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Abstract

Soils are routinely sampled and characterized according to genetic horizons (layers), resulting in
data that are associated with principal dimensions: location (x,y), depth (z), and property space (p).
The high dimensionality and grouped nature of this type of data can complicate standard analysis,
summarization, and visualization. The aqp package was developed to address some of these issues, as
well as provide a useful framework for the advancement of quantitative studies in soil genesis, geography,
and classification.

1 Background

The soils of the world support a wide range of natural ecosystems, agricultural production, industrial
processes, and the largest surficial carbon pool (Schlesinger, 1997). The rise and fall of past civilizations
can be directly linked to the use and misuse of the soil resource (Hillel, 1998). A staggering quantity of soils
information has been collected over the last 100 years, yet these data are often underutilized due to the
sheer volume and complex structure. We have developed an R package that supports the interpretation
of massive soils databases through numerical extensions to traditional methods of visualizing, aggregating,
and classifying soils information. Further development of these numerical analogues will provide a new
set of quantitative tools that soil scientists and surveyors can use in conjunction with well-established,
qualitative methods.

Soil science is an integrative approach to understanding surficial processes that includes concepts from
several disciplines (Buol et al., 2003). Pedology, one of several branches of soil science, is the study of the
genesis, morphology, classification, and geography of soils. Soil profiles are usually described, sampled, and
characterized by genetic horizons (“layers” defined by morphology and usually associated with an inferred
process), extending from the surface to a lower boundary determined by bedrock contact or to a depth
of 150-200 cm (Soil Survey Division Staff, 1993). The stratigraphy and morphology of soil horizons are
usually the first data that the soil scientist uses to qualitatively classify a soil: i.e. degree of alteration
relative to the parent material (Figure 1(a)), expression of oxidized or reduced forms of iron (Figure 1(b)),
accumulation of organic matter, or evidence of cyclical deposition of new material (Figure 1(c)).

Hans Jenny was one of the first researchers to advocate a semi-quantitative theory of soil genesis; in
which he described the “factors of soil formation” concept (Jenny, 1941). This novel approach is based on
the expression:

S = f(cl,o,r,p,t) (1)

where S represents a branch within a soil classification system, a collection of soil properties associated
with a soil profile or a single layer (horizon). The other parameters within the “clorpt” framework are: ¢l



(b)

Figure 1: Examples of soil profiles illustrating how horizons change with depth. Color, texture, structure
and root abundance are common visual indicators of near surface processes in soil.

representing a climate factor, o representing an organic factor, r representing a relief factor, p representing
a parent material factor, and t representing time. The S term in equation 1 can be modeled as matrix of
soil properties (columns) associated with either genetic horizons or regular depth-slices (rows), occurring
at some location in space. While the “clorpt” model is a useful construct for understanding how soil
genesis might proceed, quantitative evaluation is usually not possible because of complex interaction and
possible feedback mechanisms between terms on the right-hand side of the expression (Huggett, 1975).
The left-hand side of the expression, S, is especially difficult to quantitatively define when it describes
a collection of soil horizons and properties. The magnitude of measured properties, correlation between
properties, and trends with depth are all critical elements of how a soil profile is interpreted as a whole
(Arkley, 1976).

Several mature systems exist for the classification of soil profiles; Soil Taxonomy, World Reference
Base, Australian Soil Classification, etc. (Buol et al., 2003). Each system is based on current knowledge
of soil genesis, manifestation of specific processes in the form of field or lab measured properties, and
region-specific land use limitations. Most soil classification systems seek to accommodate the (potential)
global variability of soils (including Soil Taxonomy and World Reference Base), while others are tailored
to region-specific soil variability. Soil Taxonomy (Soil Survey Staff, 1999) provides a rich vocabulary for
grouping soils into several levels of a hierarchy based on established land-use limitations and our current
knowledge of soil genesis. However, Soil Taxonomy does not currently define an approach for numerically
describing the difference between soils. There has been limited work on purely numerical systems of
soil classification (Rayner, 1966; Moore and Russell, 1967; Moore et al., 1972), and several authors have
suggested the potential merit to such an approach (Webster, 1968; Arkley, 1976; Minasny and McBratney,
2007; Carré and Jacobson, 2009). However, these methods are rarely employed outside of case studies
presented within scientific journals.

2 The aqp Package

The agp (Algorithms for Quantitative Pedology) package for R was developed to address some of the
difficulties associated with processing soils information, specifically related to visualization, aggregation,



and classification of soil profile data. This package is based on S3-style functions and classes, and most
functions use basic dataframes as input, where rows represent soil horizons and columns define properties
of those horizons. Common to most functions are the requirements that horizon boundaries are defined
as depth from 0, and that profiles are uniquely defined by an id column. The aqp package defines two
classes, 'SoilProfile’ and ’SoilProfileList’, for storage of profile-level metadata, as well as summary, print,
and plotting methods that have been customized for common tasks related to soils data.

2.1 Visualizing Soil Profile Data

Visualization of key soil morphologic properties (i.e. color) is the first step in the interpretation of soil
profile information. Therefore, a simple diagram (Figure 2) illustrating horizon depths, colors, and names
(for a collection of soil profiles) represents an ideal starting point for presenting the soils within an area
of interest. The profile plot() function provides an approach for rendering soil profiles, based on basic
stratigraphic parameters: horizon top boundary, bottom boundary, horizon name, and optionally horizon
color (specified in a format that R understands). Combined with the base graphics plotting and layout
capabilities, the profile_plot () function can be used to quickly organize and depict soils information.

PO01 P002 P003 P004 P005 P006 P007 P008 P009
Al oOi Oa/A Al A Oi Al Oi Oe r— Ocm
A2 A AB A2 A A2 A Al
AB
A2
A3 AB
c1 BA Bwl
AB AB1
Btl Btl
Bw2
c2 Bl W Bwl AB
— 50cm
Bt2
BA Bt2 AB2
Bt2
Bw3
Bt
AB3
Rt Bwl
— 100cm
(o}
C1
Bw2
Bw2
c2 2
— 150cm
2C1 2
2C2 2C1
2C2
sc 3Bwb
3C
3Ab 1 200cm
3Cb
3Bwb

'— 250cm

Figure 2: Visualization of nine soil profiles, colored by RGB representations of field-described, dry colors.

The aqp package has several other functions for visualizing soils information: 1) plot_slices() for
generating maps of soil properties by depth slice, 2) panel.soil _profile() for plotting grouped soil prop-
erties vs. depth as step functions, and 3) panel.depth function() for plotting grouped depth functions,
accompanied by upper and lower confidence limits, vs. depth. In addition, there are several examples



within the manual pages that describe how to integrate these functions into calls to base and lattice
graphics commands for the production of complex diagrams (See §3).

2.1.1 Color Conversion

Since soil colors are measured in Munsell notation (hue, value, chroma), conversion to the RGB colorspace
is required for digital reproduction. The munsell2rgb() function uses a look-up table of common soil
colors, and can directly convert (hue, value, chroma) coordinates into (R, G, B) triplets or hexadecimal-
encoded colors. The munsell look-up table was generated from the MCSL spectral database of Munsell
chips! and color conversion equations?. The MCSL spectral database contains xyY colorspace coordinates
for a range of commonly used Munsell colors, defined at even-numbered chroma values. Colors at odd-
numbered chroma values were derived by estimating xyY colorspace coordinates along the entire range of
chroma defined for each Munsell hue and value, via spline interpolation (Figure 3).

The conversion from xyY coordinates to RGB coordinates was performed with the following 4 steps:
conversion from zyY to XY Z coordinates (Equation 2), chromatic adaption transformation from the C to
D653 illuminant (Equation 3), conversion from XY Z (D65 illuminant) to rgb (Equation 4), scaling of rgb
values to conform to a specific gamma value (Equation 5).
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Figure 3: Relationship between Munsell chroma and y-coordinate (xyY colorspace), for selected Munsell
hue (defined by line color and point symbol) and Munsell value (panels). Points at even-numbered Munsell
chroma values were derived from the MCSL spectral database. Points at odd-numbered Munsell chroma
values were estimated by spline interpolation.
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"http:/ /www.cis.rit.edu/mcsl/online/munsell. php
2http:/ /www.brucelindbloom.com /index.html?Math.htm]
3Most R plotting functions, and computer monitors in general, use the sRGB color profile which assumes a D65 illuminant.
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2.2 Re-Alignment of Soil Horizons into Depth Slices
2.2.1 Aggregation by Depth Slice

Standard aggregation or summarization of soils information usually involves properties summed across all
horizons (carbon quantity), mean values that are weighted by profile thickness (clay content), or depth to
a diagnostic feature (bedrock contact). These approaches generalize well to tasks that: 1) require single
estimates of a given soil property at sampling locations in space, or, 2) group-wise estimates of a given
soil property. These approaches do not generalize well to cases in which vertical variation in a given soil
property is of interest, and needs to be summarized for a group of soil profiles. For example, the change
in clay content with depth is used as a diagnostic element in US Soil Taxonomy, and is an important
criterion for several land use interpretations. A collection of soils within a given region is likely to include
a wide range in horizon designation (A, B, C, etc.), depth, thickness, and horizon sequences. Therefore,
summarization by major horizon type is confounded by variable thickness of major horizon types (A, B, C,
etc.), and potential absence of major horizon types at some locations. We present an alternative approach,

where soil properties are summarized along a set of depth slices, despite being collected by genetic horizon
(Figure 4).
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Figure 4: Profile aggregation algorithm.

The algorithm (implemented in the soil.slot () function) is based on the assumption that a repre-
sentative depth function for some soil property (i.e. clay content) can be generated from a collection of



soil profiles by summarizing this property along depth slices. Depth slices are defined by a segmenting
vector: either regularly spaced (1 cm) intervals, or a user-defined vector of segment boundaries (i.e. 0-10,
10-25, 25-50, 50-150). Each profile in the collection is first segmented according to the specified segmenting
vector. Then, summary statistics (mean, median, SD, IQR, etc.) are computed along segments within
the collection of profiles. The resulting estimate of central tendency and spread around that tendency
for each segment are reconstituted into a single representative depth function (Figure 4). When avail-
able, weights (i.e. area fractions) can be supplied for each profile, resulting in weighted versions of most
summary statistics. Representative depth functions can be computed for continuous variables (i.e. clay
content), categorical variables (i.e. presence/absence of diagnostic feature), and soil depth probability (i.e.
probability that the soil profile ends at a given depth).

2.2.2 Investigation of Spatial Patterns by Depth Slice

Representation of spatial patterns in soil properties, either at points or interpolated along a regular grid,
is confounded by irregular horizon depths, variation in naming conventions used by different workers, and
the absence of certain horizon types at certain locations. The depth slice aggregation methods presented
in the previous section can be extended to re-align soils data (collected by genetic horizon) onto a common
depth-basis. The format_slices() function is provided to re-format the resulting “sliced” data into a list
of sp class elements, suitable for mapping or modeling tasks.

2.3 Numerical Classification of Soil Profiles
2.3.1 Pair-Wise Comparison by Depth Slice

One approach to a purely numerical extension to soil classification requires the calculation of a pair-wise
dissimilarity metric between soil profiles. Since soil profiles are defined by an ordered (in depth) set of
horizons, a numerical comparison must account for variation in horizon thickness and associated properties
between profiles (Webster and Oliver, 1990). Our approach builds on work of Moore et al. (1972) and
the previously mentioned depth-slicing algorithm. Between profile dissimilarity is evaluated along regular
depth slices (i.e. every slice, every other slice, or every n slices), forming an 1,4 fites X Nproperties dissimilarity
matrix for each depth slice (Figure 5(a)).

The algorithm (implemented in the profile_compare () function) represents a compromise between the
way soils are commonly described and sampled (by genetic horizon type) and a normalized basis for the
comparison of measured properties (depth slice). Internally the daisy () function (cluster package) is used
to compute Gower’s generalized dissimilarity metric between samples (Maechler et al., 2005). This metric
accepts both continuous and categorical variables, and can accommodate missing observations (Kaufman
and Rousseeuw, 2005). A max_d parameter limits the maximum depth to which between-profile dissimilarity
is computed.

2.3.2 Tuning Parameters

Before summation of dissimilarities across depth slices, the matrix of between-profile dissimilarities can
be weighted according to the depth of a given slice (d) via an exponential decay function: w = e~**¢,
The decay rate parameter (k) determines how rapidly a slice’s dissimilarity value is down-weighed with
depth: a value of 0.1 would effectively remove any influence of dissimilarities computed below 30cm, and
a value of 1 would weight all slices equally (Figure 5(b)). The actual value for k should be determined
as objectively as possible; i.e with a combination of knowledge about expected vertical anisotropy and a
metric such as the cophenetic correlation coefficient (Sneath and Sokal, 1973). Within the sample dataset
sp3, incrementing & from 0 to 0.1, with respect to resulting agglomerative ( “average” method) clustering is
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Figure 5: Calculation of pair-wise profile dissimilarity.

demonstrated in Figure 6. For this dataset, lower levels of k result in better agreement (larger cophenetic
correlation coefficients) between the dissimilarity matrix and grouping defined by agglomerative clustering.
The highest cophenetic correlation coeflicient is encountered when k = 0.01, close to the depth weighting
values suggested by (Russell and Moore, 1968).
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Figure 6: Effect of adjusting the depth weighting (k) parameter from 0 to 0.1 on soil profile grouping.
Cophenetic correlation coefficients are printed below k values. “Average linkage” agglomerative clustering
was used to build dendrograms.

For massive collections of soil profiles the sample_interval argument to profile_compare() can be
used to reduce memory consumption by computing pair-wise dissimilarities every n slices. For example,
the comparison of 1,000 soil profiles, each with 5 variables, to a maximum depth of 50 cm requires 192.3 Mb
of RAM for the storage of the entire dissimilarity matrix (all depth slices) and takes about 70 seconds to
perform (1.3 Ghz Intel CPU). Computing dissimilarity values every 5 slices reduces memory consumption to
1 fifth the original size (38.5 Mb) and processing time by a factor of about 3 (22 seconds). Within the sample
dataset sp3, larger sample_interval values result in lower total dissimilarity values, minor differences in
grouping structure, and minor reduction in cophenetic correlation coefficients; up to a sampling interval
of every 10th slice (Figure 7). However, the specific threshold defining a reasonable trade-off between
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Figure 7: Effect of adjusting the sample_interval parameter from 1 to 20 on soil profile grouping, when k
= 0.01, and max_d = 100 cm. “Average linkage” agglomerative clustering was used to build dendrograms.

computational efficiency and preservation of detail will depend on the input dataset, available computing
resources, and the purpose of the analysis. An optimized version of profile_compare () that uses file-based
storage for the n,.ofiles X Nproperties X Ndepth slices list of dissimilarity matrices is currently in development.

3 Case Study

The aqp package ships with several example soil profile datasets, collected from the Sierra Foothill and
Sacramento Valley regions. The sp3 dataset is based on a collection of 10 soil profiles from 3 major geologic
groups (metavolcanic rocks, metasedimentary rocks, and granodiorite), representative of the Sierra Foothill
Region. These data contain field-measured color values (Munsell notation) along with lab-measured clay
content, cation exchange capacity (CEC), pH, total carbon, and analytically-measured color values (Soil
Survey Staff, 2004). The variability of soil properties in this region is largely controlled by the type of
underlying bedrock. Finer-textured, redder soils are usually found on metavolcanic rocks, whereas coarser-
textured, yellow to gray colored soils are found on granitic rocks. Soils formed on metasedimentary rocks
generally resemble soils formed on metavolcanic rocks, but variability in the type of rock and degree of
metamorphism can result in drastically different soil properties. The following case study demonstrates
how functions from the aqp package can be used to numerically describe: 1) differences between soil
profiles, 2) dissimilarity-based group membership, and 3) aggregated soil property information defined by
these groups.

Surrogate horizon names based on the clay content, cation exchange capacity (CEC), and pH of each
horizon, are generated to facilitate interpretation of profile classification. Next field-measured colors are
converted to RGB triplets for visualization with the munsell2rgb() function. Missing values, illogical
combinations, or Munsell values not matched by rows in the look-up table result in no data (NA).

# setup environment

library(aqp) ; data(sp3)

# generate surrogate horizon names from clay / CEC / pH

sp3$name <- paste(round(sp3$clay), '/', round(sp3$cec), '/', round(sp3$ph,1))
# color conversion

sp3$soil_color <- with(sp3, munsell2rgb(hue, value, chroma))

Between-profile dissimilarity is computed with the profile_compare() function using clay content,
cation exchange capacity (CEC), and pH values, to a maximum depth of 100 c¢m, and using a depth-
weighting coefficient of 0.01. Divisive hierarchical clustering (diana() function from the cluster package)
is used to group soil profiles into a dendrogram for visualization (Kaufman and Rousseeuw, 2005; Maechler




et al., 2005). The output from diana() is converted into an ape class object, and ladderized (Paradis et al.,
2004). Divisive clustering was used as it most closely resembles the top-down approach that a soil scientist
would (usually) take when sorting soils: i.e. splitting an initial collection of individuals into subsequently
smaller and smaller groups. Finally, the sp3 dataframe is converted into a SoilProfileList class object.

# load required libraries

require(ape) ; require(cluster)

# perform comparison of profiles

d <- profile_compare(sp3, vars=c('clay','cec','ph'), max_d=100, k=0.01)
h <- diana(d)

p <- ladderize(as.phylo(as.hclust(h)))

# convert soil data into ProfilelList object for plotting

sp3.1list <- initProfileList(sp3)

A new plot of the dendrogram is generated with the standard plot method for ape class objects; adjustments
are made in order to accommodate sketches of the soil profiles below (Figure 8). Information on the ordering
of soil profiles is extracted from the special last_plot.phylo object, and used to position profile sketches
below corresponding terminal nodes of the dendrogram. Finally, soil profile sketches are generated by the
profile plot () function, applied to a SoilProfileList class object (Figure 8). If so desired, alternative
depth-function plots could be inserted below their corresponding “leaves” of the dendrogram; i.e. particle
size information, principal component scores, etc.

par (mar=c(1,1,1,1))

p-plot <- plot(p, cex=0.8, label.offset=-3, direction='down', y.lim=c(80,0),
x.lim=c(1,sp3.list$num_profiles+1), show.tip.label=FALSE)
tiplabels(col=c(1,2,4) [cutree(as.hclust(p), 3)],

pch=c(15,15,15,16) [cutree(as.hclust(p), 4)], cex=2)

# get the last plot geometry

lastPP <- get("last_plot.phylo", envir = .PlotPhyloEnv)

# the original labels, and new (indexed) order of pedons in dendrogram
d.labels <- attr(d, 'Labels')

new_order <- sapply(l:lastPP$Ntip,

function(i) which(as.integer(lastPP$xx[1:1lastPP$Ntip]) == i))

# plot the profiles, in the ordering defined by the dendrogram

# with a couple fudge factors to make them fit

profile_plot(sp3.list, color="soil_color", plot.order=new_order,
scaling.factor=0.3, width=0.1, cex.names=0.65,
y.offset=max(lastPP$yy)+8, add=TRUE)

# add a legend

legend (0.4, -2, legend=c('metavolcanic rocks', 'metasedimentary rocks',
'granodiorite: backslope', 'granodiorite: swale'),

col=c(1,2,4,4), pch=c(15,15,15,16), bty='n', cex=1.2)

The results of this numerical classification (Figure 8) match field observation of soil properties, and
expected differences between major lithologic types. Profiles 1-4 were collected from soils formed on
metavolcanic rocks of varying iron content; with higher clay and pH values found on rocks with the highest
iron content (profiles 2-4). Profile 5 was collected from a soil formed on metasedimentary rock, with high
clay content and much lower pH values. Profiles 6-10 were collected from soils with low clay content
and slightly higher pH values formed on granodiorite. Slightly higher clay contents and an increasing pH
depth-function differentiate profiles 7-9 (swale position) from profiles 6 & 10 (backslope position). General
patterns in soil color mirror the 3 groups identified within the clustering: deep red colors found in group
1 (high-iron soils from metavolcanic rocks) and group 2 (metasedimentary rocks), gray to brown colors
found in the swale position of group 3, and the lighter, more yellow colors found on the backslope position
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Figure 8: Divisive hierarchical clustering of soil profiles from the sp3 sample dataset. Tip colors repre-
sent group membership defined by cutting the dendrogram into three classes, and labeled according to
underlying rock type. Horizon names have been substituted with: “clay / CEC / pH”.

(Figure 8).

According to branching within the dendrogram (Figure 8), the metasedimentary-soil appears to be
most similar to the metavolcanic-soil group. Inspection of the dissimilarity matrix reveals that this soil is
approximately 31% similar to the soils of the metavolcanic group and only 9% similar to the soils of the
granodiorite group.

# get groups from above and leave out soil number 5
groups <- factor(cutree(as.hclust(p), 3)[-5],
labels=c('metavolcanic', 'granodiorite'))

# using dissimilarity matrix from above,

# subset soil number 5 vs. all others

d.5 <- as.matrix(d) [5, -5]

# normalized similarity = 1 - ( dissimilarity / max(dissimilarity) )
1 - round(tapply(d.5, groups, mean) / max(d), 2)

# metavolcanic granodiorite

# 0.31 0.09

Next, depth-slice aggregation of cec and clay values is performed by calling the soil.slot() function
for each of the three major groups identified via cluster analysis. Depth-slice aggregation of pH values is
applied to groups defined by cutting the dendrogram at a lower level, such that the granodiorite group is
split according to hillslope position (Figure 8). The ddply() function (plyr package) is simplest to use,
however the by () and do.call() functions could have been used as well. Visualization of the depth-wise
trends and uncertainty (+/- 1 standard deviation) is performed with the custom lattice panel function
panel.depth function() (Figure 9). Note that the following code listing corresponds to Figure 9(b).

10




require(plyr) ; require(lattice)

# note that this example only illustrates a single iteration of the steps outlined above
# split data into 3 major classes (following rock type)

g <- factor(cutree(as.hclust(p), 3), labels=c('metavolcanic rocks',
'metasedimentary rocks', 'granodiorite'))

g <- data.frame(group=g, id=factor(names(g)))

# combine groups with original dataframe

sp3.new <- merge(sp3, g, by='id')

sp3.new$prop <- sp3.new$cec

# perform aggregation, by group

a <- ddply(sp3.new, .(group), .fun=soil.slot)

# manually add mean +/- SD to the result

a$upper <- with(a, p.mean+p.sd)

a$lower <- with(a, p.mean-p.sd)

# use custom plotting function for uncertainty viz.

xyplot(

top ” p.mean, data=a, groups=group, subscripts=TRUE,
lower=a$lower, upper=a$upper, ylim=c(100,-5), alpha=0.3,
ylab='Depth (cm)', xlab='CEC (cmol(+) / kg soil)',
panel=panel.depth_function,

auto.key=list(lines=TRUE, points=FALSE, columns=2,
title='Soil Profile Group', cex=0.75, size=4, between=1),
par.settings=1list(superpose.line=list(col=c(1,2,4), lty=1))
)
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Figure 9: Depth-slice aggregation of clay content (a), cation exchange capacity (b) and pH (c) based
groups identified via cluster analysis. Lines are mean values, shaded area represents the mean =+ 1 standard
deviation.

Aggregation of soil profile information gives an indication of group-wise central tendency and an em-
pirical estimate of variability (Figure 9). Clay content (Figures 9(a)) and CEC values (Figures 9(b)) are
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highest within the metavolcanic-soils, with a marked but highly variable increase at 60-80 cm in depth.
CEC values are lowest in the granitic-soils and show very low variability with depth. The metasedimentary-
soil group lies closer to the metavolcanic-soils, and additional observations (required to compute depth-wise
variability) would assist with further, interpretation. Visualization of aggregate soils information can also
aid interpretation of the results from the previous classification. Of the three characteristics supplied to
the profile compare() function (clay content, CEC, and pH), the distribution of cec values and clay
content with depth appears to be the most important factor contributing to differences between groups
(Figures 9(a) and 9(b)). Diverging pH depth trends (Figure 9(c)) differentiate the two sub-groups identified
within the granitic-soils (backslope vs. swale hillslope position).

4 Concluding Remarks

The examples presented in the previous sections represent only a handful of the functions within the
aqp package. Several additional functions are included that can be used to format and display depth
slices of soils information according to spatial coordinates. A random profile() function is included to
simulate soil profile data, for the development and testing of aggregation and classification algorithms.
The bundled documentation includes extensive, annotated examples based on three sample soils datasets.
Examples presented in this paper were based on a small number of soil profiles for clarity. However,
functions in the aqp package have been successfully applied to studies involving several thousand soil
profiles. Pending submission to CRAN, the active development version of the aqp package will be hosted
on R-Forge (http://aqp.r-forge.r-project.org/).
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