian networks (Model-free selec-
tion of confounders)

BART† (Spara-
pani, Spanbauer,
and McCulloch
2021)

C++ Incorporate the Dirichlet sparse prior of Linero
(2018) for variable selection in the BART out-
come model. Support continuous outcome.

bartcs (Yoo
2022)

C++ Use BART outcome and exposure models with
the common Dirichlet prior for variable selec-
tion. Support binary and continuous exposure,
and continuous outcome.

Table 1: Summary of different confounder selection models. †Note that this model (DBART)
is not primarily focused on confounder selection, but rather variable selection, and this variable
selection functionality is enabled by setting sparse=TRUE in wbart function.

ignorable treatment assignment assumption (Rosenbaum and Rubin 1983a) holds

Yi(a) ⊥ Ai|Xi,

and 0 < Pr(Ai = 1|Xi = x) < 1 for all x; i = 1, · · · , N . With this assumption in place, we
can represent the causal effect by the following equation of the observable quantities:

∆(a, a′; x) = E[Y |A = a, X = x] − E[Y |A = a′, X = x],

and finally identify and estimate the target estimand ∆(a, a′) by averaging over confounders
X. Thus, the two key tasks in estimating causal effects are identifying the appropriate
confounders among a potentially large set of covariates, and determining the outcome model
(i.e., E[Y |A = a, X = x]) with flexibility and precision. The bartcs R package was developed
to address these challenges by utilizing Bayesian Additive Regression Trees (BART) models
for confounder selection and causal effect estimation.

2.1. Overview of BART

The BART model (Chipman et al. 2010) is an ensemble of decision trees that can be repre-
sented by the equation:

yi = f(Xi) + ϵi ≈
T∑

t=1
g(Xi; Tt, Mt) + ϵi,

where ϵi follows a normal distribution with mean 0 and variance σ2, and g(Xi; Tt, Mt)
is a function that maps the tree structure and parameters to the response, for all i =
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Figure 1: The tree structures consist of T trees, each with a node represented by a circle.
Terminal nodes, shown in blue, have µ values. The outcome estimate Ŷ of each observation is
calculated by adding up the µ values of the terminal nodes where the observation falls within
each tree. The method used to split each internal node into two different children node is the
“splitting rule,” which consists of a “splitting variable" (i.e., Xj) and a “splitting value" (i.e.,
c).

1, · · · , N . For each of T distinct trees, Tt represents the structure of the t-th tree and
Mt = {µt,1, µt,2, · · · , µt,nt} represents its mean parameters at the terminal nodes. Each
tree has internal nodes that are split based on a “splitting variable” Xj and “splitting value”
c (Figure 1).
In the Markov Chain Monte Carlo (MCMC) update, Bayesian backfitting(Hastie, Tibshirani
et al. 2000) is utilized within a Metropolis-within-Gibbs sampler. This involves fitting each
tree in the ensemble sequentially, using the residual responses: R−t := y−

∑
j ̸=t g(X; Tj , Mj)

where R−t denotes unexplained outcome residuals for the t-th tree. In each iteration of the
MCMC update, a new tree structure is proposed by randomly selecting one of three possible
tree alterations:

GROW: Choose a terminal node at random, and create two new terminal nodes. This
process involves randomly selecting a predictor, Xj , and its associated “splitting value,”
c, to create the two new terminal nodes.

PRUNE: Pick an internal node at random where both children are terminal nodes
(known as a “singly internal node” (Kapelner and Bleich 2016)) and remove both of its
children (thus making it a terminal node).

CHANGE: Select an internal node at random and modify its splitting variable and value
according to the priors.

Specifically, when using the grow and change alterations, a new covariate is randomly se-
lected from a set of q available covariates as the splitting variable, according to the assumed
priors. The original BART model used a uniform prior of {1/q, 1/q, · · · , 1/q} on the selec-
tion probabilities s = (s1, s2, · · · , sq). However, to promote sparsity, Linero (2018) proposed
using a Dirichlet prior (s1, s2, · · · , sq) ∼ D(α/q, · · · , α/q). For a detailed explanation of the
parameter setting and the steps involved in computing the posterior, refer to Kim et al.
(2023).
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Figure 2: A shared sparsity-inducing prior for the selection probability vector connects the
exposure model and outcome model, enabling the selection of the splitting variable. The
selection probability vector is updated based on the number of splitting variables used to
describe each tree.

2.2. BART confounder selection

The bartcs package in R is designed for selecting confounding variables, particularly when a
large number of potential confounding variables are present, and for estimating the average
treatment effect (ATE) given the chosen set of confounding variables. To accomplish this, the
package uses the Bayesian Additive Regression Trees (BART) model to specify the exposure
and outcome as follows:

P (Ai = 1) = Φ
(

T∑
t=1

ga(Xi; Tt, Mt)
)

(1)

Yi =
T∑

t=1
gy(Ai, Xi; T ′

t , M′
t) + ϵi, (2)

where ϵi ∼ N(0, σ2) for i = 1, · · · , N . In Eq. (1), Φ(·) is the standard normal cumulative dis-
tribution function. Note that it is required to replace Eq. (1) with Ai = ∑T

t=1 ga(Xi; T ⋆
t , M⋆

t )+
ϵ⋆
i , ϵ⋆

j ∼ N(0, τ2) when considering a continuous exposure. We incorporate a common sparsity-
inducing Dirichlet prior (s1, s2, · · · , sq) ∼ D(α/q, · · · , α/q) on Eq. (1) and (2) resulting in a
conjugate update (s1, s2, · · · , sq) ∼ D(α/q + na

1 + ny
1, · · · , α/q + na

q + ny
q) where na

j and ny
j are

the number of splits on potential confounder Xj in Eq. (1) and Eq. (2), respectively (Figure
2).
If a particular covariate, Xj , is frequently used as a splitting variable in either the model
for A or the model for Y , the model will assign more weight to the selection probability sj

through larger values of na
j or ny

j . This means that the selection probabilities will tend to
favor covariates that have a relationship with A, Y , or both A and Y . The final confounders
chosen for effect estimation in the model for Y will be those that were proposed for splitting
through this prior and were accepted during the updating step of the model for Y , which
will further prioritize variables that have a relationship with Y . This characteristic satisfies
the “disjunctive cause criterion without instruments” in confounder selection. Please see Kim
et al. (2023) for further discussion on this prioritization.
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Separate outcome models

For a binary exposure, we separate the outcome model in Eq (2) into two distinct models,
in order to align the dimensions of the covariates in both the exposure and outcome models
(note that Eq (2) includes exposure Ai as an additional covariiate). For each A = a ∈ {0, 1},

Yi =
T∑

t=1
ga

y(Xi; T a
t , Ma

t ) + ϵa
i , ϵa

i ∼ N(0, σ2
a), (3)

for i ∈ Na where Na denotes a set of units under each exposure arm a ∈ {0, 1}. A sparsity-
inducing prior is applied to (s1, s2, · · · , sq), which is shared among three models: one for
exposure and two for outcomes. The resulting update based on this prior is (s1, s2, · · · , sq) ∼
D(α/q + na

1 + ny1
1 + ny0

1 , · · · , α/q + na
q + ny1

q + ny0
q ), where ny1

j and ny0
j represent the number

of splits on the confounder Xj in two separate outcome models.

Single outcome model

Using two separate outcome models for two exposure levels, as outlined in Hill (2011) and
Hahn, Murray, and Carvalho (2020), can result in biased estimates if there is a lack of common
support. While a single outcome model can be a viable alternative, it can be challenging
to apply a shared sparsity-inducing prior to (s1, s2, · · · , sq) due to differences in covariate
dimensions between the exposure and outcome models. Let s = (s0, s1, s2, · · · , sq) represent
the selection probabilities, with s0 denoting the probability of exposure A in the outcome
model. To apply this vector to the exposure model, s is transformed to s′ = (s1/(1 −
s0), s2/(1 − s0), · · · , sq/(1 − s0)). Then, updating s is based on the equation (likelihood ×
prior):

Q =
( 1

1 − s0

)∑q

j=1 na
j

s
ny

0+α/q−1
0 s

ny
1+na

1+α/q−1
1 · · · s

ny
q +na

q +α/q−1
q ,

using the Metropolis-Hastings algorithm. The proposal distribution for s is designed to follow
the full conditional in the separate outcome model, D(ny

0 + c + α/q, na
1 + ny

1 + α/q, na
2 + ny

2 +
α/q, · · · , na

q + ny
q + α/q), and a positive value c is added to prevent proposals for infrequent

exposure. For a detailed explanation of the posterior computation step, refer to the appendix
and Kim et al. (2023).
Given the M set of posterior samples for BART parameters, the causal effect estimand ∆(a, a′)
can be estimated using either the separate model or the single model. For the separate
outcome model, the estimate is given by

∆̂(1, 0) = 1
N

N∑
i=1

[
1

M

M∑
m=1

{
T∑

t=1
g1,(m)

y (Xi; T 1
t , M1

t ) −
T∑

t=1
g0,(m)

y (Xi; T 0
t , M0

t )
}]

,

where g
a,(m)
y is the m-th posterior samples for A = a ∈ 0, 1. For the single outcome model,

the estimate is given by

∆̂(1, 0) = 1
N

N∑
i=1

[
1

M

M∑
m=1

{
T∑

t=1
g(m)

y (1, Xi; Tt, Mt) −
T∑

t=1
g(m)

y (0, Xi; Tt, Mt)
}]

,

where g
(m)
y is the m-th posterior samples.
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Figure 3: The computation times for both the single outcome model (red) and separate out-
come model (black) based on the number of observations (N). A cross symbol (+) represents
the scenario where the number of potential confounders (P ) is equal to the number of ob-
servations (N), a triangle (△) represents the scenario where P = N × 0.5 and a circle (⃝)
represents the scenario where P = N × 0.3. These results are obtained from 20000 MCMC
iterations.

3. Preliminaries
The bartcs R package makes it easy to implement the confounder selection process described
in the previous section. It includes two main functions, separate_bart() for the separate
outcome model and single_bart() for the single outcome model. Along with the sum-
mary of the estimated causal effects, the package provides convergence diagnostic informa-
tion (Gelman-Rubin diagnostic, Gelman and Rubin (1992)) and plots of posterior inclusion
probabilities and convergence.
bartcs offers multi-threading support through Open Multi-Processing (OpenMP), an API for
shared memory parallel programming that manages thread creation, management, and syn-
chronization for efficient data and computation division among different threads. This allows
bartcs to specify intensive computations as parallel regions, leading to improved computa-
tional efficiency through parallel computing.
Figure 3 shows the computational speed of two models, the separate and single models. The
number of observations (N) was evaluated with 100, 500, and 1000, while the number of
potential confounders (P ) was tested in three different situations, N × 0.3 (circle), N × 0.5
(triangle), and N × 1 (cross). The speed was calculated based on 20000 MCMC iterations.
The separate model had a computational speed ranging from 16 to 187 seconds, while the
single model had a slight decrease in speed with a minimum of 13 seconds and a maximum of
165 seconds, depending on the combination of (N, P ). Both models were considered to have
similar computational speed, given the 20000 MCMC iterations. The single model was found
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to be more efficient as it fits two BART models (exposure and one outcome model). Given
that the single model has slightly smaller biases and MSEs in many different scenarios in Kim
et al. (2023), it is recommended to use the single model (single_bart() function) due to its
faster computation speed if N is large.
The package bartcs is available under the general public license (GPL ≥ 3) from the Compre-
hensive R Archive Network (CRAN) at https://cran.r-project.org/package=bartcs and can
be installed and loaded into the current R session as follows:

R> install.packages("bartcs")
R> library("bartcs")

In the following sections, we will showcase the practical usage of the features in the barcs
package using simulated examples and IHDP data.

4. Simulated Example
As a simple example of the bartcs package, we use a simulated dataset from Scenario 1 in
Kim et al. (2023) to illustrate its features. The data-generating model incorporates both the
non-linear propensity score and outcome models, and serves to evaluate the ability to detect
5 true confounding variables out of a huge set of possibilities, along with the precision of the
model’s estimation. The dataset consists of 300 observations with 100 potential confounders
(X1 − X100), each generated from a normal distribution with mean 0 and variance 1. Of the
100 possible confounders, X1 − X5 are true confounders. The outcome model includes the
five true confounders and two additional predictors, X6 and X7 as follows:

P (Ai = 1) = Φ(0.5 + 0.5h1(Xi,1) + 0.5h2(Xi,2) − 0.5|Xi,3 − 1| + 1.5Xi,4Xi,5)
Yi ∼ N(µ(Xi), 0.32)

µ(Xi) = h1(Xi,1) + 1.5h2(Xi,2) − Ai + 2|Xi,3 + 1| + 2Xi,4 + exp(0.5Xi,5)
−0.5Ai|Xi,6| − Ai|Xi,7 + 1|

where h1(x) = (−1)I(x<0) and h2(x) = (−1)I(x≥0) for i = −1, · · · , 300. The data was gener-
ated with the following code:

R> set.seed(42)
R> N <- 300
R> P <- 100
R> cov <- list()
R> for(i in 1:P) {
+ cov[[i]] <- rnorm(N, 0, 1)
+ }
R> X <- do.call(cbind, cov)
R> h1 <- ifelse(X[, 1] < 0, 1, -1 )
R> h2 <- ifelse(X[, 2] < 0, -1, 1 )
R> prob <- pnorm(0.5 + h1 + h2 - 0.5 * abs(X[, 3] - 1) +
+ 1.5 * X[, 4] * X[, 5])
R> Trt <- rbinom(N, 1, prob)

https://cran.r-project.org/package=bartcs
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R> mu1 <- 1 * h1 + 1.5 * h2 - 1 + 2 * abs(X[, 3] + 1) +
+ 2 * X[, 4] + exp(0.5 * X[, 5]) -
+ 0.5 * 1 * abs(X[, 6]) - 1 * 1 * abs(X[, 7] + 1)
R> mu0 <- 1 * h1 + 1.5 * h2 - 0 + 2 * abs(X[, 3] + 1) +
+ 2 * X[, 4] + exp(0.5 * X[, 5]) -
+ 0.5 * 0 * abs(X[, 6]) - 1 * 0 * abs(X[, 7] + 1)
R> Y1 <- rnorm(N, mu1, 0.3)
R> Y0 <- rnorm(N, mu0, 0.3)
R> Y <- Trt * Y1 + (1 - Trt) * Y0

With a generated data set, we fit the BART confounder selection model (the separate outcome
model) using separate_bart().

library(bartcs)
R> separate_fit <- separate_bart(
+ Y = Y, trt = Trt, X = X, num_tree = 50, num_chain = 4,
+ num_burn_in = 10000, num_thin = 10, num_post_sample = 1000
+ )

The following are the main arguments used in the separate_bart() function call:

• Y represents a vector of observed outcome values.

• trt represents a vector of exposure(treatment) values, which can be either binary or
continuous depending on the function. Binary treatment values need to be either 0 or
1.

• X is a data frame of potential confounders.

The following are the remaining settings for the fit: 4 MCMC chains (num_chain) with 50
trees (num_tree) are used. Each MCMC chain involves 20000 iterations, with 10000 burn-in
iterations (num_burn_in) and a thinning factor of 10 (num_thin). There are other optional
arguments available for hyper-parameter settings with the following default values:

• α = 0.95 (alpha) and β = 2 (beta): these govern the probability that a node at depth
d is nonterminal as follows

α(1 + d)−β.

• ν = 3 (nu) and q = 0.95 (q): to set a conjugate prior for the variance σ2 with σ2 ∼
νλ/χ2

ν , we use the following equation to determine the values P (σ < σ̂) = q, where σ̂
represents the residual standard deviation obtained from a linear regression of Y on X.

• PGROW = 0.28, PPRUNE = 0.28, PCHANGE = 0.44: probabilities of three tree alteration
steps.

• dir_alpha = 5: this is an initial value for hyperparameter α in the sparsity inducing
Dirichlet prior D(α/q, α/q, · · · , α/q).

R> separate_fit
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`bartcs` fit by `separate_bart()`

mean 2.5% 97.5%
ATE -2.3528698 -2.609140 -2.0964852
Y1 0.7147532 0.504403 0.9259257
Y0 3.0676229 2.927474 3.2089274

The separate_bart() returns a S3 bartcs object. A bartcs object displays the posterior
means and 95% credible intervals for the sample average treatment effect (ATE), and the
potential outcomes Y (1) and Y (0). It is important to note that the true values for the ATE,
E[Y (1)], and E[Y (0)] are −2.55, 0.64, and 3.19 respectively, and the 95% credible intervals
produced by the separate_bart() function include these values.
For a more in-depth understanding of the output, the summary() function can be used. It
provides information on the treatment values, tree structure, MCMC chain, gelman-rubin
diagnostic, and outcomes for each of the MCMC chains.

R> summary(separate_fit)

`bartcs` fit by `separate_bart()`

Treatment Value
Treated group : 1
Control group : 0

Tree Parameters
Number of Tree : 50 Value of alpha : 0.95
Prob. of Grow : 0.28 Value of beta : 2
Prob. of Prune : 0.28 Value of nu : 3
Prob. of Change : 0.44 Value of q : 0.95

Chain Parameters
Number of Chains : 4 Number of burn-in : 10000
Number of Iter : 20000 Number of thinning : 10
Number of Sample : 1000

Outcome Diagnostics
Gelman-Rubin : 0.9990445

Outcome
estimand chain 2.5% 1Q mean median 3Q 97.5%

ATE 1 -2.6001705 -2.4340846 -2.3443589 -2.3476330 -2.2551920 -2.0799121
ATE 2 -2.6087384 -2.4259789 -2.3397221 -2.3408950 -2.2453614 -2.0859052
ATE 3 -2.6144787 -2.4517900 -2.3631684 -2.3611169 -2.2735971 -2.1222551
ATE 4 -2.6132885 -2.4442093 -2.3642297 -2.3679466 -2.2784649 -2.1087727
ATE agg -2.6091399 -2.4403736 -2.3528698 -2.3531103 -2.2646584 -2.0964852
Y1 1 0.5252200 0.6459721 0.7246384 0.7213282 0.7977788 0.9508965
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Figure 4: Posterior inclusion probability (PIP) plots

Y1 2 0.5047637 0.6539640 0.7265392 0.7287699 0.8065149 0.9362558
Y1 3 0.4895294 0.6352240 0.7052498 0.7095617 0.7780091 0.9125417
Y1 4 0.4997177 0.6309322 0.7025852 0.6981323 0.7700263 0.9085243
Y1 agg 0.5044030 0.6412497 0.7147532 0.7146822 0.7897952 0.9259257
Y0 1 2.9274229 3.0204668 3.0689973 3.0659627 3.1151496 3.2107029
Y0 2 2.9165799 3.0225901 3.0662613 3.0653160 3.1149797 3.2019031
Y0 3 2.9348665 3.0156523 3.0684182 3.0689190 3.1173572 3.2061842
Y0 4 2.9292390 3.0162474 3.0668149 3.0661296 3.1157539 3.2112047
Y0 agg 2.9274743 3.0183415 3.0676229 3.0664199 3.1160385 3.2089274

For each estimand category, there are five results (rows) that represent the output from each
of the 4 MCMC chains and an aggregated output.
For visualization purposes, there are two options available as S3 methods for the bartcs
object. The first option is the posterior inclusion probability (PIP) plot. PIP is the probability
that a variable is used as a splitting variable, and can be interpreted as the importance of a
variable. The inclusion_plot() function is a wrapper for the bar_chart() function from the
ggcharts package, allowing the use of its arguments to customize the plot. The recommended
arguments to use are top_n and threshold.

R> plot(separate_fit, method = "pip", top_n = 10)

R> plot(separate_fit, method = "pip", threshold = 0.5)

In Figure 4, the argument top_n allows you to select variables with the top top_n highest
PIPs. The argument threshold displays variables with PIP greater than threshold. From a
decision-theoretical perspective (Barbieri and Berger 2004; Linero 2018), variables with PIPs
larger than 0.5 can be considered chosen confounders. It is worth noting that the five true
confounders X1 − X5 are all correctly selected as true confounders with PIPs of 1, along with
one extra predictor X7 in the outcome model.
The second option for visualization is the traceplot, which is mainly used to check MCMC
convergence. The function provides a traceplot of the average treatment effect (ATE) for each
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Figure 5: Traceplots for multiple MCMC chains

MCMC chain. Traceplots of other variables such as dir_alpha (the hyperparameter in the
sparsity-inducing Dirichlet prior) and sigma2_out (the variance parameter in the outcome
model) are also available by using the argument parameter.

R> plot(fit, method = 'trace')

R> plot(fit, method = 'trace', parameter = 'dir_alpha')

In Figure 5, the traceplots of the ATE and dir_alpha parameter are shown for four different
MCMC chains. Visual inspection based on the traceplot is convenient, but for a more com-
prehensive assessment of convergence, it is recommended to use the gelman-rubin diagnostics
provided in the summary().
We evaluated the performance of bartcs in comparison to other models, including those gen-
erated by the bacr package that inspired our model development. The bacr package is easily
installed via CRAN and loaded into the current R session as follows:

R> install.packages("bacr")
R> library("bacr")

To fit the model included in this package, we used the bac() function where the input data
needs to be provided in the form of a data frame. To fit the exposure and outcome models
in this case, a generalized linear model is used, and it is necessary to specify the family of
the model based on the data type (e.g. familyX="binomial" and familyY="gaussian").
The MCMC algorithm was run for 10000 iterations after discarding the first 5000 iterations
as burn-ins. Additionally, no interaction between the exposure and each confounder was
assumed.

R> set.seed(42)
R> Z <- as.data.frame(cbind(Y,Trt,X))
R> fit.bac <- bac(
+ data = Z, exposure = "Trt", outcome = "Y",
+ confounders = paste("V", 3:(P+2), sep=""),
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+ interactors = NULL, familyX = "binomial", familyY = "gaussian",
+ omega = Inf, num_its = 10000, burnM = 5000, burnB = 5000, thin = 10
+ )

The result can be checked through the summary() function as follows:

R> summary(fit.bac)

BAC objects:

Exposure effect estimate:
posterior mean 95% posterior interval

-1.6 (-2, -1.3)

Covariates with posterior inclusion probability > 0.5:
posterior inclusion probability

V3 1.0000
V4 1.0000
V5 1.0000
V6 1.0000
V7 1.0000
V99 0.9248
V54 0.8398
V14 0.6964
V90 0.6575
V41 0.6514

The ATE posterior mean was estimated to be -1.6, which was significantly different from the
true ATE value of -2.55. Moreover, the 95% credible interval (-2, -1.3) did not include the
true value. When considering the importance of selected confounders based on the posterior
inclusion probability, bacr included all important confounders X1 − X5 (that is, V 3 − V 7 in
the summary), but also added X12, X39, X52, X88, and X97 (that is, V 14, V 41, V 54, V 90, V 99
in the summary) with high PIPs, which were not true confounders. Notably, X6 and X7,
which are additional predictors of the outcome model, were not included. This result may be
attributed to the fact that bacr relies on a parametric model and therefore may struggle to
account for the non-linear and complex data structure.

5. Real Data Example
In the previous section, the separate_bart() function was used to demonstrate a sepa-
rate outcome model scheme. In this section, a single outcome model is tested using the
single_bart() function, based on the Infant Health and Development Program (IHDP)
dataset as an example. This dataset was collected from a longitudinal study that tracked the
development of low-birth-weight premature infants. The study participants in the treatment
group received intensive care and home visits from trained providers and their cognitive test
scores were evaluated at the end of the intervention period. The dataset includes a variety
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treatment=1 (n=139) treatment=0 (n=608)
Category Mean IQR Mean IQR
Y 6.43 (5.84, 7.34) 2.41 (1.45, 3.08)
X⋆

1 0.21 (-0.39, 0.95) -0.05 (-0.75, 0.79)
X⋆

2 0.18 (-0.20, 0.59) -0.04 (-0.60, 0.59)
X⋆

3 -0.04 (-0.73, 0.38) 0.01 (-0.73, 0.76)
X⋆

4 -0.22 (-0.88, 0.16) 0.05 (-0.88, 0.16)
X⋆

5 -0.14 (-0.69, 0.56) 0.03 (-0.50, 0.68)
X⋆

6 0.21 (-0.53, 0.96) -0.05 (-0.86, 0.63)
X7 0.52 (0, 1) 0.51 (0, 1)
X8 0.09 (0, 0) 0.09 (0, 1)
X9 0.68 (0, 1) 0.48 (0, 1)
X10 0.29 (0, 1) 0.38 (0, 1)
X11 0.25 (0, 1) 0.27 (0, 1)
X12 0.22 (0, 0) 0.22 (0, 0)
X13 0.38 (0, 1) 0.35 (0, 1)
X14 1.58 (1, 2) 1.44 (1, 2)
X15 0.14 (0, 0) 0.14 (0, 0)
X16 0.94 (1, 1) 0.97 (1, 1)
X17 0.69 (0, 1) 0.57 (0, 1)
X18 0.99 (1, 1) 0.96 (1, 1)
X19 0.15 (0, 0) 0.13 (0, 0)
X20 0.06 (0, 0) 0.15 (0, 0)
X21 0.17 (0, 0) 0. 15 (0, 0)
X22 0.04 (0, 0) 0.09 (0, 0)
X23 0.01 (0, 0) 0.09 (0, 0)
X24 0.06 (0, 0) 0.14 (0, 0)
X25 0.27 (0, 1) 0.13 (0, 0)

Table 2: Summary statistics for the ihdp data set. ⋆ denotes a continuous potential con-
founder.

of pretreatment variables, including 6 continuous and 19 binary covariates. Although the
original IHDP dataset was used in causal research by Hill (2011), we will use a synthetic
version of the IHDP dataset created by Louizos, Shalit, Mooij, Sontag, Zemel, and Welling
(2017) which provides true values for comparison purposes. The data can be loaded by

R> set.seed(42)
R> data(ihdp, package = "bartcs")

and Table 2 displays the summary statistics of the variables. In the dataset, y_factual is
the observed outcome Y (i.e., Y (A)) and y_cfactual is the counterfactual outcome Y (i.e.,
Y (1 − A)). We fit the single outcome model using the single_bart() function.

R> single_fit <- single_bart(
+ Y = ihdp$y_factual,
+ trt = ihdp$treatment,
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+ X = ihdp[, 6:30],
+ num_tree = 10,
+ num_chain = 4,
+ num_post_sample = 100,
+ num_thin = 10,
+ num_burn_in = 1000
+ )
R> single_fit

`bartcs` fit by `single_bart()`

mean 2.5% 97.5%
ATE 3.965814 3.746841 4.150017
Y1 6.386911 6.204699 6.551460
Y0 2.421097 2.336235 2.498595

The function single_bart() returns a bartcs object, which displays the posterior means
and 95% credible intervals for the sample average treatment effect (ATE), and the potential
outcomes Y (1) and Y (0). The summary() and plot() functions can also be used with this
bartcs object generated by single_bart().

R> summary(single_fit)

`bartcs` fit by `single_bart()`

Treatment Value
Treated group : 1
Control group : 0

Tree Parameters
Number of Tree : 10 Value of alpha : 0.95
Prob. of Grow : 0.28 Value of beta : 2
Prob. of Prune : 0.28 Value of nu : 3
Prob. of Change : 0.44 Value of q : 0.95

Chain Parameters
Number of Chains : 4 Number of burn-in : 1000
Number of Iter : 2000 Number of thinning : 10
Number of Sample : 100

Outcome Diagnostics
Gelman-Rubin : 0.9935952

Outcome
estimand chain 2.5% 1Q mean median 3Q 97.5%

ATE 1 3.791494 3.939915 4.005987 4.018636 4.070101 4.215062
ATE 2 3.788716 3.908483 3.969369 3.987434 4.034971 4.120444
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ATE 3 3.744850 3.899803 3.956803 3.961782 4.022265 4.137302
ATE 4 3.731310 3.865857 3.931098 3.928776 3.995207 4.145625
ATE agg 3.746841 3.902287 3.965814 3.968083 4.037366 4.150017
Y1 1 6.235415 6.357685 6.422597 6.425478 6.482940 6.597327
Y1 2 6.238502 6.325691 6.393648 6.397596 6.457599 6.539438
Y1 3 6.209450 6.331860 6.378018 6.372846 6.441610 6.533386
Y1 4 6.187139 6.291756 6.353381 6.356149 6.408011 6.546361
Y1 agg 6.204699 6.325691 6.386911 6.383185 6.451711 6.551460
Y0 1 2.335569 2.386703 2.416610 2.413417 2.441407 2.494906
Y0 2 2.338024 2.388481 2.424279 2.427471 2.456748 2.508601
Y0 3 2.332171 2.393740 2.421215 2.424502 2.452225 2.487147
Y0 4 2.350610 2.400098 2.422283 2.424012 2.446279 2.492166
Y0 agg 2.336235 2.390741 2.421097 2.421593 2.449920 2.498595

We also fitted a separate outcome model to the ihdp data and compared the results with the
single outcome model.

R> separate_fit <- separate_bart(
+ Y = ihdp$y_factual,
+ trt = ihdp$treatment,
+ X = ihdp[, 6:30],
+ num_tree = 10,
+ num_chain = 4,
+ num_post_sample = 100,
+ num_thin = 10,
+ num_burn_in = 1000
+ )
R> separate_fit

`bartcs` fit by `separate_bart()`

mean 2.5% 97.5%
ATE 3.904472 3.669016 4.097428
Y1 6.329471 6.103259 6.507811
Y0 2.424999 2.343330 2.505997

As this is a simulated version of the IHDP data, the true values are known and are 4.02 for
the average treatment effect (ATE), 6.45 for E[Y (1)], and 2.43 for E[Y (0)]. The outputs from
the two models accurately reflect these true values within their 95% credible intervals. Addi-
tionally, the PIP plots (Figure 6) show that both models selected the same three confounders.
The important aspect here is that in the case of the single model, the exposure variable
(trt) is also incorporated into the selection process. As indicated in Eq. (2), because the
exposure variable is included as one of the covariates in the outcome model, it is subject to
confounder selection. This means that in the computation of PIP, it is treated similarly to
other confounders, producing the following plot (a) in Figure 6. In Figure 6, Plot (a) displays
the potential confounders for the single outcome model, which have a posterior inclusion
probability of 0.5 or more, while Plot (b) illustrates the confounders with a posterior inclusion
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Figure 6: PIP plot for IHDP dataset

probability of 0.5 or more when the separate outcome model is used. It is noteworthy that
X4, X6, and X15 were consistently chosen as confounders with PIP values larger than 0.5.

6. Continuous Exposure Example
When it comes to a continuous exposure variable, the formula in Eq. (1) is changed as follows:

Ai =
T∑

t=1
ga(Xi; Tt, Mt) + ϵi, ϵj ∼ N(0, τ2).

This altered formula is used in conjunction with the single outcome model to perform con-
founder selection. However, the separate outcome model, which fits two distinct outcome
models based on the two exposure levels, is not suitable for the continuous exposure variable.
The bartcs has an advantage in handling continuous exposure through its single_bart()
function. This function has the versatility to handle both binary and continuous treatments,
and automatically identifies binary treatments when there are only two unique values. To
demonstrate this, we generate a data set similar to the previous example.

R> set.seed(42)
R> N <- 300
R> P <- 100
R> cov <- list()
R> for(i in 1:P) {
+ cov[[i]] <- rnorm(N, 0, 1)
+ }
R> X <- do.call(cbind, cov)
R> h1 <- ifelse(X[, 1] < 0, 1, -1 )
R> h2 <- ifelse(X[, 2] < 0, -1, 1 )
R> mu_trt <- 0.5 + h1 + h2 - 0.5 * abs(X[, 3] - 1) + 0.5 * X[, 4] * X[, 5]
R> Trt <- rnorm(N, mu_trt, 0.3)
R> mu_y <- 1 * h1 + 1 * h2 - Trt + 1 * abs(X[, 3] + 1) +
+ 1 * X[, 4] + exp(0.5 * X[, 5]) -



18 BART confounder selection in R

+ 0.5 * Trt * abs(X[, 6]) - 0.5 * Trt * abs(X[, 7] + 1)
R> Y <- rnorm(N, mu_y, 0.3)
R> treatment <- quantile(Trt, 0.75)
R> control <- quantile(Trt, 0.25)

We will use the function single_bart() to fit the generated data. The first and third
quantile values of Trt will serve as the basis for comparing two different exposure levels.
As arguments in single_bart(), we need to provide these two pre-specified exposure levels
(a =trt_treated and a′ =trt_control). In the this case, the causal estimand is ∆(a, a′) =
E[(Y (a) − Y (a′)].

R> single_fit <- single_bart(
+ Y = Y, trt = Trt, X = X,
+ trt_treated = treatment, trt_control = control,
+ num_tree = 50, num_chain = 4,
+ num_burn_in = 10000, num_thin = 10, num_post_sample = 1000
+ )
R> single_fit

`bartcs` fit by `single_bart()`

mean 2.5% 97.5%
ATE -2.799264 -4.1798117 -1.777905
Y1 1.075335 0.3445304 1.765200
Y0 3.874599 3.1925255 4.656736

Similar to other bartcs objects, the summary() and plot() functions can be applied to the
continuous exposure scenario. Figure 7 displays a PIP plot, which demonstrates that out
of 100 possible confounders, all of the true confounders except X1, X2, and two additional
predictors were captured effectively, with high PIP values.

7. Summary and discussion
In conclusion, the bartcs R package is a powerful tool for causal inference using BART. It
allows users to adjust for confounders and estimate treatment effects using a flexible non-
parametric method. The package’s ability to handle high-dimensional and non-linear con-
founding, binary treatments, and continuous treatments makes it a versatile tool for a wide
range of applications. Additionally, the package’s support for parallel computing and visual-
ization of results make it a user-friendly and easy-to-interpret tool. The bartcs package is a
valuable resource for researchers in various fields.

Computational details
The results in this paper were obtained using R 4.2.2 on a MacBook Air with a M1 chip
and 16 GB of memory. bartcs 1.0.0 and bacr 1.0.1 were used for the analysis. R itself
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Figure 7: PIP plot for continuous exposure

and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.
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A. Posterior Computation
We use “Bayesian backfitting”(Hastie et al. 2000) to obtain posterior samples from

P (T ′
1 , · · · , T ′

T , M′
1, · · · , M′

T , σ2|D)

for the outcome model (2) (or (3)). This involves a Metropolis-within-Gibbs sampler, where
we fit each tree T ′

t iteratively using residual responses:

Ri,−t = yi −
∑
j ̸=t

gy(Xi; T ′
j , M′

j)

for i = 1, · · · , N . For each tree t, we propose a new tree structure T ′
t from the full conditional

[T ′
t |R1,−t, · · · , Rn,−t, σ2] (i.e., grow, prune or change alterations), and update the parameter

within the tree through the full conditional [M′
t|T ′

t , R1,−t, · · · , Rn,−t, σ2].
To draw samples from P (M′

t|T ′
t ), we assume a prior µ ∼ N(µµ/T, σ2

µ) on each of the leaf
parameters M′

t = {µ1, µ2, · · · , µtb
}, where tb is the number of terminal nodes in tree T ′

t .
The range center of the outcome, µµ, is set as the mean of the range of the outcome, and
σ2

µ is empirically determined to satisfy Tµµ − 2
√

Tσµ = ymin and Tµµ + 2
√

Tσµ = ymax
(Kapelner and Bleich 2016). indices corresponding to the ηth terminal node and the number
of observations in that node, respectively.
We generate a sample µη from the posterior distribution for the η-th terminal node in tree
T ′

t by using the following equation:

µη ∼ N

 1
1/σ2

µ + nη/σ2

(
µµ/T

σ2
µ

+
∑

i∈Iη
Ri,−t

σ2

)
,

(
1

σ2
µ

+ nη

σ2

)−1
 ,

where Iη and nη correspond to the observation indices and the number of observations, re-
spectively, for the η-th terminal node.
To use the separate model scheme, we perform a backfitting step to draw samples from
P (T a

1 , · · · , T a
T , Ma

1, · · · , Ma
T , σ2

a|D) for each A = a ∈ {0, 1} by computing the residual re-
sponses iteratively as follows:

Ri,−t = yi −
∑
j ̸=t

ga
y(Xi; T a

j , Ma
j ) for i ∈ Ia,

where Ia represents the set of observations corresponding to A = a ∈ {0, 1}.
To obtain posterior samples from P (T1, · · · , TT , M1, · · · , MT |D) for the binary exposure
model (1), we introduce a latent variable Z and apply the general Bayesian additive regression
tree (BART) model for continuous data. Specifically, we define Zi for i = 1, · · · , n as:

Zi ∼

 N
(∑T

t=1 ga(Xi; Tt, Mt), 1
)

I(Zi>0) for Ai = 1;
N
(∑T

t=1 ga(Xi; Tt, Mt), 1
)

I(Zi≤0) for Ai = 0

where ga(Xi; Tt, Mt) denotes the function that maps Xi to a predicted value based on the
t-th tree and the t-th model associated with exposure level a. For continuous A, the updating
step follows the Bayesian backfitting method as described for model (2).



22 BART confounder selection in R

Once all the tree structures and corresponding parameters have been updated, we proceed to
update the variance parameters (σ2 in the outcome model (2)) using the Gibbs sampler and
the final residuals. This is achieved by sampling from the inverse gamma distribution given
by:

σ2 ∼ Inv.Gamma
(

aσ + N

2 , bσ + 1
2

{
N∑

i=1

(
yi −

T∑
t=1

gy(Xi; T ′
t , M′

t)
)})

,

where aσ = bσ = 3 is set as suggested in Chipman et al. (2010). In the case of the separate
model, two variance parameters (σ2

0, σ2
1) need to be updated for the two outcome models (i.e.,

Model (3) for A = a ∈ {0, 1}), which is done using the inverse gamma distribution as follows:

σ2
a ∼ Inv.Gamma

aσ + Na

2 , bσ + 1
2

∑
i∈Ia

(
yi −

T∑
t=1

ga
y(Xi; T a

t , Ma
t )
)

 ,

where Na is the number of observations under A = a. If A is continuous, the variance
parameter for the exposure model, τ2 is updated in a similar manner:

τ2 ∼ Inv.Gamma
(

aτ + N

2 , bτ + 1
2

{
N∑

i=1

(
Ai −

T∑
t=1

ga(Xi; T ⋆
t , M⋆

t )
)})

,

where aτ = bτ = 3.

Next, we update the parameter α in the prior distribution of selection probabilities s ∼
D(α/q, · · · , α/q) by selecting a prior of the form α/(α + q) ∼ Beta(a0, b0), where a0 = 0.5
and b0 = 1, as suggested in Linero (2018). The Metropolis-Hastings algorithm is then used
to update the parameter. For the single model scheme, we update the vector of selection
probabilities s using the Metropolis-Hastings algorithm, with the acceptance ratio given by

P (s → snew) = min

1,

(1 −
q∑

j=1
sj)/(1 −

q∑
j=1

snew
j )


∑J

j=1 na
j

 .

In this step, the proposal distribution for s is given as D(ny
0 +c+α/q, na

1 +ny
1 +α/q, na

2 +ny
2 +

α/q, · · · , na
q + ny

q + α/q). For the separate model approach, we update s using a conjugate
sampling update as follows: s ∼ D(α/q + na

1 + ny1
1 + ny0

1 , · · · , α/q + na
q + ny1

q + ny0
q ), where

ny1
j and ny0

j represent the number of splits on the confounder Xj in two separate outcome
models.
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