Getting started with
Umacs: A Universal Markov Chain Sampler
version (.912

Jouni Kerman
jouni@kerman.com

February 12, 2007

1 Introduction

Umacs (Universal Markov chain Sampler) is a framework for building and
executing iterative samplers using R. A detailed introduction is found in
Kerman [2006]. This document is about the practical details on how to get
your model programmed in Umacs.

1.1 Getting started

Install the package Umacs. Recommended: install also the package ‘rv’ using
the Package Installer command in R (from the menu). Then, load them,
using:

library (Umacs)
library(rv)

2 Setting up the sampler for your model

The function Sampler(...) builds a sampler function that runs the actual
sampler chains. It takes the functions and data provided by the user and
outputs an R function that can be used for sampling from this particular
model only.

Here is an example, using a model from [Gelman et al., 2003, Appendix]:

s <- Sampler(
.title = "Eight Schools Problem, varying degrees of freedom",

Getting Started With Umacs 0.912 2

J = 8,

sigma = ¢ (15, 10, 16, 11, 9, 11, 10, 18),
y =c (28, 8, -3, 7, -1, 1, 18, 12),
theta = Gibbs (theta.update, theta.init),
\') = Gibbs (V.update, V.init),

mu = Gibbs (mu.update, mu.init),

tau = Gibbs (tau.update, tau.init),

nu.inv SMetropolis (nu.inv.log.post, nu.inv.init),
nu = Gibbs (nu.update, nu.init),
Trace("theta[1]"),

Trace("nu.inv"

A Sampler function call takes a list of all parameters in the model,
including;:

1. Special Umacs variables such as .title
2. Data (constants) such as J, sigma.y, mu, tau
3. Unknown parameters such as theta, mu, and tau.

4. Other directives or “virtual parameter updates” such as Trace(...)
which displays a graphical trace plot (how this is done may change
slightly in the future versions)

The name of an unknown parameter is followed by the definition of the
updating scheme; the constant (data) parameters are to be given their values
within this .

The parameters are updated in the given order.

2.1 Give your sampler a name

.title is the name that you give to this sampler. It is there only for
convenience and for your reference. If you type the name of your sampler
function (here, s) on the console, you’ll see the title at the end of the function
listing.

2.2 Decide what your unmodeled data are

You will need to declare the data variables that need to be accessed in
the updating functions. In the above example, the data consists of three
variables: J, sigma.y, and y.

Getting Started With Umacs 0.912 3

If a parameter, such as y here, is defined in the workspace, you can
leave it out since it will be accessed from there. But, for completeness we
recommend that should be defined also within the Sampler call. If a code
parameter such as y has missing values and you want to model them to be
imputed, you MUST specify it here.

As a rule of thumb, unless your data variable has no missing data and
is extraordinarily large and thus memory-consuming, you should define the
data variable within the Sampler function call.

2.3 Set up initialization functions for all unknown parame-
ters

The unknown parameters in the above example are theta, V, mu, tau,
nu.inv and nu.

Umacs requires functions returning initial starting points for each of
the unknown parameters. These are just very simple functions generating
a single starting point for the parameter; they should be random so each
chain can start at a different point:

theta.init <- function () rnorm(J, mean=0, sd=1)

V.init <- function () runif(J, 0, sd(y))~2
mu.init <- function () rnorm(1l,mean(y),sd(y))
tau.init <- function () runif(1,0,sd(y))
nu.inv.init <- function () runif(1)

nu.init <- function () 1

Besides used for drawing an initial starting value for each of the chains,
these functions are used for determining the dimension of the parameter.
Further, this information is used for allocating space for the matrix of sim-
ulations.

As for the deterministic parameter v (that is a function of the random
parameter v~ 1) there is no need to draw a random starting point; however
we must return some scalar so that Umacs knows that v is a one-dimensional
variable.

Some important points to remember:

1. An initializer function for a parameter (say, theta) must return a
valid draw of a single instance of theta, with the correct length and
dimension.

2. If a parameter is not an array, do not set the dimension attribute.

Getting Started With Umacs 0.912 4

3. All function arguments are ignored. All initialization functions are of
the form param.init <- function ()

4. The name of the function can be whatever you want; it will also be
ignored.

5. All variables within these functions should refer only to the parame-
ters that are declared within the Sampler function call and to global
variables. However, for clarity and completeness, it’s best to declare
all dependent data variables in the sampler call.

2.4 Decide on how you want to update your parameters

Each unknown parameter must have a corresponding updating scheme de-
fined.

2.4.1 For Gibbs sampling, set up the updater functions
A Gibbs-updated parameter is defined the following way:

parametername = Gibbs(updater.function, initializer.function)

For the example above, we have written the following updater functions.
Each Gibbs update draws one simulation from the conditional distribution
of that particular parameter.

theta.update <- function () {

V.theta <- 1/(1/tau”2 + 1/sigma”2)

theta.hat <- (mu/tau”2 + y/sigma”2) * V.theta

rnorm(J, theta.hat, sqrt(V.theta))
}
mu.update <- function () rnorm(1l, sum(theta/V)/sum(1/V), sqrt(1/sum(1/V)))
V.update <- function () (nuxtau~2 + (theta-mu)~2)/rchisq(J, nu+l)
tau.update <- function () sqrt(rgamma(l, 1+J*nu/2, (nu/2)*sum(1/V)))

1. An updater function for a parameter (say, 'theta’) must return a valid
draw of a single instance of theta, (of course, of the same length and
dimension as the draw generated by the initializer function of theta)

2. The updater function is treated as a function so you may use return
statements; however arguments are ignored! You should define it as
function ().

Getting Started With Umacs 0.912 5

3. Any variables that are referred to in these functions should be declared
as parameters and data (constants) in the Sampler function call.

2.4.2 Parameters that are deterministic functions

In our above example, we have one parameter which is just the inverse of
nu.inv. To ensure that this parameter is correctly updated within the loop,
it must be declared as a Gibbs update. After all, given the other parameters,
nu has a point-mass distribution.

nu.update <- function () 1/nu.inv

2.4.3 Metropolis updaters

This example has one parameter, v~! (nu.inv), updated using a Metropolis
algorithm.

To define a Metropolis update, we need function that returns the log-
arithm of the posterior density of the parameter. Again, all arguments to
the function are ignored. And, all variables within this function call must
be declared in the Sampler function call (or be accessible in the workspace).

nu.inv.log.post <- function () {
nu <- 1/nu.inv
if (nu.inv<=0 || nu.inv>1) return(-Inf)
sum(0.5*nuxlog(nu/2) + nuxlog(tau) -
lgamma(nu/2) - (1+nu/2)*log(V) - 0.5*nu*xtau~2/V)

In the above function, nu is a local variable and will not change the value
of the parameter nu.

To guarantee rejection, you can have the function return -Inf.

This particular parameter is declared as,

nu.inv = SMetropolis (nu.inv.log.post, nu.inv.init),

where nu.inv.init is the initialization function.
There are several Metropolis updater classes, described briefly below.

Getting Started With Umacs 0.912 6

2.5 Metropolis schemes
2.5.1 Metropolis : Vector Metropolis

This is the basic Metropolis algorithm that works for scalars and vectors,
but it is best used for vectors which are at least of length 2. For scalars, use
SMetropolis.

2.5.2 SMetropolis : Scalar Metropolis

SMetropolis is optimized for scalars.

2.5.3 PSMetropolis : Parallel-Scalar Metropolis

The parameter using PSMetropolis updating scheme is supposed be a vector
of independent scalars can all be updated at once, independent of each other.

The log posterior function specified must return a vector of the same
length as the parameter itself.

2.5.4 PMetropolis : Parallel (Vector) Metropolis

In this parameter declaration,
theta = PMetropolis(theta.logpost, theta.init)

theta is a matriz of rows of independent vectors that are all updated at
once.

theta.logpost must return a vector of the same length as the number of
rows in theta (one per each independent vector).

If the independent vectors are in the columns of the matrix, you must
specify the option byCol=TRUE:

theta = PMetropolis(theta.logpost, theta.init, byCol=TRUE)

2.5.5 Defining a common log posterior function

For convenience, we may define one common log posterior function by,
.logpost = my.logpost.function,

The dot in front of ’logpost’ is essential: it is the name of an internal
variable.

We could then omit the log posterior function in the Metropolis class
calls, just defining the initializer, e.g.,

Getting Started With Umacs 0.912 7

alpha = Metropolis(init=function () rnorm(1, 0, 1)),
beta Metropolis(init=function () rnorm(1l, 0, 1))

The initialization function, however, must be specified.
It is usually best to provide a parameter-specific log posterior functions.

2.6 Tracing the chain

If you want to monitor a parameter real-time, you can define a (nameless)
“virtual parameter” that “updates the graphical display,” with the updater
function Trace, e.g.:

Trace("thetal[1]")

The parameter must be one-dimensional. There may be several trace
directives. The trace plot is updated every (n.iter/10)th iteration.
To trace the potential scale reduction statistic (R, “R-hat”), use,

Trace(".Rhat[’thetal[1]’]")

for example. The dot ”.” before Rhat is there to distinguish it from your
parameters (which must not have dots prepended)

R is computed after the burn-in period and then every 50 iterations.

To trace the largest R-hat of them all:

Trace(".Rhatmax")

3 Running the sampler
The Sampler function call returns a function.
s <- Sampler(...)
This function accepts several parameters:
s(n.iter=200, n.chains=3, n.sims=1000)

1. n.iter is the number of iterations to run per each chain;
2. n.chains is the number of chains to run;

3. n.sims is the number of simulations you wish to keep eventually.

Getting Started With Umacs 0.912 8

3.1 Running a certain number of chains and iterations

n.chains is the number of chains to run. It is by default set to 3. n.iter
is the number of iterations to run per each chain. Thus Umacs will iterate
a total of n.chains*n.iter times.

Usually you want to specify the number of iterations to some number, but
if you don’t specify it, the default n.sims=10 will be used. After finishing,
you’ll have the option to resume sampling from the previous point.

3.2 Resuming the sampler after it stops

You may resume sampling after the sampler stops. The sampler function
(here, s) contains all simulation draws already drawn, so it does not have
to regenerate them.

Supposing that you have finished the 200 iterations but now want to run
a total of 1000. You don’t have to rebuild the sampler, just type:

s(n.iter=1000)

to continue iterations from 201 to 1000.

The result that s(...) returns is an mects object (“mcts”=“Markov
chain time series”). When printed on the console, a summary of the sampling
result is given, along with the convergence diagnostics.

If you want, you can add chains if you want:

s(n.chains=5)

would add two more chains to the sampler.

3.3 Burn-in/adaptation period

The burn-in period is 1...n.iter*p.burnin ; p.burnin is by default 0.5.

If you have finished sampling with n.iter = a, and resume sampling
with a new n.iter that is larger than a, the end of the new burn-in period
is set to b*p.burnin.

If b < a*p.burnin, no further adaptation is done (at least one half of
the new n.iter has already been sampled so the burn-in period is done) but if
b >a*p.burnin, adaptation is continued for b*p.burnin-a iterations (from
the point where the sampling stopped last time to the half way of the end
of the new burn-in period.)

Burn-in period is the same as the adaptation period. During this time,
the Metropolis kernels are adapted to optimize the acceptance rate. These
optimization routines are currently very rough and simple but we hope to
improve them.

Getting Started With Umacs 0.912 9

3.4 Number of simulations to keep

n.burnin will be set to n.iter*p.burnin, if it is not specified as one of the
arguments. (see below for the burn-in/adaptation period.)
If you don’t specify n. sims, the default value will be set ton.chains*(n.iter-n.burnin)
If you want to set the number of simulations to keep to, say, 1000, specify
n.sims=1000 as an argument. This value will be remembered and will not
be changed to the default (variable) value unless you specifically set n.sims
to NA. This means that “set n.sims to n.chains*(n.iter-n.burnin).”
If you don’t save the sampler result (the mcts object) into a variable,
you can retrieve it any time simply by calling the sampler function without
arguments:

x <- sO

This actually attempts to resume the sampler, but since the number of
iterations (n.iter) has not changed and n.iter draws are already generated,
all chains appear to be finished, and the sampler just returns the draws.

n.sims determines how many draws are actually saved.

If n.iter/2 is smaller than n.sims, all n.iter/2 simulations are used. If
n.iter/2 is larger than n.sims, thinning is attempted and then a random
sample is drawn from the remaining simulations to obtain exactly n.sims
draws. You can change n.sims any time after the sampling is finished:

s(n.sims=500)

will set n.sims to 500 and return the mcts object with 500 simulations
for each variable (of course, provided that n.iter/2>n.sims)

When the mcts object is coerced into a r.v. object by as.rv(x), the
simulation matrix is scrambled rowwise to simulate independence.

If you want to use a different proportion of burn-in iterations, say to 0.2,
specify the argument,

p.burnin=0.2

4 Processing the results
Install the rv package and invoke it by

library("rv")

Getting Started With Umacs 0.912 10

The mcts object that is created by the Umacs-generated sampler can be
coerced into an rv object for easy simulation manipulation:

x <- as.rv(x)

and further split into theta, mu, and tau, and attach each variable sep-
arately by

rvattach(x)

Read about the design principles in Kerman and Gelman [2005].

5 Inserting “raw code”

It is possible to insert a piece of “raw code” within the iteration loop. In
practice this is done by specifying a function in the Sampler function call.
Its returning value will not be automatically assigned to any parameter.
This is used usually to accomplish reparameterization steps.

Suppose that we have a function renormalize’ that is supposed to make
small changes in some of the parameters:

renormalize <- function() {

const <- log (sum(exp(betal[1:2])/0.0044))
alpha <<- alpha + comnst

mu.alpha <<- mu.alpha + const

beta <<- beta - const

mu.beta <<- mu.beta - const

¥

You must use the ”double arrow assignment operator” (<<-) to change
the value of a parameter that is initialized outside this function. Any vari-
ables that are assigned values with ”<-" are local to this function and thus
not saved after the function call is finished (in the above example, the value
of const is discarded after the function call, but the values of the parameters
alpha, mu.alpha, beta, and mu.beta are changed.)

6 Missing values and imputation
It is possible to use brackets in a parameter name, e.g.

"thetal[1]" = Gibbs(...),
"thetal[2:3]" = Gibbs(...),

Getting Started With Umacs 0.912 11

The values are then imputed into the corresponding components of theta.
Note that you must use quotes whenever you specify a name with brackets.
For regular parameter names, the quotes are optional.

”theta” must be declared or else imputing will not work. If all compo-
nents of theta are unknown, declare a variable that has all NA, e.g.:

theta = rep(NA, 32),

You can also use variable names in the expression:

J =28,
k = 16,
"thetal[1:J]" = ...,

"thetal[c(1,2,8,k)]" = ...

The parameter “names” are embedded as such in the code and parsed by R.

The indices of the missing values in a data variable (say, y) are stored
in a variable with the same name plus an extension “.NA”. So in the case of
a data variable y, the indices with missing values are available as y.NA. To
specify sampling for missing values, specify

"y[y.NAI" = ...
for convenience, this can be specified as
y.mis = ...

but there will be no variable called y.mis. It is just an alias to "y [y.NA]".

Note. You can alternatively also initialize the full vector with some
dummy non-missing values and then just selectively impute the components
within the updating function. If you initialize a vector with missing values,
you’ll get an error.

7 Conventions

A parameter name must not have a dot prepended; these are reserved for
”internal” parameters. The special reserved parameter names are:

.title
.logpost
.Rhat
.Rhatmax

Any other name starting with a dot ”.” is illegal.

Getting Started With Umacs 0.912 12

8 Disclaimer

This program is a work in progress, and it may contain bugs. Many new
features will be eventually (and hopefully) added.

For information about random variables in R, please refer to Kerman
and Gelman [2005].

References

Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin.
Bayesian Data Analysis. Chapman & Hall/CRC, London, 2nd edition,
2003.

Jouni Kerman. Umacs: A Universal Markov Chain Sampler. Technical
report, Department of Statistics, Columbia University, 2006.

Jouni Kerman and Andrew Gelman. Manipulating and summarizing poste-
rior simulations using random variable objects. Technical report, Depart-
ment of Statistics, Columbia University, 2005.

