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Abstract

The amei package for R [26] is a tool that provides a flexible statistical
framework for generating optimal epidemiological interventions that are
designed to minimize the total expected cost of an emerging epidemic.
Uncertainty regarding the underlying disease parameters is propagated
through to the decision process via Bayesian posterior inference. The
strategies produced through this framework are adaptive: vaccination
schedules are iteratively adjusted to reflect the anticipated trajectory of
the epidemic given the current population state and updated parameter
estimates. This document briefly covers the background and methodology
underpinning the implementation provided by the package and contains
an extensive example showing the functions and methods in action.
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Intended audience

This document is intended to familiarize a (potential) user of amei with the mod-
els implemented and analyses available in the package. After a brief overview,
the bulk of this document consists of a detailed example illustrating the various
functions and methodologies implemented. This document has been authored
in Sweave (try help(Sweave)). This means that the code quoted throughout is
certified by R, and the Stangle command can be used to extract it. The demo
available in this package will run the same code via demo("amei").

Note that this tutorial was not meant to serve as an instruction manual.
For more detailed documentation of the functions contained in the package, see
the package help–manuals. At an R prompt, type help(package=amei). PDF
documentation is also available on the world-wide-web.

http://www.cran.r-project.org/web/packages/amei/index.html

This tutorial is comprised of four main sections. Section 1 provides some
background and motivation. The mathematical specification of the Bayesian
models used for inference and the Monte Carlo methods for constructing optimal
vaccination strategies (both static or adaptive and on–line) are contained in
Section 2. In Section 3, the functions and methods implemented in the package
are illustrated by following a single, detailed, example, whose results were first
reported by Merl et al., [20]. The paper concludes in Section 5 with a discussion
of the methodology and related work highlighting other freely available software
with comparisons and contrasts. Miscellaneous details on implementation, etc.,
are provided in an appendix.

1 Motivation

The goal of the study of infectious diseases is to better understand how infections
are spread and maintained, and ultimately to find ways to control the spread
of a disease. The most common methods for intervening in the spread of an
infectious disease either remove susceptible individuals or apply treatment to
infected individuals. For instance, the susceptible population may be culled, as
in the case of foot-and-mouth disease [29, 9], or the infected population may be
quarantined, as in the case of SARS [18]. Most commonly, susceptibles may be
vaccinated, as in the case with influenza or smallpox [10, 13].

Each of these actions incurs a quantifiable epidemiological cost. For culling,
the cost is an additional number of deaths; for quarantine, the cost is likely
to be measured in monetary units rather than lost lives; for vaccination, the
cost may be measured in both monetary units as well the number of additional
vaccine–induced infections; for medical treatment, the cost is again monetary.
Furthermore, the costs associated with each action can depend upon the state of
the disease within the population of interest. This raises the question of how to
find optimal epidemiological interventions in a manner that adaptively depends
on the state of the epidemic.

2



Most existing methods for finding optimal intervention strategies are con-
cerned with the situation of pre-emptive intervention which is assumed to be
completed before the onset of the epidemic (for instance see [3, 25, 29]). In this
kind of situation, there is no reason to consider sequentially updated (i.e. adap-
tive) interventions: as soon as the intervention policy is triggered, the epidemic
threat will be eradicated. However, in most scenarios, total and instantaneous
intervention will not be an implementable strategy. Moreover, these methods
usually involve calculations that assume no uncertainty in key model parame-
ters, including transmission rate, recovery rate, and others (however, see Elderd,
et al. [8] and our brief discussion in Section 5).

Here we introduce amei, a software package that implements a statistical
framework introduced by Merl, et al. [20], that allows one to respond to an
emerging epidemic while simultaneously learning about it. We consider vac-
cination strategies defined by a fraction of the current susceptible population
to be targeted for vaccination, and a threshold number of susceptibles below
which the vaccination campaign is called off. We couple the evaluation of opti-
mal, adaptive, intervention strategies with Bayesian procedures for performing
on-line estimation of the parameters of the underlying epidemic model, thereby
propagating parameter uncertainty through to policy decisions. We demon-
strate the advantages of adaptive intervention via the functions provided by
the package using simulations modeled after an influenza outbreak at a British
boarding school described by Murray [21]. We compare the distribution of costs
arising from epidemiological intervention under the adaptive policies to those
arising from non-adaptive policies (i.e. policies not dependent on the state of
the epidemic and/or not reflecting parameter uncertainty), and find that the
adaptive policies result in low total costs, efficient use of available resources,
and are robust to model misspecification.

2 Methods

2.1 SIR Model

In amei, we consider a standard Susceptible–Infected–Removed (SIR) model
[1, 14] with permanent immunity and with mortality. In this model, the dynamic
variables at time t are the number of susceptible individuals, S(t); the number
of infected individuals, I(t); the number of recovered individuals, R(t); and the
number of removed/dead individuals, D(t). We assume the population is closed
to immigration or emigration such that S(t) + I(t) + R(t) + D(t) = N , where
N is constant.

Models of this type can include transmission dynamics ranging from the very
simple to the very complex. We adopt a flexible negative binomial form for the
transmission function [19]. Under this assumption, the SIR model is described
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by the following system of differential equations [14, 19]:

dS
dt

= −kS ln
(

1 +
bI

k

)
(1)

dI
dt

= kS ln
(

1 +
bI

k

)
− (ν + µ)I

dR
dt

= νI (2)

dD
dt

= µI (3)

The model parameters are: the transmission rate b; the overdispersion (or
“clumpiness”) parameter k; the death rate µ; and the rate of recovery to the
immune class ν. The negative binomial distribution can be interpreted as a
compound stochastic process in which encounters between infected and suscep-
tible individuals occur randomly (i.e., according to a Poisson process) such that
the encounter rate varies according to a gamma distribution with coefficient of
variation k−1/2. Thus, via k, the negative binomial transmission can account
for social interactions and/or network factors in disease transmission, without
requiring explicit characterization of the population structure.

This SIR formulation leads to a natural discrete time approximation for the
numbers of infections (Ĩ), recoveries (R̃), and deaths (D̃) arising in the unit
time interval from t to t+ 1. Holding the total number of infected individuals,
I, constant and integrating Eq. (1) over a unit time interval gives

S(t+ 1) = S(t)
[

k

k + bI(t)

]k
,

so that the fraction of susceptible individuals surviving a unit time interval is[
k

k+bI(t)

]k
. Viewed as a discrete time stochastic process, the number of new

infections occurring between time t and t + 1 when S(t) = s and I(t) = i can
be therefore described by

Ĩ|s, i ∼ Bin(s, pi(i, b, k)), (4)

where

pi(i, b, k) = 1−
(

k

k + bi

)k
and Bin(n, π) is the standard binomial distribution. Similarly, by integrating
Eqs. (2–3), the numbers of recoveries and deaths occurring between time t and
t+ 1 can be described by

R̃|i ∼ Bin(i, pr) (5)
D̃|i, r̃ ∼ Bin(i− r̃, pd) (6)
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where pr = 1 − e−ν and pd = 1 − e−µ. The forward dynamics for the total
numbers of susceptible and infected individuals are therefore

S(t+ 1) =S(t)− Ĩ|s, i
I(t+ 1) =I(t) + (Ĩ|s, i)− (R̃|i)− (D̃|i, r̃ + ĩ).

Here the lower case symbols {s, i, r} denote the realized value of the associ-
ated capital letter random variable. In this discrete time approximation we
have assumed a particular ordering of events, namely that recoveries occur first,
followed by deaths from among those infected individuals who did not recover,
followed by new infections. Simulation studies indicated that these assumptions,
as well as other possible orderings, resulted in system dynamics that were equal
in expectation to the deterministic solutions to the continuous time SIR model.

2.2 Online Parameter Estimation

An important task of amei is to be able to estimate the SIR model parameters.
Given the discrete time approximation given in the previous section, it is possible
to do this online (i.e., as the epidemic progresses) via straightforward parametric
Bayesian methods. In particular, we use Markov Chain Monte Carlo (MCMC)
[11] to learn about the posterior distributions of b, k, ν, and µ conditioned on
the evolution of the epidemic observed so far. The likelihood is given recursively
in Eq. (4–6). Let ĩt = S(t − 1) − S(t) be the number of new infecteds at time
T , and similarly for the newly recovered and dead individuals r̃t and d̃t so that
r̃t + d̃t ≤ I(t− 1). Then, the likelihood up to time T is given by

T∏
t=1

Bin(̃it |S(t− 1), pi(I(t− 1), b, k))

×
T∏
t=1

Bin(r̃t|pr)×
T∏
t=1

Bin(d̃t|I(t)− r̃t, pd)

and we can see that it consists of three mutually independent components.
Conditional conjugacy can be exploited for ν and µ via beta priors for pr

and pd. A Beta(αr, βr) prior for pr implies that

p(ν) = (1− e−v)αr−1e−vβr . (7)

Conjugate updating leads to the posterior conditional

pr| · · · ∼ Beta(αr +
∑T
t=1 r̃t, βr +

∑T
t=1 I(t)− r̃t). (8)

The form of the conditional posterior for ν is similar to Eq. (7) and can be
simulated by first drawing pr via Eq. (8) and then applying the inverse trans-
formation ν = − log(1− pd). Sampling for µ proceeds similarly with

pd| · · · ∼ Beta(αd +
∑T
t=1 d̃t, βd +

∑T
t=1 I(t)− r̃t − d̃t). (9)
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Thus it is possible to take Gibbs samples for ν and µ so long as appropriate
hyperparameters αr, βr, αd, βd can be found to represent our prior beliefs. In
ignorance we simply set these to unity by default, leading to a uniform prior on
pr and pd. The user is free to specify his/her own prior parameterization in the
package.

Obtaining samples for b and k requires the Metropolis–Hastings algorithm.
Our prior beliefs can be encoded with gamma distributions, and conditional on
a previous sample (b, k) the next sample (b′, k′) can be obtained by Metropolis–
within–Gibbs steps using:

p(b′|k, . . . ) (10)

∝ Γ[b′|αb, βb]
T∏
t=1

Bin(̃it |S(t− 1), pi(I(t− 1), b′, k))

p(k′|b′, . . . ) (11)

∝ Γ[k′|αk, βk]
T∏
t=1

Bin(̃it |S(t− 1), pi(I(t− 1), b′, k′)).

For the prior settings, the default values set in the package are (αb, βb) =
(αk, βk) = (1, 3) which (though seemingly informative at first glance) turns
out to be uninformative on the scale of the support of the posterior. As before,
these can easily be changed by the user. We use random walk uniform proposals
on the positive real line, i.e., b′ ∼ U [3b/4, 4b/3], which gives reasonably good
mixing from the Markov chain.

In the presence of a vaccination strategy (described in the next section)
necessitates a simple change to the above equations. If 0 ≤ vt ≤ S(t − 1) is
the number of susceptibles which have been vaccinated, then we simply replace
S(t− 1) with S(t− 1)− vt so that ĩt = S(t− 1)− vt − S(t).

2.3 Optimal Vaccination Strategies: Fixed and Adaptive

Once we know, or have estimated, the SIR model parameters at some time
during the epidemic, we next want find the best way to intervene in the spread
of the epidemic. The first step is to define what we mean by the “best” strategy.
This requires a specification of the costs of various actions, such as vaccination,
verses the cost of allowing the epidemic to spread in an uncontrolled fashion.
In amei, we formulate the total expected cost of the epidemic in terms of the
underlying costs associated with maintaining infected individuals until recovery,
suffering death, and administering vaccinations. As it is currently formulated,
these costs must all be in some common currency (such as monetary cost, or
simply numbers of deaths).

We have formulated our costs and vaccination strategies in terms of a policy
where a fraction, α, of susceptibles are prevented from risk of infection by moving
them directly into an immune/recovered class, such as by perfect vaccination,
until the number of individuals that are still susceptible drop below a threshold,
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γ, and vaccination is discontinued. We let c1(α, γ, s) denote the cost associated
with the vaccination strategy (α, γ) when S(t) = s. Letting cv denote the cost
per vaccine unit, then

c1(α, γ, s) =
{
cvαs if s > γ
0 if s ≤ γ

We let c2(i) denote the cost component that depends on the number of infec-
tions in the population, I(t) = i. This component includes the costs associated
with maintaining the non-recovered infected individuals and costs associated
with deaths, as in

c2(i) = cti+ cdd̃,

where ct is the cost per treatment/maintenance of a non-removed infected indi-
vidual, and cd is the cost per death.

Assuming the initial epidemiological state is S(0) = s0, I(0) = i0, the ex-
pected total cost of the epidemic under intervention strategy (α, γ) can be ex-
pressed recursively as

E{C0} = c1(α, γ, s0) + c2(i0) + E{C1}, (12)

where E{Ct} denotes the expected cost accumulated from time t onwards. The
optimal intervention strategy (α, γ) is the one that minimizes the total accumu-
lated cost over the course of the epidemic. Two methods for calculating such
strategies are as follows.

The first case we are interested in is when the parameters of the SIR model
are exactly known, and we wish to calculate the single best intervention strategy
(α, γ) to use over the whole epidemic. The total expected cost depends on the
parameter values and the initial epidemiological state (s0, i0). Thus, conditional
on a set of parameter values, Monte Carlo simulation can be used to search over
values of α and γ in order to find the combination that minimizes E{C0}. For
each combination of α and γ considered, we conduct n stochastic simulations of
the outbreak in order to estimate the mean cost associated with the intervention
(α, γ). The strategy producing the lowest mean cost is defined to be the optimal
intervention. Typically we discretize and create a grid of admissible α and γ
settings. In the examples in Section 3 we allow α to range from 0 to 1 in
increments of 0.1, and γ to range from from 2 to s0 − s0/10 in increments of
s0/10, i.e., taking 10 steps.1

In the second case, we want to calculate an adaptive strategy that updates
the best strategy (α, γ) as we learn more about the epidemic over time. As
above, the expected cost surface associated with a given set of parameter values
(as obtained by MCMC, described above), can be explored using standard Monte
Carlo methods. At each time step, MCMC is used to produce samples from the
current posterior distribution on model parameters. These samples are used
to calculate the optimal vaccination strategy as outlined as above, treating the

1We generally do not include γ = s0 in the grid since this policy (coupled with any α) is
equivalent to α = 0 for any γ.
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current time step as time zero. The adaptive strategy to be implemented at
that time step is defined to be the strategy that most frequently minimizes the
cost over the samples from the posterior distribution of the parameters.

3 An illustrative example

In this section we demonstrate the advantages of adaptive intervention using
simulations modeled after an influenza outbreak at a British boarding school
described by Murray [21]. We shall compare the distribution of costs arising
from epidemiological intervention under the adaptive policies to those arising
from non-adaptive policies. The epidemic conforms to many standard assump-
tions of SIR models: a population essentially closed to immigration and emi-
gration; includes recovery and immunity; and has near homogeneous mixing of
susceptibles and infectives. The epidemic was traced back to a single infected
student out of a population of 763 individuals.

For reproducibility of the results in this section we have set the random seed
as follows.

> seed <- 12345

> set.seed(seed)

We begin by exploring the behavior of the SIR model, described in Section
2.1, without any intervention. The first step is to set the relevant parameters
that are necessary for simulating the epidemic. These consist of: the “true”
underlying parameters for the SIR model; the initial condition of the population
at the beginning of the epidemic; and the relative costs of infections, deaths,
and vaccinations.

> true <- list(b = 0.00218, k = 10, nu = 0.4, mu = 0)

> init <- list(S0 = 762, I0 = 1, R0 = 0, D0 = 0)

> costs <- list(vac = 2, death = 4, infect = 1)

Murray [21] provides estimates of the transmission rate (b) and recovery rate
(ν), which are what we use in the true parameterization set above. We also set
the death rate (µ) to zero since there are no deaths in this epidemic. Finally,
we set the “clumpiness” parameter (k) to be large to reflect the homogeneous
mixing of the population. The costs above describe the unit cost (or loss)
for a single vaccination or death, and the daily cost of maintaining an infected
individual.

We are interested in the costs of a no–vaccination policy on epidemic trajec-
tories with the above parameters. To explore this, we set the vaccination policy
used in the simulation to zero.

> vac <- list(frac = 0, stop = 0)

We are now ready to run the Monte Carlo experiment. The function MCepi
can be used to simulate the population and cost trajectories for the experiments.
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First, it simulates the stochastic SIR model under a given vaccination strategy.
Second, for each realization of the epidemic progression the function calculates
the cost over time for the epidemic. This is repeated many times, and the mean
trajectories for both the populations and the costs, as well as the 5th and 95th
quantiles, are recorded.

> init.MCepi <- MCepi(init, true, vac, costs)

Now we can simply plot the results to look at the distribution of the sus-
ceptible, infected, and recovered individuals in the population as the epidemic
progresses (top panel of Figure 1), as well as the distribution of costs over time
(bottom panel of Figure 1).

Next we examine the dynamics of the system when we have perfect infor-
mation and use a fixed vaccination policy. First we need to set up the grid of
admissible policies. In this case, we are looking at strategies that: vaccinate a
fixed proportion of the susceptible population, from 0 to 100%, in steps of 10%;
and that stop vaccinating susceptibles when the remaining susceptible popula-
tion falls below some threshold between 2 and the initial susceptible population
minus 75, in increments of 75, as explained in Section 2.3.

> vacgrid <- list(fracs = seq(0, 1, 0.1), stops = seq(2,

+ init$S0 - 75, 75))

Once this grid has been initialized, we can run the Monte Carlo experiment,
using the function optvac, which finds the vaccination policy that minimizes
the total cost of the (stochastic) epidemic. This is done by simulating the
epidemic forward under the known, true, parameterization and calculating the
cost of each vaccination strategy.

> out.optvac <- optvac(init, true, vacgrid, costs)

This function outputs the costs for each of the possible vaccination strategies.
The best and worst policies can be obtained as follows:

> best <- getpolicy(out.optvac)

> worst <- getpolicy(out.optvac, which = "worst")

> rbind(best, worst)

row col frac stop cost
best 10 3 0.9 152 1657
worst 1 1 0.0 2 2297

The same information can be obtained via the generic print and summary com-
mands, which will be shown later. We can also plot the cost surface over the
space of possible vaccination strategies. This takes the form of a heat plot, where
lower cost areas are in deep red, and high cost areas are light yellow (Figure 2).

Given the calculated optimal policy, we can explore effects of the vaccination
strategy on the progression of the epidemic together with the trajectory of costs
under this strategy. We do this by again simulating the epidemic dynamics using
the function MCepi, however this time we include the best fixed vaccination
policy.
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> plot(init.MCepi)
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> plot(init.MCepi, type = "costs")
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Figure 1: Monte Carlo simulated epidemic trajectories (top) for the numbers of susceptible,
infected, and recovered individuals, and the associated cost(s) (bottom) with a null vaccination
strategy. (2.5,50,97.5%) quantiles are shown.

> vac.opt <- best[3:4]

> opt.MCepi <- MCepi(init, true, vac.opt, costs)

Figure 3 summarizes the trajectories (top) of the epidemic under the optimal
vaccination strategy over time, and the corresponding costs (bottom). By de-
fault we assume a fixed lag of 7 time steps from when the first infection appears
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> plot(out.optvac)
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Figure 2: Heatmap depicting the expected cost surface associated with variable stop time
vaccination strategies based on the true parameter values. The minimum expected cost (1657)
is achieved by a strategy of vaccinating 90% of susceptibles at each time step, until the number
of susceptibles falls below 152. As expected, the maximum expected cost (2297 cost units) is
realized through inaction (top row and left column policies are never implemented)

to when the first intervention can take place2. This is apparent in Figure 3,
where there is a sharp transition from day 7 when the vaccinations begin, and
the susceptible population drops dramatically. The number of vaccinated in-
dividuals can be added to the plot by specifying the argument showv = TRUE,
however we omit this here to reduce clutter in the figure. Information on the
distribution of the number of vaccine units dispensed can be extracted as follows.

> getvac(opt.MCepi)

q0.025 mean median q0.975
1 368 538.38 548 664

We can compare these results to the case without vaccination (Figure 1, top),
and see that the optimal vaccination strategy effectively suppresses the spread
of the infection. The costs also spike around time 7 as the vaccination policy

2This can be varied with the start argument to MCepi.
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> plot(opt.MCepi)
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> plot(opt.MCepi, type = "costs")
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Figure 3: Monte Carlo simulated trajectories (top) for the numbers of susceptible, infected,
and recovered individuals and cost(s) (bottom) trajectories under optimal (fixed) vaccination
strategy.

is implemented. These costs then stabilize at a lower level than that observed
under the no–vaccination strategy in Figure 1 (bottom). We can easily extract
information on the distribution of final costs of the no–vaccination and optimal
(fixed) vaccination policies for comparison as follows.

> T <- length(opt.MCepi$Median$C)
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> optC <- getcost(opt.MCepi)

> initC <- getcost(init.MCepi)

> data.frame(rbind(initC, optC), row.names = c("init",

+ "opt"))

q0.025 mean median q0.975
init 2142.850 2297.106 2299 2437.05
opt 1444.925 1684.102 1683 1944.10

The optimal (fixed/static) strategy gives a (mean) savings of approximately
613.004 units, or 27%. The same information is available through the generic
print and summary commands, e.g.,

> opt.MCepi

Call:
MCepi(init = init, params = true, vac = vac.opt, costs = costs)

Distribution of vaccinations administered:
q0.025 mean median q0.975

vac 368 538.38 548 664

Distribution of final costs:
q0.025 mean median q0.975

cost 1444.925 1684.102 1683 1944.1

Now we move on to adaptive management. In this case we assume that we
do not have perfect information, so we will want to simultaneously estimate
the epidemic parameters as well as find an optimal management strategy. The
first, and perhaps most important, step here is to set up the function which is
going to dictate the (true) evolution of the epidemic. This is done via epistep,
which has dynamics as given in Eq. (4–6), earlier, as the default. However, the
user can specify this function however they wish. We describe another epistep
function in Section 4.

We also need to start with an initial guess, i.e., priors, for the epidemic pa-
rameters that we want to estimate. The default option is to do this by choosing
appropriate hyperparameters for the priors explained earlier. The defaults used
by manage are those given in Section 2.2.

Here, we run the manage function with default values for hyperparameters
and epistep function to adaptively design a vaccination strategy to manage
the epidemic. At each time step in the evolution of the epidemic the manage
function uses MCMC to sample from the posterior distribution of the param-
eters (b, k, ν, µ) given the available history of the epidemic and any already–
implemented intervention. Then, a thinned subset of these samples are used
propagate uncertainty in the parameter estimates through to the costs of the
vaccination strategies. These costs are obtained by performing Monte Carlo
forward simulations of the epidemic from the current time point into the future
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with those parameters. As explained in Section 2.3 we choose the to implement
the strategy that most frequently minimizes the cost. After the intervention is
implemented, the state in the next time step is determined by epistep, and the
process is repeated.

> out.man <- manage(init, epistep, vacgrid, costs)

To explore the results of the simulation we again plot the evolution of the epi-
demic (Figure 4, top) as well as the cost trajectory under the optimal vaccination
(Figure 4, bottom), both for a single run. We can now compare the case with
adaptive management to the case without vaccination (Figure 1, bottom), as
well as the case of optimal vaccination with perfect information (Figure 3, bot-
tom). As before, we can extract information on the final cost of the epidemic
as follows.

> getcost(out.man)

[1] 1732

Since the manage function is not performing a Monte Carlo experiment, the
number returned is a scalar. We can compare this to the cost of the best fixed
strategy obtained with knowledge of the true underlying parameters governing
the epidemic, given above, via a Monte Carlo experiment. Notice that the
adaptive strategy is comparable to the best fixed strategy obtained when the
true parameterization is known. Later, we shall perform a Monte Carlo version
of the adaptive management strategy to make a more meaningful comparison.

We can also see the final distribution of the SIR model parameters. This is
shown in Figure 5. A summary is provided by the generic print and summary
commands:

> out.man

Call:
manage(init = init, epistep = epistep, vacgrid = vacgrid, costs = costs)

Distribution of SIR model parameters:
b k nu

Min. :0.001853 Min. : 0.2679 Min. :0.2876
1st Qu.:0.002233 1st Qu.: 1.5915 1st Qu.:0.3546
Median :0.002326 Median : 3.5477 Median :0.3719
Mean :0.002334 Mean : 4.1464 Mean :0.3729
3rd Qu.:0.002438 3rd Qu.: 5.3039 3rd Qu.:0.3902
Max. :0.002958 Max. :20.9020 Max. :0.4608

mu
Min. :2.316e-06
1st Qu.:6.773e-04
Median :1.553e-03
Mean :2.232e-03
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> plot(out.man)
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> plot(out.man, type = "cost")
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Figure 4: Trajectory (top) in terms of the numbers of susceptible, infected, recovered, and
vaccinated individuals, and the corresponding cost (bottom) of the epidemic under adaptive
management.

3rd Qu.:3.095e-03
Max. :1.665e-02
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> true <- as.list(formals(epistep)$true)

> plot(out.man, type = "params", true = true)
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Figure 5: Final posterior distributions of estimated parameters (clockwise from the left: trans-
mission rate, overdispersion parameter, mortality rate, recovery rate). “True”parameter values
are indicated by a dot; mean posterior values are indicated by an ‘x’; and the central 95%
region of the distribution is shaded.

1 554 1732

Next, we illustrate a Monte Carlo experiment where epidemics are initialized
and proceed randomly through the adaptive management strategy illustrated
above so that we can see the average behavior, costs, and associated variability.
The function MCmanage facilitates this experiment, and it essentially calls the
manage function many times (which can be controlled by the MCreps argument).
In order to provide a (relatively) quick demonstration we have set a low default of
MCreps = 30 and have used low defaults for the other Monte Carlo parameters
to management.

> out.MCmanage <- MCmanage(init, epistep, vacgrid,

+ costs)

To reproduce the results in Merl, et al. [20], use

MCvits = 100, MCMCpits = 10000, vacsamps = 100, MCreps = 100
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and otherwise use the defaults. The object that is returned is of class "MCepi"
with fields similar to those that are output from the MCepi function which
implements a static (fixed) vaccination strategy. Thus, the same generic plot
commands can be used. Figure 6 shows plots summarizing the distribution

> plot(out.MCmanage)
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> plot(out.MCmanage, type = "costs")
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Figure 6: Monte Carlo simulated epidemic trajectories (top) for the numbers of suscepti-
ble, infected, and vaccinated individuals, and the associated cost(s) (bottom) under adaptive
management

of epidemic trajectories (top) and costs (bottom) under the adaptive manage-
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ment. Distributional information on number of vaccine units dispensed can be
extracted as follows.

> getvac(out.MCmanage)

q0.025 mean median q0.975
1 401.95 541.6 557 652.2

Figure 7 shows the distribution of fractions of individuals vaccinated and the
stopping level for the epidemic trajectories under adaptive management in the
Monte Carlo experiment. We can compare the costs (and quantile bounds) to
that of the best fixed vaccination strategy calculated assuming that the true
parameterization is known.

> cinit <- getcost(init.MCepi)

> copt <- getcost(opt.MCepi)

> cman <- getcost(out.MCmanage)

> data.frame(rbind(cinit, copt, cman), row.names = c("init",

+ "opt", "man"))

q0.025 mean median q0.975
init 2142.850 2297.106 2299.0 2437.050
opt 1444.925 1684.102 1683.0 1944.100
man 1503.450 1721.867 1712.5 1908.975

The cost of the non-intervention strategy is shown again for calibration purposes.
As before, the generic print and summary commands can be used to obtain
the same information. Notice that, in this short Monte Carlo experiment, the
adaptive management scheme approximates the best static vaccination scheme
obtained then the true parameterization is known in advance.

It is interesting to compare to what the cost of managing the epidemic would
have been without estimating the parameters as the epidemic progressed, but
rather by guessing what the appropriate parameters might be. Suppose our best
guess at the parameters underestimated the true transmission probability b and
overestimated the true recovery probability ν.

> bad <- list(b = 0.001, k = 10, nu = 0.9, mu = 0)

The optimal (static) policy under this parameterization can be constructed, as
demonstrated above.

> costs.bad <- optvac(init, bad, vacgrid, costs)

> pol.bad <- getpolicy(costs.bad)

> pol.bad

row col frac stop cost
best 2 10 0.1 677 360

Then, we can calculate the distribution of costs of managing the true epidemic
with a policy developed under our best guess of the parameterization.
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> plot(out.MCmanage, type = "fracs")
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> plot(out.MCmanage, type = "stops")
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Figure 7: Fractions vaccinated (top) and stopping levels (bottom) for the simulated epidemic
trajectories shown in Figure 6 that were under adaptive management. In both cases, the
(2.5, 50, 97.5)-% quantiles are shown.

> bad.MCepi <- MCepi(init, true, pol.bad[3:4], costs)

> cbad <- getcost(bad.MCepi)

> cbad

q0.025 mean median q0.975
1 2129.9 2282.289 2284 2422.05
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Comparing these costs with the ones obtained above, under adaptive manage-
ment, we can see that a poor guess can lead to a significantly worse strategy—
nearly 57% larger on average. Clearly, good quality (online) estimates of the
SIR model are crucial to ensuring a cost–effective approach to the management
of an epidemic.

4 Alternative Transmission Model

For reproducibility of the results in this section we have, again, set the random
seed as follows.

> seed <- 12345

> set.seed(seed)

We would like to see how well the fixed and adaptive strategies can do when
faced not only with parameter mis-specification, but when there may be some
component of the underlying transmission model that is not accounted for in
the implemented SIR model upon which its vaccination strategies are based.
Towards this end, we chose a fairly simple extension of the SIR model where
infection does not pass directly from individual to individual. Instead, they
become infected by encountering a reservoir of the infectious agent (for instance
bacteria or fungi in water or soil), and then infected individuals contribute
infectious agents to the reservoir. The continuous time dynamics are:

dS
dt

= −aS
(

C

C + C0

)
dI
dt

= aS

(
C

C + C0

)
− (ν + µ)I

dR
dt

= νI (13)

dD
dt

= µI

dC
dt

= ρI −mC

where the concentration of the infective agent in the reservoir is given by C; the
transmission rate is modeled by a saturating function of C, so that as C → ∞
the transmission rate approaches the constant a at a rate determined by C0;
infective agents die or are removed from the reservoir at rate mC; and the per
capita rate at which new infected agents are added to the reservoir is ρ.

This system can be discretized in a similar manner to the system discussed
earlier, so that the single step transmission dynamics are given by:

Ĩ|s, C ∼ Bin(s, pi(a,C,C0)), (14)
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where

pi(a,C,C0) = 1− exp
(
−aC
C + C0

)
(15)

and Bin(n, π) is the standard binomial distribution. The dynamics for R̃ and D̃
are exactly as before (Eqs. (5–6)). The single step dynamics for the reservoir are
expected to be more smooth than the epidemic in the population at large. For
instance, for bacteria the concentration could be in the thousands or millions of
individuals. In this case the evolution of the reservoir is approximately

C(t+ 1)− C(t) = [ρI(t)]− dc. (16)

Here dc is the number (per unit reservoir) of infectious agents (stochastically)
removed from the reservoir in a unit time, which has distribution

dc ∼ Bin(C, pdc
), (17)

where pdz = 1− e−m.
In R, we may implement the above transition model by encoding it in an

alternative epistep function for use with the amei package methods as follows.

> alt.epistep <-

+ function(SIR, last=list(rem=0, rec=0, infect=0, dead=0, Z=0),

+ true=list(a = 0.05, mu = 0.05, nu = 0.1, m = 0.4,

+ rho = 200, C = 500))

+ {

+ ## calculate the infection probability based on the

+ ## resevoir, and randomly infect susceptibles

+ Z <- last$Z

+ fz <- Z/(Z+true$C)

+ pi <- 1 - exp(-true$a * fz)

+ infect <- rbinom(1, SIR$S, pi)

+

+ ## update recovereds and deaths

+ pr <- 1 - exp(-true$nu)

+ rec <- rbinom(1,SIR$I,pr)

+ pd <- 1 - exp(-true$mu)

+ dead <- rbinom(1, SIR$I-rec, pd)

+

+ ## resevoir dynamics

+ pz <- 1 - exp(-true$m)

+ dz <- rbinom(1, Z, pz)

+ bz <- round(SIR$I*true$rho)

+ Z <- Z - dz + bz

+

+ ## the returned list is passed in as "last" in a
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+ ## subsequent call to this "epistep" function

+ return(list(rem=(rec+dead), rec=rec, infect=infect,

+ dead=dead, Z=Z))

+ }

Here we first use the manage function with a NULL vaccination strategy (and
also, optionally, a NULL cost structure), in order to see how the behavior of this
system compares to the default epistep model implemented within amei. We
can then also look at the estimated “effective” SIR parameters.

This system can resemble the standard SIR model, especially when m is
large, so infective agents do not remain in the reservoir for long.

> init1 <- list(S0 = 150, I0 = 1, R0 = 0, D0 = 0)

> true <- list(a = 0.065, mu = 0, nu = 0.3, m = 0.99,

+ rho = 500, C = 500)

> alt.epistep1 <- alt.epistep

> formals(alt.epistep1)$true <- true

> out.alt <- manage(init1, alt.epistep1, NULL, NULL,

+ T = 80)

The top of Figure 8 shows the resulting dynamics under the default parameter-
ization offered by the formals of the alt.epistep function. To illustrate how
this new system can (significantly) differ from the SIR dynamics consider the
case where we take m very to be small. In this case is possible for new infections
to occur even if there had been no infected individuals in a previous time step
since they infective agent may persist in the reservoir for a long time without
infected individuals being present.

> true <- list(a = 0.065, mu = 0, nu = 0.3, m = 0.005,

+ rho = 500, C = 500)

> alt.epistep2 <- alt.epistep

> formals(alt.epistep2)$true <- true

> out.alt2 <- manage(init1, alt.epistep2, NULL,

+ NULL, T = 80)

The effect of these new dynamics may be readily seen in Figure 8, bottom, as the
epidemic progresses. In this second case (with small m), it is also very unlikely
that any susceptible individuals will be left at the end of an epidemic. This
contrasts with both the stochastic SIR model and these alternative dynamics
with m large, as it is possible that, due to stochastic effects, the infection will
die out before all susceptibles have been exposed.

It is interesting to examine the posterior parameter distributions for these
two cases (Figure 9) if we assume that these underlying alternative dynamics are
well approximated by the simpler SIR model. As one might expect, the estimates
of the recovery and death rates in both cases are quite similar, especially since
these dynamics are the same as those implemented within amei. However, the
estimates of b and k are quite different in the two cases. The 95% credible
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> plot(out.alt)
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> plot(out.alt2)

0 20 40 60 80

0
50

10
0

15
0

Evolution of Epidemic

time

in
di

vi
du

al
s

S
I
R
V

Figure 8: Trajectories in terms of the numbers of susceptibles, infecteds, recovereds, and
dead individuals under the alternative model in Eq. (13) with parameters {(a = 0.065,mu =
0.0, nu = 0.3, rho = 500, C = 500} and with (top) m = 0.99 (bottom) m = 0.005.

intervals hardly overlap, indicating that the two cases result in dynamics that

23



> plot(out.alt, type = "params", showd = TRUE)
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> plot(out.alt2, type = "params", showd = TRUE)
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Figure 9: Posterior parameter distributions for b, k, µ, and ν when the simulated source epi-
demic follows the alternative transmission model with parameters {(a = 0.065,mu = 0.0, nu =
0.3, rho = 500, C = 500} and with (top) m = 0.99 (bottom) m = 0.005.

are quantitatively different.
We now move on to our task of examining how well the fixed and adaptive

strategies can do when faced with an epidemic which is evolving according to a
transmission function outside the class of SIR models (1–3) used to calculate the
(optimal) vaccination strategy. The first step here is to let the fixed strategy
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“cheat”. That is, we allow the fixed strategy to see a full epidemic spread
according to the true model and parameterization and without intervention, so
as to estimate the best SIR model approximation. To do this we use the manage
function with NULL vaccination strategy and a NULL cost structure, and default
“true” parameters.

> init <- list(S0 = 600, I0 = 1, R0 = 0, D0 = 0)

> time = 80

> posterior <- manage(init, alt.epistep, NULL, NULL,

+ T = time, bkrate = 100)

Figure 10 shows trace plots of the samples obtained. From the output we can
extract the mean parameterization obtained at the final time point of the epi-
demic.

> mean.params <- as.list(apply(posterior$samp, 2,

+ mean))

Based on these parameters, and thus assuming an SIR model, we can calcu-
late the optimal static vaccination policy.

> costs <- list(vac = 2, death = 4, infect = 1)

> vacgrid <- list(fracs = seq(0, 1, 0.1), stops = seq(2,

+ init$S0 - 50, 50))

> alt.optvac <- optvac(init, mean.params, vacgrid,

+ costs, T = time)

> alt.best <- getpolicy(alt.optvac)

The cost surface is shown in Figure 11.
Then, based on the extracted policy, we can use MCepi to simulate the true

evolution of the epidemic (via alt.epistep) many times in order to build up an
understanding of the distribution of costs of the optimal static policy calculated
under the simplified SIR parametrization.

> alt.vac.opt <- alt.best[3:4]

> alt.MCepi <- MCepi(init, alt.epistep, alt.vac.opt,

+ costs, T = time)

> getcost(alt.MCepi)

q0.025 mean median q0.975
1 1594.975 1773.912 1773 1972.05

Now for the comparison. We provide the alt.epistep function to MCmanage
in order to build up an understanding of how the optimal adaptive strategy fares
under a restricted SIR model. Here we use the default, uninformative priors.

> alt.MCmanage <- MCmanage(init, alt.epistep, vacgrid,

+ costs, T = time)
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> plot(log(posterior$samp$b), type = "l", main = "")
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> plot(posterior$samp$k, type = "l", main = "")
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> plot(posterior$samp$nu, type = "l", main = "")
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> plot(posterior$samp$mu, type = "l", main = "")
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Figure 10: Traces of samples from the posterior distribution of the paramters for the (mis-
specified) SIR model.
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> plot(alt.optvac)
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Figure 11: The cost surface calculated for fixed strategies using parameters estimated from a
single run of the alternative epidemic model.

> getcost(alt.MCmanage)

q0.025 mean median q0.975
1 1645.45 1758.933 1731.5 1962.425

An alternative (and possibly fairer) approach would be to allow the adaptive
strategy to cheat as well by choosing the prior to be tightly concentrated around
around the mean.params estimated above. We can see by looking at the full
trajectories in Figures 12 and 13 that the strategies implemented by both the
fixed and adaptive methods are very similar. On average, the fixed strategy,
which has the benefit of having seen a complete epidemic in order to estimate
the “real” parameters, does a bit better, as we would expect. The adaptive
strategy can in some cases, do better than the fixed strategy, as can be seen
by looking at the lowest quantile of the expected costs. Indeed, the comparison
shows on average the adaptive strategy has lower costs. However, the adaptive
strategy here has a wider interval for the final costs, due to the uncertainty in
the parameters. Much of this uncertainty could be reduced by, for instance,
providing the adaptive algorithm with informative priors, as mentioned above.

We can also look back to Figure 11 to see the kind of improvement that the
optimal strategy can have over the case when no one (or very few individuals)
are vaccinated. We can extract the expected cost under this worst fixed strategy
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> plot(alt.MCepi, showd = TRUE)
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> plot(alt.MCepi, type = "costs")
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Figure 12: Trajectories in terms of top the numbers of susceptibles, infecteds, recovereds, and
dead individuals under the alternative model in Eq. (13) and bottom costs under the default
parameterization under the optimal static vaccination policy.

and compare it to the best fixed strategy directly.
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> plot(alt.MCmanage, showd = TRUE)
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> plot(alt.MCmanage, type = "costs")
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Figure 13: Trajectories in terms of top the numbers of susceptibles, infecteds, recovereds, and
dead individuals under the alternative model in Eq. (13) and bottom costs under the default
parameterization under the adaptive vaccination policy.

> alt.worst <- getpolicy(alt.optvac, which = "worst")

> rbind(alt.best, alt.worst)
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row col frac stop cost
best 11 3 1.0 102 2078
worst 5 11 0.4 502 4968

Here it is easy to see how much better using an optimal fixed strategy with good
parameter settings is compared to not vaccinating. Since the adaptive strategy
has comparable costs to the fixed strategy over many trials of the epidemic, we
can conclude that the adaptive strategy gives similar reductions in costs over the
null vaccination policy as the fixed policy, even though the adaptive algorithm
must begin planning and implementing the intervention with considerably less
information than the fixed strategy it is compared with here.

We have shown here that it is straightforward to build functions with fairly
simple extensions to the SIR model to use with the amei package. Using one
example, we can see that the model implemented within amei to plan the inter-
ventions is flexible enough to allow effective vaccination strategies, even when
this model does not match the one which is known to govern the true underlying
epidemic dynamics. We have also shown how one can estimate “effective” SIR
parameters from an alternative dynamic epidemic model. These estimates can
be used to build a fixed policy, or the posterior samples could even be used as
parameters to enhance the adaptive strategies.

5 Discussion and related work

Our amei package for R implements a statistical framework that enables concur-
rent estimation of epidemic parameters and optimal intervention strategies. In
particular, it allows parameter uncertainty to be taken into consideration when
planning an intervention.

In the current implementation, we look for adaptive strategies of only one
type—vaccination of proportions of the population until susceptibles fall be-
low some threshold. However, if we were to instead allow the fraction of the
population targeted for vaccination to be a function of future disease states we
could regard Eq. 12 as a stochastic iteration equation and use stochastic dy-
namic programming [7] to calculate the optimal intervention associated with
a set of parameter values. Such an approach may be useful for situations in
which knowledge of the disease state is available, but for whatever reason se-
quential inference is not possible. In the situation considered here, in which
the static strategy is sequentially updated based on the current disease state
and parameter estimates, the adaptive strategy that emerges is flexible in that
it consists of a state–dependent sequence of target fractions, but does not in-
volve the additional computational burden associated with stochastic dynamic
programming.

If there is not much data observed during an epidemic (for instance if the
epidemic is occurring in a small population) then estimating disease parameters
within any framework could, of course, be difficult. One could use data about
previous epidemics to estimate parameters, for instance by maximum likelihood
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methods, to plan an intervention. However, as we showed in Section 3, should
these estimates be poor then the cost of intervening in the epidemic can be
greatly increased. By instead using previous epidemic data to inform the priors
within a Bayesian framework, such as the one we describe here, we can take into
account other research and observations without risking the high costs inherent
in using incorrect parameter estimates for planning an intervention.

Recently other authors (e.g., [8]) have also proposed using Bayesian meth-
ods to estimate disease parameters and propagate uncertainty in parameter
estimates through to an optimal of vaccination strategy. For instance, Elderd,
et al. [8], considered a Susceptible–Exposed–Infectious–Recovered (SEIR) model
for a small pox epidemic with mass action infection dynamics, and either mass
or trace vaccination. However, in their approach the likelihood requires numer-
ical solutions of the system of DEs (which can be computationally intensive).
Ball, et al. [3, 4] have also written technical papers on the optimal vaccination
strategies in epidemics, but do not consider adapting the policy over time.

Compared to these approaches, our proposed method has several advantages.
Our negative binomial discreetization of the SIR model is much less computa-
tionally intensive, and could easily be expanded to include an exposed class.
Additionally, this model is comparitively simple since it connects intuitively
with a straightforward SIR model, and is thus likely to be much more approach-
able to policy makers and practicioners outside of of statistics. Our approach is
also adaptive, allows a much more flexible cost framework, and is generalizable
to other types of interventions. Since the intervention strategy implemented by
amei is iteratively updated upon the arrival of new data, the vaccination sched-
ule is inherently adaptive to the state of the epidemic. This allows significant
changes in the vaccination strategy mid-intervention. This may be helpful, for
example, in a scenario where an intervention may be discontinued during a lull,
a subsequent refinement of parameter estimates or a surge of new infections may
dictate that the vaccination campaign should be re-initiated.

Not only can more comlicated infection dynamics be used for simulating the
dynamics of a disease, but in addition the method implemented in amei can be
modified to include more complicated disease dynamics such as latent states or
vector-communicated diseases, as well as more complicated intervention strate-
gies that allow combinations of vaccination, quarantine, and culling. Also note
the possibility of calculating policies based on minimization of some quantile of
the realized cost rather than the mean cost. This would lead to minimization
of worst-case-scenarios, which may be useful in practice.

There are other R packages that involve the simulation of epidemics, and
inference for models like SIR. As far as we can tell, ours is the only one which
considers (on–line) adaptive management of interventions. However, two pack-
ages that take approaches similar to ours for inferring the parameters governing
an epidemic are worth mentioning here. stochasticGEM [31] provides Bayesian
inference for partially observed stochastic epidemics. The implementation in
this package also allows for estimating parameters governing the infectious and
incubation period length. Several variants of the general epidemic model are
considered (e.g., [12, 16, 24, 23, 22, 28]), including the stochastic SIR with
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Markovian and non–Markovian infectious periods, and SEIR models. As with
amei, estimation is via MCMC. Höhle, et al., whose methods are implemented
in the stochasticGEM package, have themselves released an R package called
RLadyBug [15]. In this package, maximum likelihood and Bayesian inference
can be performed to estimate the parameters and provide confidence/credible
intervals and the ability to test hypotheses. Unfortunately, the package requires
JAVA. However, they do provide a nice paper outlining the usage [17] with exam-
ples. Both packages contain interesting data sets on epidemics and visualization
tools.

There are several other R packages that allow for the manipulation and
analysis of epidemic and disease data. They include a few packages which are
predominantly used for teaching purposes, e.g.: Epi [5] with methods for mul-
tiscale and censored data; epiR [30] focusing on veterinary epidemiology, and
epibasix [27]. Two other packages that include a range of statistical function-
ality for data manipulation and inference are epicalc[6] and epitools [2].
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A Implementation details

At a high level, most of the functions and routines in the amei package are
written in R. However, most the sub–routines implementing the Monte Carlo
evaluation of costs for the various vaccination strategies, which are obtained by
repeatedly simulating the epidemic forward in time given the current samples
of the parameter estimates, are written in C for speed considerations. There is
significant scope for parallelizations of these Monte Carlo routines, since each
forward simulation is independent of the next. For this reason future versions
of this package may leverage Pthreads or MPI to obtain significant speedups.
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