Spatial distribution of population and activities
# load libraries
library(aopdata)
library(data.table)
library(ggplot2)
library(sf)
Download land use data
# download aop data
<- read_landuse(city='Fortaleza',
df year=2019,
geometry = T,
showProgress = F)
#>
|
| | 0%
|
|= | 2%
|
|==== | 6%
|
|======= | 10%
|
|============ | 17%
|
|=============== | 21%
|
|=================== | 27%
|
|========================= | 36%
|
|============================ | 40%
|
|============================== | 43%
|
|================================== | 49%
|
|====================================== | 55%
|
|========================================== | 59%
|
|============================================== | 66%
|
|================================================ | 68%
|
|=================================================== | 73%
|
|===================================================== | 76%
|
|====================================================== | 78%
|
|======================================================== | 81%
|
|========================================================= | 82%
|
|============================================================= | 87%
|
|================================================================ | 91%
|
|================================================================== | 94%
|
|=================================================================== | 95%
|
|======================================================================| 100%
#>
|
| | 0%
|
|= | 2%
|
|== | 3%
|
|==== | 6%
|
|===== | 7%
|
|======= | 10%
|
|========= | 13%
|
|========== | 15%
|
|=========== | 16%
|
|=============== | 21%
|
|=============== | 22%
|
|================== | 26%
|
|=================== | 27%
|
|======================= | 32%
|
|======================= | 33%
|
|========================== | 37%
|
|================================ | 46%
|
|==================================== | 51%
|
|=========================================== | 62%
|
|=============================================== | 68%
|
|================================================= | 70%
|
|================================================== | 71%
|
|========================================================= | 81%
|
|============================================================== | 88%
|
|================================================================ | 91%
|
|=================================================================== | 96%
|
|===================================================================== | 99%
|
|======================================================================| 100%
#>
: 780 B
Downloading: 780 B
Downloading: 1.8 kB
Downloading: 1.8 kB
Downloading: 2 kB
Downloading: 2 kB
Downloading: 3.4 kB
Downloading: 3.4 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 20 kB
Downloading: 20 kB
Downloading: 20 kB
Downloading: 20 kB
Downloading: 20 kB
Downloading: 20 kB
Downloading: 36 kB
Downloading: 36 kB
Downloading: 44 kB
Downloading: 44 kB
Downloading: 52 kB
Downloading: 52 kB
Downloading: 52 kB
Downloading: 52 kB
Downloading: 52 kB
Downloading: 52 kB
Downloading: 60 kB
Downloading: 60 kB
Downloading: 60 kB
Downloading: 60 kB
Downloading: 60 kB
Downloading: 60 kB
Downloading: 68 kB
Downloading: 68 kB
Downloading: 68 kB
Downloading: 68 kB
Downloading: 68 kB
Downloading: 68 kB
Downloading: 77 kB
Downloading: 77 kB
Downloading: 77 kB
Downloading: 77 kB
Downloading: 77 kB
Downloading: 77 kB
Downloading: 85 kB
Downloading: 85 kB
Downloading: 85 kB
Downloading: 85 kB
Downloading: 85 kB
Downloading: 85 kB
Downloading: 93 kB
Downloading: 93 kB
Downloading: 93 kB
Downloading: 93 kB
Downloading: 93 kB
Downloading: 93 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB Downloading
Map Population Spatial distribution population by income decile
ggplot() +
geom_sf(data=subset(df, P001>0), aes(fill=P001), color=NA, alpha=.7) +
scale_fill_distiller(palette = "YlOrRd", direction = 1)+
labs(title='Population distribution', fill="Total population") +
theme_void()
Map income levels Spatial distribution population by income decile
ggplot() +
geom_sf(data=subset(df, !is.na(R002)), aes(fill=factor(R003)), color=NA, alpha=.7) +
scale_fill_brewer(palette = "RdBu") +
labs(title='Average household income per capita', fill="Income decile") +
theme_void()
Map Schools Spatial distribution of elementary schools
ggplot() +
geom_sf(data=df, aes(fill=E003), color=NA, alpha=.7) +
scale_fill_distiller(palette = "YlOrRd", direction = 1)+
labs(title='Spatial distribution of elementary schools', fill="N. of schools") +
theme_void()
Map Hospitals Spatial distribution of high-complexity health care facilities
ggplot() +
geom_sf(data=df, aes(fill=S004), color=NA, alpha=.7) +
scale_fill_distiller(palette = "YlGnBu", direction = 1)+
labs(title='Spatial distribution of hospitals', fill="N. of hospitals") +
theme_void()