
anytime: Easier Date and Time Conversion
Dirk Eddelbuettel1

1Department of Statistics, University of Illinois, Urbana-Champaign, IL, USA

This version was compiled on July 28, 2019

The anytime package provides functions which convert from both a num-

ber of different input variable types (integer, numeric, character, factor)

and different input formats which are tried heuristically offering a power-

ful and versatile date and time converter that (generally) requires no user

input and operates autonomously.

Motivation

R excels at computing with dates, and times. Using a typed repre-

sentation for your data is highly recommended not only because

of the functionality offered but also because of the added safety

stemming from proper representation.

But there is a small nuisance cost in interactive work as well

as in programming. Users must have told as.POSIXct() about

a million times that the origin is (of course) the epoch. Do we

really have to say it a million more times? Similarly, when parsing

dates that are some variant of the common YYYYMMDD format, do

we really have to manually convert from integer or numeric or

factor or ordered to character? Having one of several common

separators and/or date formats (YYYY-MM-DD, YYYY/MM/DD,

YYYYMMDD, YYYY-mon-DD and so on, with or without times), do

we really need a format string? Or could a smart converter function

do this for us?

The anytime() function aims to provide such a general purpose

converter returning a proper POSIXct (or Date) object no matter

the input (provided it was parseable), relying on Boost Date_Time

for the (efficient, performant) conversion. anydate() is an addi-

tional wrapper returning a Date object instead. utctime() and

utcdate() are two variants which interpret input as coordinated

universal time (UTC), i.e. free of any timezone.

Examples

We set up the R environment and display for the examples below.

Note that the package caches the (local) timezone information

(and anytime:::setTZ() can be used to reset this value later).

Sys.setenv(TZ=anytime:::getTZ()) # TZ helper

library(anytime) # caches TZ info

options(width=50, # column width

digits.secs=6) # fractional secs

From Integer, Numeric, Factor or Ordered. For numeric dates in

the range of the (numeric) yyyymmdd format, we use anydate().

integer

anydate(20160101L + 0:2)

[1] "2016-01-01" "2016-01-02" "2016-01-03"

numeric

anydate(20160101 + 0:2)

[1] "2016-01-01" "2016-01-02" "2016-01-03"

Numeric input also works for datetimes if range corresponds to

the range of as.numeric() values of POSIXct variables:

integer

anytime(1451628000L + 0:2)

[1] "2016-01-01 00:00:00 CST"

[2] "2016-01-01 00:00:01 CST"

[3] "2016-01-01 00:00:02 CST"

numeric

anytime(1451628000 + 0:2)

[1] "2016-01-01 00:00:00 CST"

[2] "2016-01-01 00:00:01 CST"

[3] "2016-01-01 00:00:02 CST"

This is a change from version 0.3.0; the old behaviour (which

was not fully consistent in how it treated numeric input values, but

convenient for input in the ranges shown here) can be enabled

via either an argument to the function or a global options, see

help(anytime) for details:

integer

anytime(20160101L + 0:2, oldHeuristic=TRUE)

[1] "2016-01-01 CST" "2016-01-02 CST"

[3] "2016-01-03 CST"

numeric

anytime(20160101 + 0:2, oldHeuristic=TRUE)

[1] "2016-01-01 CST" "2016-01-02 CST"

[3] "2016-01-03 CST"

Factor or Ordered. Factor variables and their order variant are also

supported directly.

factor

anytime(as.factor(20160101 + 0:2))

[1] "2016-01-01 CST" "2016-01-02 CST"

[3] "2016-01-03 CST"

ordered

anytime(as.ordered(20160101 + 0:2))

[1] "2016-01-01 CST" "2016-01-02 CST"

[3] "2016-01-03 CST"

Note that factor and ordered variables may appear to be like

numeric variables, they are in fact converted to character first and

treated just like character input (described in the next section).

Character: Simple. Character input is supported in a variety of

formats. We first show simple formats.

Dates: Character

anytime(as.character(20160101 + 0:2))

[1] "2016-01-01 CST" "2016-01-02 CST"

[3] "2016-01-03 CST"

https://cran.r-project.org/package=anytime anytime Vignette | July 28, 2019 | 1–3

Dates: alternate formats

anytime(c("20160101", "2016/01/02", "2016-01-03"))

[1] "2016-01-01 CST" "2016-01-02 CST"

[3] "2016-01-03 CST"

Character: ISO. ISO8661 date(time) formats are supported with

both ‘T’ and a space as separator of date and time.

Datetime: ISO with/without fractional seconds

anytime(c("2016-01-01 10:11:12",

"2016-01-01T10:11:12.345678"))

[1] "2016-01-01 10:11:12.000000 CST"

[2] "2016-01-01 10:11:12.345678 CST"

Character: Textual month formats. Date formats with month ab-

breviations are supported in a number of common orderings.

ISO style

anytime(c("2016-Sep-01 10:11:12",

"Sep/01/2016 10:11:12",

"Sep-01-2016 10:11:12"))

[1] "2016-09-01 10:11:12 CDT"

[2] "2016-09-01 10:11:12 CDT"

[3] "2016-09-01 10:11:12 CDT"

Datetime: Mixed format

(cf http://stackoverflow.com/questions/39259184)

anytime(c("Thu Sep 01 10:11:12 2016",

"Thu Sep 01 10:11:12.345678 2016"))

[1] "2016-09-01 10:11:12.000000 CDT"

[2] "2016-09-01 10:11:12.345678 CDT"

Character: Dealing with DST. This shows an important aspect.

When not working in localtime (by overriding to UTC) the change in

difference to UTC is correctly covered (which the underlying Boost

Date_Time library does not do by itself).

Datetime: pre/post DST

anytime(c("2016-01-31 12:13:14",

"2016-08-31 12:13:14"))

[1] "2016-01-31 12:13:14 CST"

[2] "2016-08-31 12:13:14 CDT"

important: catches change

anytime(c("2016-01-31 12:13:14",

"2016-08-31 12:13:14"), tz="UTC")

[1] "2016-01-31 18:13:14 UTC"

[2] "2016-08-31 17:13:14 UTC"

Technical Details

The actual parsing and conversion is done by two different Boost

libraries. First, the top-level R function checks the input argument

type and branches on date or datetime types. All other types get

handed to a function using Boost lexical_cast to convert from any-

thing numeric to a string representation. This textual representation

is then parsed by Boost Date_Time to create the corresponding date,

or datetime, type. (There are also a number of special cases where

numeric values are directly converted; see below for a discussion.)

We use the BH package (Eddelbuettel et al., 2019a) to access these

Boost libraries, and rely on Rcpp (Eddelbuettel and François, 2011;

Eddelbuettel, 2013; Eddelbuettel et al., 2019b) for a seamless C++

interface to and from R.

The Boost Date_Time library is addressing the need for parsing

date and datetimes from text. It permits us to loop over a suitably

large number of candidate formats with considerable ease. The for-

mats are generally variants of the ISO 8601 date format, i.e., of the

YYYY-MM-DD ordering. We also allow for textual representation of

months, e.g., ‘Jan’ for January. This feature is not internationalised.

anytime(c("2016-1-31", "2016-2-1"))

[1] "2016-01-31 CST" NA

anytime(c("2016-1-31", "2016-2-1"), useR=TRUE)

[1] "2016-01-31 CST" "2016-02-01 CST"

The list of current formats can be retrieved by the

getFormats() function. Users can also add to this list at run-

time by calling addFormats(), as well as removing formats. User-

provided formats are tried before the formats supplied by the pack-

age.

getFormats()

[1] "%Y-%m-%d %H:%M:%S%f"

[2] "%Y-%m-%d %H%M%S%f"

[3] "%Y/%m/%d %H:%M:%S%f"

[4] "%Y%m%d %H%M%S%f"

[5] "%Y%m%d %H:%M:%S%f"

[6] "%m/%d/%Y %H:%M:%S%f"

[7] "%m-%d-%Y %H:%M:%S%f"

[8] "%Y-%b-%d %H:%M:%S%f"

[9] "%Y/%b/%d %H:%M:%S%f"

[10] "%Y%b%d %H%M%S%F"

[11] "%Y%b%d %H:%M:%S%F"

[12] "%b/%d/%Y %H:%M:%S%f"

[13] "%b-%d-%Y %H:%M:%S%f"

[14] "%d.%b.%Y %H:%M:%S%f"

[15] "%d%b%Y %H%M%S%f"

[16] "%d%b%Y %H:%M:%S%f"

[17] "%d-%b-%Y %H%M%S%f"

[18] "%d-%b-%Y %H:%M:%S%f"

[19] "%Y-%B-%d %H:%M:%S%f"

[20] "%Y/%B/%d %H:%M:%S%f"

[21] "%Y%B%d %H%M%S%f"

[22] "%Y%B%d %H:%M:%S%f"

[23] "%B/%d/%Y %H:%M:%S%f"

[24] "%B-%d-%Y %H:%M:%S%f"

[25] "%d.%B.%Y %H:%M:%S%f"

[26] "%a %b %d %H:%M:%S%F %Y"

[27] "%a %d %b %Y %H:%M:%S%F"

[28] "%Y-%m-%d %H:%M:%S%Z"

[29] "%a %b %d %H:%M:%S%F xxx %Y"

[30] "%Y-%m-%d"

[31] "%Y%m%d"

[32] "%m/%d/%Y"

[33] "%m-%d-%Y"

[34] "%Y-%b-%d"

[35] "%Y%b%d"

[36] "%b/%d/%Y"

[37] "%b-%d-%Y"

[38] "%d%b%Y%d-%b-%Y%Y-%B-%d"

[39] "%Y%B%d"

[40] "%B/%d/%Y"

[41] "%B-%d-%Y"

One minor shortcoming is that single digits dates and months

are sometimes encountered: 2001-2-3 for the third of February of

2 | https://cran.r-project.org/package=anytime Eddelbuettel

2001. Boost Date_Time will only work with 2001-02-03 which is

somewhat more restrictive.

As an alternative, and to be close to parsing by the R language

and system, we also support the parser from R itself. As R does

not provide access via its API, we use the Rcpp package (Eddel-

buettel and François, 2011; Eddelbuettel, 2013; Eddelbuettel et al.,

2019b). This is shown in the second invocation of anytime() in

the preceding example.

Output Formats

A related topic is faithful and easy to read representation of datetime

objects in output, i.e., formats for printing object.

In the spirit of no configuration used on the parsing side, for-

mating support is provided via several functions. These all follow

different known standards and are accessible by the name of the

standard, or, in one case, the non-standard convention. In all cases,

a character representation is returned.

pt <- anytime("2016-01-31 12:13:14.123456")

iso8601(pt)

[1] "2016-01-31T12:13:14"

rfc2822(pt)

[1] "Sun, 31 Jan 2016 12:13:14.123456 -0600"

rfc3339(pt)

[1] "2016-01-31T12:13:14.123456-0600"

yyyymmdd(pt)

[1] "20160131"

Ambiguities

The anytime package is designed to operate heuristically on a

number of plausible and sane formats. This cannot possibly cover

all conceivable cases.

North America versus the world. In general, anytime tries to gently

nudge users towards ISO 8601 order of year followed by month

and day. But for example in the United States, another prevalent

form insists on month-day-year ordering. As many users are likely

to encounter such input format, anytime accomodates this use

provided a separator is used: input with either a slash (/) or a

hyphen (-) is accepted and parsed.

One versus two digits. As mentioned earlier, displaying only one

digit for day and/or month is possible. An example would be

“2010-2-4” for the fourth of February in 2010. However, the Boost

parser does not recognise this on input as it would require “2010-

02-04”. However, setting the option useR=TRUE switches to the R

parser which does recognise this input as the following example

demonstrates:

anydate("2019-1-2")

[1] NA

anydate("2019-1-2", useR=TRUE)

[1] "2019-01-02"

Asserts

The anytime package also contains two helper functions that can as-

sist in defensive programming by validating input arguments. The

assertTime() and assertDate() functions validate if the given

input can be parsed, respectively, as Datetime or Date objects.

In case one of the inputs cannot be parsed, an error is triggered.

Otherwise the parsed input is returned invisibly.

Comparison

The anytime aims to satisfy two goal: be performant, and the same

time flexible in terms of not requiring an explicit input format. We

can gauge the relative performance in two ways.

Speed. The as.POSIXct() function in R provides a useful baseline

as it is also implemented in compiled code. The fastPOSIct()

function from the fasttime (Urbanek, 2016) excels at converting

one (and only one) input format fast to a (UTC-only) datetime

object. A simple benchmark coverting 100 input strings 10,000

times finds both as.POSIXct() and anytime() at near-identical

speed, but about 16 times slower that fastPOSIXct(). This result

is reasonable: a highly focussed function can outperform two (still

fast) more universal converters. anytime() is still compelling as it

easier to use than as.POSIXct() by not requiring a format string.

Generality. The parsedate package (Csárdi and Torvalds, 2019)

brings the very general date parsing utility from the git version

control software to R. In a similar comparison of 100 input strings

parsed 100 times, we find its parse_date() function to be about

fourteen times slower than anytime() or as.POSIXct(). Again,

this is reasonable as the greater flexibility of parsedate comes at a

cost in performance.

Summary

We describe the anytime package which offers fast, convenient

and reliable date and datetime conversion for R users along with

helper functions for formatting and assertions.

References

Csárdi G, Torvalds L (2019). parsedate: Recognize and Parse Dates in Various

Formats, Including All ISO 8601 Formats. R package version 1.2.0, URL

https://CRAN.R-project.org/package=parsedate.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer,

New York. doi:10.1007/978-1-4614-6868-4.

Eddelbuettel D, Emerson JW, Kane MJ (2019a). BH: Boost C++ Header Files. R

package version 1.69.0-1, URL https://CRAN.R-project.org/package=BH.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++

Integration.” Journal of Statistical Software, 40(8), 1–18. doi:

10.18637/jss.v040.i08.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J,

Bates D (2019b). Rcpp: Seamless R and C++ Integration. R package version

1.0.1, URL https://CRAN.R-project.org/CRAN=package=Rcpp.

Urbanek S (2016). fasttime: Fast Utility Function for Time Parsing and Conversion.

R package version 1.0.2, URL https://CRAN.R-project.org/package=fasttime.

Eddelbuettel anytime Vignette | July 28, 2019 | 3

	Motivation
	Examples
	From Integer, Numeric, Factor or Ordered
	Factor or Ordered
	Character: Simple
	Character: ISO
	Character: Textual month formats
	Character: Dealing with DST
	Technical Details
	Output Formats
	Ambiguities
	North America versus the world
	One versus two digits
	Asserts
	Comparison
	Speed
	Generality

	Summary

