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This user’s guide defines syntax and illustrates use of updated “R” functions that perform a 
variety of alternative approaches to Propensity Scoring (PS) analyses.  These functions 
implement a variety of relatively new methods for statistical inference that use either Local 
Control patient clustering or else traditional parametric prediction of Propensity (logistic 
regression) to analyze data from non-standard studies …such as observational studies, 
retrospective database analyses and poorly randomized (chaotic) studies.  USPS methods cannot 
rely on the “balance” that is “expected” when using traditional randomized assignment of 
patients to treatments.  After all, this “balance” frequently fails to result even approximately in 
(finite) purely random samples!!!  Instead, the USPS methods implement various forms of a-
posteriori “blocking”, “matching” or “stratification” of patients who received only one of the two 
treatments that are to be compared. 
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1.  Introduction. 
 
Here we describe “R” language functions implementing rather new methods for “propensity 
score” (PS) and/or “instrumental variable” (IV) adjustment to estimates of treatment effects.  
These approaches adjust for treatment selection bias, characterized by imbalance in patient 
baseline characteristics between treatment groups (arms, cohorts) in either nonrandomized or 
poorly randomized studies.  Traditional “supervised” PS methods can be categorized as follows: 
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The traditional “big three” Propensity Scoring methods require an estimate of the PS = 
(conditional probability of treatment) for each patient …usually from a fitted logit or probit 
model. 
 

[a] PS matching of patients in any fixed ratio (as in case/control studies), 
[b] PS binning of patients (sub-classification / stratification) and 
[c] regression modeling using Heckman effects or inverse Mills’ ratios (nonlinear 

functions of PS). 
 
See D’Agostino(1998) for a gentle introduction to these three relatively well-know 
methods of supervised propensity scoring.   

 
Two alternative (rather more technical) methods are: 
 

[d] inverse probability weighting (IPW = 1 / PS) and 
[e] econometric simultaneous equations / instrumental variable models. 

 
For key references on these methods, see my “white paper,” Obenchain(2006a). 

 
“Unsupervised” PS strategies start by clustering patients in baseline covariate X-space.  The 
two new approaches of this type that are implemented in “R” here are: 
 

[f] Nearest Neighbor / Local Treatment Differences (NN/LTD) plotting. 
 

NN/LTD focuses on characterizing the full distribution of truly  “local” 
treatment differences within clusters of relatively well-matched patients. 
 

[g] Instrumental Variable / Local Outcome Averages (IV/LOA) plotting. 
 

IV/LOA focuses on how within-cluster outcome averages (regardless of 
treatment) vary when clusters are plotted versus a within-cluster PS 
estimate, the observed treatment percentage.  This approach requires all X 
covariates used to define clusters to be “instrumental variables;” i.e. to 
effect outcome only (indirectly) through choice of treatment.  Use of X 
covariates which quantify disease severity or patient frailty is then 
questionable because such characteristics may also have direct effects on 
outcomes, invalidating the IV/LOA plotting approach. 

 
Our “Unsupervised” PS designation comes from familiar jargon in literature on artificial 
intelligence and data mining; see Barlow(1989).  Specifically, PS clustering methods proceed 
without receiving any “hints” from a designated outcome measure or a treatment indicator 
variable to help “guide” formation of patient subgroups.  In addition to clustering, 
multivariate probability density estimation is another example of an unsupervised statistical 
method. 
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The PS clustering approaches implemented here are like some early suggestions of 
Rubin(1980), which apparently have not been nearly as widely used as “supervised” 
methods.  After all, they tend to be much more computationally intensive. 
 
Some supervised methods do have to resort to numerical search methods over a p-
dimensional space of parameters (e.g. estimation of a logit or probit regression model) rather 
than use a closed form expression (such as that for ordinary least squares estimates in a linear 
regression model.)  On the other hand, unsupervised methods typically have to make the 
n(n1)/2 pairwise comparisons of patients needed to hierarchically cluster all study 
subjects.  The resulting increases in computing time and memory allocation due to use of 
unsupervised (Non-Polynomial Hard) methods can be enormous, especially when n is much 
larger than p (n >> p.)  Besides, clustering results can also be highly sensitive to user choices 
of patient similarity metric and/or specific clustering algorithm. 
 
In spite of their almost frustrating flexibility and sharply increased demand on computing 
power, “clustering” approaches to adjustment for treatment selection bias end up offering 
two main advantages over supervised PS methods… 
 

[1] At least when the number of clusters is relatively large (and thus the number of 
patients in most clusters is relatively small), there is no real need to test whether patients 
are relatively “well matched” on their X characteristics within individual clusters.  
Clustering of patients on their X characteristics has assured that almost any model for 
predicting propensity scores that is relatively smooth over X space would confirm that 
any within-cluster comparisons of treatment outcome differences are relatively “fair” 
comparisons. 
 
[2] Results from clustering lend themselves well to use of graphical visualization and 
sensitivity analysis techniques.  For example, once the full hierarchical clustering tree has 
been constructed, displays using alternative numbers of total clusters can be generated 
relatively quickly.  Thus clustering approaches can provide not only fundamental, robust 
(non-parametric) insights but also highly relevant information about sensitivity of results 
to “tuning” parameters.  Furthermore, the resulting graphical displays can dramatically 
illustrate how traditional parametric modeling approaches, such as simultaneous 
equations models, tend to emphasize some aspects of the data while de-emphasizing 
other aspects. 
 

Thanks to the considerable computing and graphical display power of modern workstations, 
clustering methods for PS adjustment are now practically useful.  My key strategy is to 
emphasize their use in systematic sensitivity analyses: “What is the full range of quantitative 
treatment effect estimates supported by the available data?”   And, “Which patient subsets 
tend to have extreme outcomes?” 
 
Finally, “smoothing” of outcomes along a PS axis defined by a parametric prediction model 
is a simple and intuitively appealing alternative (initially suggested to me by Professor Frank 
Harrell of Vanderbuilt) to the earlier PS “binning” approach.  
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The computing algorithms discussed here are written in a dialect of Version 3 of the “S” 
language that is processed by the “R” interpreter, Version 1.7+, available for download from 
http://www.r-project.org.  R is a GNU (open source) implementation of the “S language and 
environment for data analysis and graphics.”  See Becker, Chambers and Wilks(1988) and 
Chambers and Hastie(1992) for information about S; see Ihaka and Gentleman(1996) for the 
original description of R as being “not unlike” S.  
 
2.  Fundamental Distinctions between Alternative PS Approaches. 
 
Traditional “Supervised” forms of Propensity Scoring (PS) typically start with a parametric logit 
(or probit) model to estimate the conditional probability of receiving treatment given certain 
patient characteristics.  [An average across some randomForest() of classification trees may well 
be a superior way to “score” patients, but no R functions for this are currently provided here.] 
 
The mandatory second step in all Supervised approaches is to verify that one’s estimated 
propensity scores behave, at least approximately, like (unknown) true propensity scores.  
Specifically, they must conditionally “balance” patients on all relevant X characteristic 
distributions within all bins.  Sections 3 and 11 (Supervised PS Step 2), below, discuss this topic 
in detail. 
 
The steps in actually using estimated propensity scores (PSs) involve: rank ordering patients on 
their estimated scores, sub-classifying patients into “bins” (strata), computing within-bin 
outcome differences between treatment subgroups, and averaging these differences across bins. 
 
The “unsupervised” propensity scoring approaches introduced here stress graphical methods for 
detection of Local Treatment Differences (LTDs) using Nearest Neighbor (NN) Clustering in the 
X-space of observed patient baseline characteristics.  Obenchain(2006a) argues that cluster 
membership can provide better (less “coarse”) patient matchings than propensity scores.  This 
general approach is definitely not new.  Obenchain(1979) used the underlying concept to develop 
an AT&T measurement plan (PRRAP) that made “customer trouble report rate” comparisons 
among only relatively well-matched Bell System plant maintenance districts. 
 
3.  The Fundamental “Balancing” Theorem of Propensity Scoring 
 
Our basic notation for variables will be… 
 

y = observed outcome variable(s) 
x = observed baseline patient characteristic(s) / covariate(s) / instrumental variable(s) 
t = observed treatment assignment (binary, 0 or 1; may be non-random) 
z = unobserved explanatory variable(s) 

 
Note that unobserved z variables may provide unknown, causal effects on outcomes, y.  In 
statistical/econometric models, it is the existence of z variables (as well as uncertainty in 
measuring y and x variables) that necessitates inclusion of “error terms” in models.  
 
NOTE:  Patient level genome information is mostly a gigantic z–vector today (2006.)  Some day 
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soon, more and more of this sort of information will become routine x variables. 
 
The Propensity Score for the ith patient is then defined to be the following function of his/her x 
characteristics… 

PS = p(xi) = Pr( ti = 1 | xi ) = E( ti | xi ).                                [1] 
 
By definition, propensity scores are (conditional) probabilities, which are numbers between zero 
and one, inclusive.  In words, the true propensity score of a patient is the conditional probability 
that he/she will receive treatment number one given his/her vector of observed, baseline 
characteristics, x. 
 

In many practical applications, only the rank orders of (estimated) propensity scores are 
needed.  In this sense, any monotone transformation of a set of propensity scores are another 
set of propensity scores “equivalent” to the first set.  For example, when only one 
(univariate) x variable is found to be predictive of treatment choice/assignment, that single x 
variable may (itself) be called a propensity score. 
 
One requirement of the above PS formulation is that each patient receives one and only one 
treatment.  In other words, the formulation here does not cover chronic conditions where a 
cross-over design may access two (or more) treatments using sequential treatment periods for 
each patient …separated by adequate “wash-out” periods. 

 
In the following (cartoon) proof of the “fundamental theorem” of propensity scoring, it will be 
essential to view a patient’s propensity score as the conditional probability, [1].  We will not 
attempt any sort of a full-blown proof in the sense that our notation only makes sense when x is 
discrete and t has only 2 levels.  In other words, we will not worry here about notational details 
for cases where components of x have continuous distributions or t has more than 2 levels. 
 
The “fundamental theorem” of propensity scoring, Rosenbaum and Rubin(1984), states that, 
conditional upon a given value of the propensity score, p(x), the distribution of baseline patient 
characteristics must be statistically independent of treatment choice.  Mathematically, this 
theorem simply implies that the joint distribution of x and t given p must factor as follows: 

 
Pr( x, t | p ) = Pr( x | p ) Pr( t | x, p ) 

= Pr( x | p ) Pr( t | x ) 
= Pr( x | p ) times p or (1p) 
= Pr( x | p ) Pr( t | p ) [2]

 
PROOF: In the first line of [2], we use the very definition of conditional probability to factor 
the joint conditional distribution of x and t.  In the second line, we note that p(x) cannot 
contain any information not contained in x itself.  In the third line, we note that Pr( t | x ) is 
either p(x) or 1 – p(x).  In the fourth and final line, we conclude that Pr( t | x ) must depend 
upon x only through p(x). 
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In other words, x and t are, necessarily, conditionally independent variables given the propensity 
score, p = Pr( t = 1 | x ).  This is really a very simple theorem in statistics / probability that 
requires only rather weak assumptions.  In fact, the real “problem” in applications is simply that 
the functional form of the true PS is usually unknown and, thus, needs to be estimated from data! 
 
When the conditional distributions of baseline patient characteristics and treatment choices “fail 
to factor” as dictated by the fundamental theorem of PS, [2], this is rightfully interpreted as clear 
evidence that one’s estimates of the unknown, true PSs are not even approximately correct. 
 
4. Case Study Example: Effects of Abciximab use on both Survival and Cardiac Billing. 
 
The (numerical and graphical) output illustrations provided here use the data from Kereiakes et 
al. (2000).  The corresponding command file and data are distributed along with the UPS and 
SPS “R” functions in the files ABCIXini.R  and ABCIX.CSV.  In this prospective study, 
outcomes variables (survival and cardiac related costs) were collected via follow-up for at least 6 
months on 996 PCI patients treated at the Lindner Center, Christ Hospital, Cincinnati.  Rather 
than randomize patients to treatment, the Lindner interventionists practiced “evidence based 
medicine” in choosing between either augmenting or not augmenting their “usual care” for 
Percutaneous Coronary Intervention (PCI) with abciximab (Reopro), a relatively expensive 
IIb/IIIa cascade inhibitor.  Ability-to-pay was not a factor in this treatment choice in the sense 
that Lindner interventionists had access to “research use” abciximab.  
 
Our objective in this “R user’s manual” documentation for the UPS and SPS functions is not to 
fully discuss and illustrate all aspects of the abciximab case study.  Rather, we simply wish to 
illustrate some example UPS and SPS function invocations as well as the tabular and/or 
graphical output that results.  Readers interested in reading more about UPS and SPS analyses 
using the abciximab case study are referred to my “white paper,” Obenchain(2006a).  
 
 

Variables in the Kereiakes et al (2000) Abciximab / Lindner Data: 
 

Description Name 
 

Values 

Life Years Preserved = 0 if died within 6 Months or 
11.6 Years given Survival for at least 6 Months 

lifepres Either 0 or 11.6 Years 

Total Cardiac Related Billing within 12 Months of 
Patient’s Initial PCI at Lindner Center 

cardbill $2,216 to $178,534 in 
1997 US Dollars 

Was “Usual PCI Care” augmented with Abciximab? abcix 0 => No, 1 => Yes 
Was a Stent (anti-collapse device) Deployed? stent 0 => No, 1 => Yes 
Patient Height in Centimeters height 108 cm to 196 cm 
Patient Gender female 0 => No, 1 => Yes 
Was the patient Diabetic? diabetic 0 => No, 1 => Yes 
Had patient suffered an Acute Myocardial Infarction 
within the Last Seven Days? 

acutemi 0 => No, 1 => Yes 

Left Ventricular Ejection Fraction ejecfrac 0% to 90% 
Number of Vessels involved in first PCI procedure ves1proc 0 to 5 
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5. Installing and Loading the “USPS” Package. 
 

First, obtain the USPS_1_0.ZIP archive from the web site of the Central Indiana ASA chapter, 
www.math.iupui.edu\~indyasa\bobodown.htm , or from CRAN.  Then use the R “Packages” 
menu and the “Install from local ZIP file” menu item.  Then use the “Load packages” sub-menu 
to load “USPS.”  The required “cluster”, “lattice” and “spline” R packages will then be 
automatically loaded for you. 
 
All of the abciximab analyses and graphics used as illustrations in this documentation (and 
several more!) can then be generated by reading in the abcix.R  source code file and executing 
the resulting abcix() function. 
 
    "abcix" <- function() { 
 
    #input the abciximab study data of Kereiakes et al. (2000). 
    Load(lindner) 
 
    # outcomes: lifepres & cardbill 
    # Define Divisive Cluster Hierarchy for UNSUPERVISED analyses... 
    UPSxvars <- c("stent","height","female","diabetic","acutemi", 
                  "ejecfrac","ves1proc") 
    UPSharch <<- UPShclus(lindner, UPSxvars, method="diana") 

    plot(UPSharch)  # Top figure on page 13. 
 
 
    # Save UPSpars settings for NN/IV analyses of the "lifepres" outcome. 
          #  Although the "lifepres" variable assumes only two different numerical values, it is not to be treated here as 
          #  a “factor.”  It’s average value is to be interpreted as “proportion surviving” times 11.6 = expected years. 
    UPSaccum(UPSharch, lindner, abcix, lifepres, faclev=1 , accobj="ABClife") 
 
    lif001nn <<- UPSnnltd(  1) 
    lif002nn <<- UPSnnltd(  2) 
    lif005nn <<- UPSnnltd(  5) 
    lif010nn <<- UPSnnltd( 10) 
    lif020nn <<- UPSnnltd( 20) 
    plot(lif020nn)  # graphical display 
    lif030nn <<- UPSnnltd( 30) 
    lif040nn <<- UPSnnltd( 40) 
    lif050nn <<- UPSnnltd( 50) 
    lif060nn <<- UPSnnltd( 60) 
    summary(lif060nn) # brief console output 
    lif070nn <<- UPSnnltd( 70) 
    lif080nn <<- UPSnnltd( 80) 
    lif090nn <<- UPSnnltd( 90) 
    plot(lif090nn)  # graphical display 
 
    lif030iv <<- UPSivadj( 30) 
    lif040iv <<- UPSivadj( 40) 
    lif050iv <<- UPSivadj( 50) 
    lif060iv <<- UPSivadj( 60) 
    lif070iv <<- UPSivadj( 70) 
    lif080iv <<- UPSivadj( 80) 
    lif090iv <<- UPSivadj( 90) 
    plot(lif090iv)  # graphical display 
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    lif100iv <<- UPSivadj(100) 
    lif200iv <<- UPSivadj(200) 
    lif300iv <<- UPSivadj(300) 
    lif996iv <<- UPSivadj(996) 
 
    # Overall "Sensitivity Analysis" Summary... 
    UPSgraph() 
 
    cat("\n\nPress ENTER to add low-precision IV estimates...\n\n") 
    scan() 
    lif003iv <<- UPSivadj(  3) 
    lif005iv <<- UPSivadj(  5) 
    lif010iv <<- UPSivadj( 10) 
    lif020iv <<- UPSivadj( 20) 
    # Display Augmented "Sensitivity Analysis" Summary... 
    UPSgraph() 
 
    # Display contents of UPSdf... 
    ABClife 
 
    cat("\n\n Press ENTER to Analyze Costs... \n\n") 
    scan() 
 
    # Save UPSpars settings for NN/IV analyses of the "cardbill" outcome 
    UPSaccum(UPSharch, lindner, abcix, cardbill, accobj="ABCcost") 
 
    cst001nn <<- UPSnnltd(  1) 
    cst002nn <<- UPSnnltd(  2) 
    cst005nn <<- UPSnnltd(  5) 
    cst010nn <<- UPSnnltd( 10) 
    cst020nn <<- UPSnnltd( 20) 
    cst030nn <<- UPSnnltd( 30) 

    plot(cst030nn)  # graphical display (Figure on page 15.) 
 
    cst040nn <<- UPSnnltd( 40) 
    cst050nn <<- UPSnnltd( 50) 
    cst060nn <<- UPSnnltd( 60) 
    cst070nn <<- UPSnnltd( 70) 
    cst080nn <<- UPSnnltd( 80) 
    cst090nn <<- UPSnnltd( 90) 

    plot(cst090nn)  # graphical display (Figure on page 16.) 
 

    cst030iv <<- UPSivadj( 30) # plot cst030iv is top figure on page 18. 
    cst040iv <<- UPSivadj( 40) 
    cst050iv <<- UPSivadj( 50) 
    cst060iv <<- UPSivadj( 60) 
    cst070iv <<- UPSivadj( 70) 
    cst080iv <<- UPSivadj( 80) 
    cst090iv <<- UPSivadj( 90) 

    plot(cst090iv)  # graphical display (Bottom figure on page 18.) 
    cst100iv <<- UPSivadj(100) 
    cst200iv <<- UPSivadj(200) 
    cst300iv <<- UPSivadj(300) 
    cst996iv <<- UPSivadj(996) 
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    # Overall "Sensitivity Analysis" Summary (Figure on page 19.)... 
    UPSgraph() 
 
    cat("\n\nPress ENTER to add low-precision IV estimates...\n\n") 
    scan() 
    cst003iv <<- UPSivadj(  3) 
    cst005iv <<- UPSivadj(  5) 
    cst010iv <<- UPSivadj( 10) 
    cst020iv <<- UPSivadj( 20) 

    # Augmented "Sensitivity Analysis" Summary (Figure on page 20.)... 
    UPSgraph() 
 
    # Display contents of UPSdf... 
    ABCcost 
 
    # End of UNSUPERVISED analyses. 
 
    # Define Logit Model for Treatment Choice in SUPERVISED analyses 
    PStreat <- abcix~stent+height+female+diabetic+acutemi+ejecfrac+ves1proc 
 
    # Store Propensity Score info (default=5 bins) in frame named "lindSPS" 
 
    logtSPS <<- SPSlogit(lindner, PStreat, PSfit, PSrnk, PSbin, 
                    appn="lindSPS") 
    logtSPS 
 
    # Testing for Within-Bin Balance on Continuous Covariates... 
    SPSbalht <<- SPSbalan(lindSPS, abcix, PSbin, height) 
    plot(SPSbalht) 
    print(SPSbalht) 
    SPSbalej <<- SPSbalan(lindSPS, abcix, PSbin, ejecfrac) 

    plot(SPSbalej)  # Figure on page 25. 
    print(SPSbalej) 
    SPSbalvs <<- SPSbalan(lindSPS, abcix, PSbin, ves1proc) 
    plot(SPSbalvs) 
    print(SPSbalvs) 
 
    # Testing for Within-Bin Balance on Binary (Dichotomous) Covariates...   
    SPSbalst <<- SPSbalan(lindSPS, abcix, PSbin, stent) 
    print(SPSbalst) 
    SPSbalfm <<- SPSbalan(lindSPS, abcix, PSbin, female) 
    print(SPSbalfm) 
    SPSbaldi <<- SPSbalan(lindSPS, abcix, PSbin, diabetic) 
    print(SPSbaldi) 
    SPSbalam <<- SPSbalan(lindSPS, abcix, PSbin, acutemi) 
    print(SPSbalam) 
 
    # Test for Within-Bin Outcome Differences... 
    lindlife <<- SPSoutco(lindSPS, abcix, PSbin, lifepres, faclev=1) 
    plot(lindlife) 
    print(lindlife) 
    scan() 
 
    lindcost <<- SPSoutco(lindSPS, abcix, PSbin, cardbill) 

    plot(lindcost)  # Both Figures on page 28. 
    print(lindcost) 
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    # Cubic smoothing spline analyses... 
    SPScbill <<- SPSsmoot(lindSPS, abcix, PSfit, cardbill) 
    plot(SPScbill) 
    SPScbil7 <<- SPSsmoot(lindSPS, abcix, PSfit, cardbill, df=7) 

    plot(SPScbil7)  # Figures on pages 33 and 34. 
    SPScbil3 <<- SPSsmoot(lindSPS, abcix, PSfit, cardbill, df=3) 
    plot(SPScbil3) 
 
    # Loess "symmetric" smoothing analyses... 
    SPScblss <<- SPSloess(lindSPS, abcix, PSfit, cardbill) 
    plot(SPScblss) 
    SPScbls5 <<- SPSloess(lindSPS, abcix, PSfit, cardbill, span=.5) 

    plot(SPScbls5) # Top Figure on page 33. 
    SPScbls9 <<- SPSloess(lindSPS, abcix, PSfit, cardbill, span=.9) 
    plot(SPScbls9) 
    } 

 
Part I: Unsupervised PS Analyses 

 
 
In data mining terminology, the approach here is an “unsupervised” form of propensity score 
binning, which (in turn) is a form of retrospective patient sub-classification or stratification 
(matching without using any fixed ratio of treated-to-untreated patients.)  Specifically, we will 
use observed patient X-characteristics to cluster similar patients together rather than to directly 
predict (non-random) treatment choice.  In fact, here our unsupervised (cluster-binning) strategy 
will typically use…  many more bins (say, 50 instead of 5) and/or  bins with a potentially wide range of different sizes (wide variation in total numbers 

of patients.) 
 
 
7.  Unsupervised Step One: Compute the Hierarchical Clustering Tree using USPhclus()  
 
The UPS hierarchical clustering function, UPShclus() , must be invoked before any of the four 
other UPS functions.  The R calling syntax for this function is 
 

UPShclus(dframe, xvars, method="diana"), 
 
where the first two arguments are required and the third is optional (because a default value is 
provided.)  The R invocation of UPShclus()  used in the abciximab case study is 
 
            UPSharch <- UPShclus(lindner, UPSxvars)  
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…which implies that the default (divisive) clustering method = "diana" will be used and that all 
relevant hierarchical clustering information is to saved in an R object of class “UPShclus ” 
named “UPSharch. ”  
 
The three arguments of  UPShclus()  are as follows: 
 

The first argument, dframe = lindner, must be the name of an existing data.frame object. 
 
SPSlogit’s second argument, xvars = UPSxvars, must be a list (concatenation) of “quoted” 
names (in character format) of variables existing within the data.frame that will be used to 
discover clusters representing “nearest neighbors in X-space.” 

 
                UPSxvars <- c("stent","height","female","diabetic","acutemi","ejecfrac","ves1proc") 
 

 

The final (optional) argument defines the clustering algorithm to be used by UPShclus() .  
The (default) method is “diana ” for the DIvisive ANAlysis method of Kaufman and 
Rousseeuw (1990), and the other two options currently available are: “agnes ” for the 
Aglomerative NESting method of Kaufman and Rousseeuw(1990) and the original 
“hclust ” method implemented in Fortran code contributed to STATLIB by F. Murtagh. 
 
Unfortunately, the current implementation of UPShclus  provides only one possible metric, 
Mahalanobis distance, Rubin(1980), for determining patient dissimilarity in X-space.  Thus 
each X variable used with UPShclus()  needs to be coded as either a continuous (interval) 
or a “dummy” (0 or 1) variable.  Factors with more than two unordered (but numerical 
levels) would be inappropriately analyzed by the current UPShclus()  implementation.   

 
The object list returned by UPShclus()  will contain an object (x$upshcl) of class diana, agnes 
or hclust and must be saved to some name because this UPShclus()  “output list” must be 
specified as the first, required argument to the UPSaccum() function. 
 
The graphical output generated for an UPShclus()  output object is a “dendrogram” display of 
the resulting hierarchical clustering tree, such as the following “diana” tree for the abciximab 
data. 
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For comparison with the UPShclus()  “diana” tree above, note the considerably different 
appearance of the corresponding “agnes” tree, below, for the same data and dissimilarity metric. 
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8. Unsupervised Step Two: Specify Treatment and Outcome variables to prepare for 
Accumulation of NN and/or IV information with  UPSaccum() 
 
Invoking UPSaccum() creates an R object named “UPSpars” or overwrites any existing object 
with this name. 
 

UPSaccum(hiclus, dframe, trtm, yvar, faclev=3, accobj="UPSframe") 
 
The six possible arguments of  UPSaccum()  are as follows: 

 
UPSaccum's first argument, hiclus=ABChclus , must be an R object of class diana, 
agnes or hclust …usually the object returned by an invocation of UPShclus() .  
 
UPSaccum’s second argument, dframe=lindner , is usually the data.frame that 
provided X-covariates to the most recent UPShclus() invocation. 
 
UPSaccum's third and fourth arguments, trtm=abcix and yvar=cardbill , are 
almost always the treatment and outcome variable names within the data.frame that also 
provided the X-covariates in the most recent UPShclus() invocation. 

 
The two optional arguments to UPSaccum()  are 
 

faclev  = the maximum number of distinct numerical values that an outcome 
variable can assume within the input data.frame and yet still be treated as a 
discrete R “factor” variable.  The default values for this optional parameter 
is faclev=3. 

accobj =  the quoted name of the R object that will hold "UPSframe" 
 
 
When yvar  takes on more than faclev  distinct numerical values within the specified 
data.frame, yvar  will be considered to be a “continuous” variable. 

 

 
9. Unsupervised Step Three: Use UPSnnltd()  to Compute Nearest Neighbor / Local 
Treatment Differences (NN/LTD) for a specified Number of Cluster-Bins.  
 
In these “Step 3” analyses, we calculate Nearest-Neighbor (within cluster-bin) statistics 
describing “Local Treatment Differences” via R function calls of the form: 
 

out###nn <- UPSnnltd(numclust) 

 
Here are some example invocations of the UPSnnltd()  family of functions: 
 

cst030nn <- UPSnnltd(30) 
cst030nn   # shorthand for… print(cst030nn) 
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summary(cst030nn)  
plot(cst030nn)  

 
The graphical output generated by “plot.UPSnnltd()”  is called a “Nearest Neighbors: 
Local Treatment Differences” (NN/LTD) plot.  This graphic displays a circular symbol 
representing each “informative” cluster-bin …using horizontal and vertical coordinates that 
convey within-cluster-bin mean and precision information about local treatment differences.  
Specifically, the horizontal coordinate conveys the average outcome difference (treated minus 
untreated) within a single cluster-bin, the vertical coordinate conveys the corresponding outcome 
difference standard error (treated minus untreated) within that same cluster-bin, and the area of 
the circular plotting symbol denotes the total number of patients (either treated or untreated) 
within that cluster-bin.  To be fully “informative,” a cluster-bin must contain at least two patients 
on each treatment. After all, at least 2 patients on each treatment are needed to provide not only a 
treatment difference point estimate but also an observed standard error for that treatment 
difference! 
 
Here is the NN/LTD plot for 30 “diana” cluster-bins for the cardbill  outcome within the 
abciximab case study.  Note that only 21 of these 30 clusters are fully informative about local 
treatment differences.  

 

 
 

For comparison with the above NN/LTD plot based upon 30 cluster-bins, here is the 
corresponding PS plot for 90 diana cluster-bins.  Note that only 34 of these 90 cluster-bins are 
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fully “informative” about treatment differences.  Twenty additional cluster-bins out of the 
original 90 contained just one patient on one (or both) of the two treatments and thus provided no 
“local” standard error information to supplement its local treatment difference point estimate. 

 

 
 

Note that each UPSnnltd() plot also displays 3 vertical lines.  A solid vertical line is always 
drawn at the position denoting an outcome treatment difference of zero.  A dashed vertical line is 
then drawn at the position corresponding to the overall weighted average outcome treatment 
difference, with weights proportional to the total number of patients within each cluster-bin.  
Finally, a dotted vertical line is drawn at the position corresponding to the supposedly 
“optimally” weighted average outcome treatment difference, with weights inversely proportional 
to estimated within-cluster-bin variance …as dictated by the Gauss-Markov theorem for the 
known variance case. 

 
10.  Unsupervised Step Four:  Use UPSivadj()  to Compute Instrumental Variable / 
Local Outcome Averages (IV/LOA) for a specified Number of Cluster-Bins 
 
In this step, we generate “IV plots” of within-cluster Local-Outcome-Averages (regardless of 
treatment) versus within-cluster treatment percentages (PS estimates.)  A key assumption here is 
that all X-variables used to define clusters are instrumental variables in the sense that they 
influence expected outcome only through treatment choice.  I.E. none of the X-variables used to 
define clusters should have direct influence on the outcome to be analyzed.  The appropriate R 
function calls are then of the form: 
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UPSivadj(numclust) 

 
Any two IV cluster-bins can be connected by a straight line without any apparent lack-of-fit, and 
there is no way to define such a line with a single cluster.   Thus numclust  must be at least 3 in 
each UPSivadj() invocation. 
 
Possible invocations of the UPSivadj()  family of functions for the abciximab case study are 
of the form: 

lindcost <- UPSivadj(90) 
lindcost   # or print(lindcost)  
summary(lindcost)  
plot(lindcost)  

 
WARNING:  Several of the X-variables used to define clusters in the abciximab study are likely 
to have direct effects on survival and/or cost as well as (demonstrated) influence upon treatment 
choice.  In other words, these X-variables are highly unlikely  to be pure “instruments.” 
 
The graphical output that can be requested from a UPSivadj()  output object is called an “IV 
plot” …as in Figure 1 of McClellan, McNeil and Newhouse (1994.)  This graphic displays a 
circular plotting symbol representing each cluster-bin using horizontal and vertical coordinates 
that convey how within-cluster-bin outcome averages vary across clusters.  Specifically, the 
horizontal coordinate for each cluster displays the within-cluster-bin PS estimate (fraction of 
treated patients relative to total patients), the vertical coordinate conveys the corresponding 
average outcome (regardless of treatment) within that same cluster-bin, and the area of the 
circular plotting symbol depicts the relative size of the total number of patients (treated plus 
untreated) within that cluster-bin. 
 
The first plot on page 18 displays calculations from UPSivadj()  for 30 diana cluster-bins on 
the cardbill  outcome in the abciximab case study.  Note that “pure” cluster-bins (with 
extreme within-bin PS estimates of either 0% or 100%) are not only informative in this type of 
analysis …they are potential “high-leverage” points! 
 
In sharp contrast with “NN/LTD plot” analyses, a relatively much larger number of cluster-bins 
may be highly desirable in the “IV plotting” approach.  For example, the first IV plot below with 
“only” 30 cluster-bins suggests that treatment with abciximab might be expected to result in a net 
cost savings!  On the other hand, the second IV plot on page 18, with 90 cluster-bins, suggest an 
average overall treatment effect much more like estimates from NN/LTD plots with a relatively 
wide range of numbers of cluster-bins (either small or large.) 
 
Again, the fundamental problem with the abciximab examples of IV/LOA analyses may well be 
that some of the X covariates used here are not “instrumental variables.”  Encouragingly, the 
UPSgraph() “systematic sensitivity summary” plot will dramatically depict the instability in 
numerical signs of potential answers resulting from alternative IV analyses for this example! 
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Is the cardbill  cost difference (abcix minus usual care) negative? 

 
 
 

Or is this cost difference (abcix minus usual care) positive? 
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11. Unsupervised Step Five: Use UPSgraph() to Graphically Display a Systematic 
Sensitivity Summary of NN and/or IV Analyses to choice of Number of Cluster-Bins 
 
While the user of the UPS functions certainly has the option to make a NN/LTD or IV/LOA plot 
immediately after each call to UPSnnltd()  or UPSivadj() for a specified number of cluster-
bins, the fundamental strategy advocated here is to generate results over a sufficiently wide range 
for number-of-clusters to generate a meaningful “systematic sensitivity summary” plot resulting 
from an invocation of UPSgraph() .  For example, it is always a good idea to invoke both 
UPSnnltd(1)  and  UPSivadj(Cmax) , where Cmax = maximum possible number of 
clusters = total number of subjects in the input R data.frame.  After all, these seemingly 
“extreme” cases are actually guaranteed to give the same (“unadjusted”) estimates of the overall 
average outcome difference …and of its precision!   
 
Here is what the UPSgraph()  summary for the cardbill  outcome in the abciximab case 
study looks like before (very low precision) UPSivadj()  results have been accumulated for 
fewer than 30 cluster-bins.  

 
 
Calculating UPSivadj()  results for 20, 10, 5 and 3 cluster-bins forces the UPSgraph()  
summary plot for the cardbill  outcome in the abciximab / lindner case study to “Zoom Out” 
so as to accommodate the much wider (vertical) range of treatment difference uncertainties 
displayed in the updated UPSgraph() below.  
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12. Unsupervised Step Six: Use UPSaltdd() to Compare the NN/LTD Distribution for a 
given number of Clusters in X-space with the Corresponding “Artificial” Distribution from 
Random Clusters. 
 
After displaying outcome LTD sensitivity over a range of alternative numbers-of-clusters using 
UPSgraph() , the user will usually wish to focus on visualizing details of the NN/LTD 
distribution for some specific number-of-clusters.  The UPSaltdd() function displays Cumulative 
Distribution Functions (CDFs) and Histogram pairs that are quite helpful in doing this. 
 
UPSnnltd() makes only the “more” or “most” relevant patient comparisons in the specified X-
space for a given requested number-of-clusters. UPSaltdd() allows users to compare and contrast 
this NN/LTD distribution with the corresponding “Artificial” LTD di stribution from random 
clusterings (ignoring the specified X variables.)  This allows the user to literally see how much 
treatment-selection-bias (imbalance) has been “detected” using the specified X-space clustering 
metric, clustering algorithm and number-of-clusters.  If the NN/LTD and Artificial LTD 
distributions are not clearly “different,” then no meaningful “adjustment” for X-variables has 
occurred.  
 
For example, consider the following R code fragment for the abciximab / lindner example.  Here, 
we specify faclev=1 because the expected life years preserved (continuous) variable, lifepres, 
assumes only two distinct values (0 if died within 6 months, or 11.6 years otherwise):  
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abcdf <- UPSaltdd(lindner, abcix, lifepres, faclev=1, NNobj=lif050nn) 
 

The R command  print(abcdf) then produces the following output: 
 
UPSaltdd Object: Artificial Distribution of LTDs for random clusters... 
Data Frame: lindner  
Outcome Variable: lifepres  
Treatment Factor: abcix  
Scedasticity assumption: homo  
Number of Replications: 10  
Number of Clusters per Replication: 50  
Total Number of Informative Clusters = 494  
 
    Mean Artificial Treatment Difference = 0.4275955 
    Number of Smoothed Sample Quantiles  = 309 
    Mean of Smoothed Sample Quantiles    = 0.4251765 
    Std. Deviation of Sample Quantiles   = 1.254298  
 
UPSnnltd Object: lif050nn  
Number of Informative Clusters = 9  
 
    Mean of Observed LTD Distribution    = 0.3592107 
    Number of Smoothed Sample Quantiles  = 37 
    Mean of Smoothed Sample Quantiles    = 0.2331547 
    Std. Deviation of Sample Quantiles   = 0.9594896 
 

Unfortunately, the above printout is rather misleading.  As we will see, the two distributions to 
be compared are skewed and have different ranges.  Thus the order of their mean values is 
relatively meaningless because means are poor measures of location in this situation.  We do 
learn that the NN/LTD distribution has a slightly lower mean (and slightly higher precision) than 
the Artificial LTD distribution.  Much more informative and meaningful insights are provided by 
the R  plot(abcdf,breaks=20)  command that produces the 4 plots on the next page. 
 
These plots allow the user to literally “see” that the NN/LTD and Artificial LTD distributions are 
quite different and also skewed in opposite directions.  The Artificial LTD CDF and Histogram 
(in the top 2 plots) show that this distribution has Mode < Median = 0 < Mean = 0.43 years and 
contains a large, outlying value of +11.6 years (a random cluster where all abciximab augmented 
patients survived for at least 6 months and all unaugmented patients died.)  Meanwhile, the 
NN/LTD CDF and Histogram (on the bottom of the figure) show that this distribution has Mean 
= 0.36 years < Median = 0.59 years < Mode with an upper limit of ~2.5 years.  In other words, 
relative to the (biased) Artificial LTD distribution, the LTD distribution resulting from NN 
“adjustment” using 50 clusters of relatively well-matched patients in the X-space defined by 
seven patient characteristics (stent, height, female, diabetic, acutemi, 
ejecfrac &  ves1proc ) strikes me as being clearly more favorable to demonstrating the 
“effectiveness” of augmenting “usual PCI care” with abciximab. 
 
Again, means are not “robust” measures of location; the means of these two distributions are in 
the “wrong order” simply due to a single outlier in the simulated Artificial LTD distribution!  
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Part II: Supervised PS Analyses 

 
13.  Supervised Step One: Estimate Propensity Scores and Form Bins 
 
The propensity scoring “definition” function, SPSlogit() , provides… 
 

(1) estimates a logistic regression model for predicting observed treatment choice (zero or 
one) from specified covariates observed on all patients, 

 
(2) estimates the probability (propensity score) that each patient would have been selected to 

receive treatment number one (rather than treatment number zero), 
 
(3) rank orders all patients (allowing for ties) according to these estimated probabilities, and 
 
(4) groups patients into “bins” defined by equal ranges of  PS ranks. 

 
NOTE: Defining bins using tied rank ranges assures that no two patients with identical estimated 
propensity scores will end up in different bins.  The bin number for the ith patient will be 1 + 
floor(bins*rank[i]/(1+total number of patients)). 
 
The R calling syntax for this “define” function is 
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SPSlogit( dframe, form, psfit, psrnk, qbin, bins=5, appn="") 

 
SPSlogit’s first five arguments are required while the last two are optional.  The R invocation of 
SPSlogit()  illustrated in the numerical example is 
 

SPSobj <- SPSlogit(PCI, PSform, PSFIT, PSRNK, QUINT) 
 
The arguments of  SPSlogit()  are as follows: 
 

SPSlogit's first argument, dframe=PCI, must be an existing data.frame name. 
 
SPSlogit’s second argument, form=PSform, must be an S “formula” for predicting the 
treatment factor (ABCIX) using available data.frame covariates. 

 
PSform <- ABCIX ~ STENT + HEIGHT + FEMALE + DIABETIC + 

      ACUTEMI + EJECFRAC + VES1PROC  
 

SPSlogit's third, fourth and fifth arguments, psfit = PSFIT, psrnk = PSRNK and qbin = 
QUINT, supply names for the fitted propensity scores (estimated treatment probabilities), the 
propensity score ranks and the propensity score bin number factor that are created by 
SPSlogit. 
 

Note 1: Although missing values (“NA”s) are allowed, it is best to make predictions for 
as many patients as practically possible.  Adding a covariate with NAs for patients who 
do not have NAs in any other current covariate or in the response (treatment) variable, 
will cause additional NAs in the psfit, psrnk  and qbin  variables created by 
SPSlogit().   
 
Note 2: SPSlogit()  does not use regression subset selection methods because this 
tactic can create “ties” between propensity score predictions.  Ties can cause the total 
number of patients per bin to vary from bin to bin.  Also, see comments in the section 
“R and S-Plus functions that are (or could be) called in PS analyses.” 

 
The optional arguments to SPSlogit()  are 
  

bins  = the number of bins to be formed, and 
appn  = name of output data.frame with appended columns, as a quoted string. 

 
The default value for bins  is 5.  Thus, users need to specify a value for “bin” only when 
they wish SPSlogit()  to form more than 5 or fewer than 5 bins. 
 
The default value for appn  is “” , which means that the user wishes to revise the input 
data.frame by appending the calculated psfit, psrnk  and qbin  variables to it.  Thus, 
the user needs to specify a non-empty quoted string (such as appn=“SPSdf2” ) if he/she 
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does not wish to modify / overwrite the input data.frame named in the first argument to 
SPSlogit() .  For example, the treatment indicator variable will have been declared to be a 
“factor” in the revised data.frame. 

 
The output list returned by SPSlogit()  needs be saved to avoid printing of summary() 
information about the “glm” object created by SPSlogit() .  This summary information as 
well as details on the SPSlogit() invocation can then be printed later from the saved object 
using  print(SPSobj) .  
 
NOTE:  The SPSnbins()  function creates a new (or modifies an existing) propensity score bin 
number factor variable to change the number of PS bins; typical R invocations are of the general 
form… 

PSframe <- SPSnbins( PSframe, psrnk, octile, bins=8) 
or 

PSframe <- SPSnbins( PSframe, psrnk, decile, bins=10) 
 
 

All four arguments to SPSnbins()  are usually specified; the first three are required, and the 
default value for the fourth is bins=8 .  SPSnbins()  does not re-calculate PS fitted values or 
re-rank patients.  Specifically, the first argument to SPSnbins()  is almost always the 
data.frame output value of a previous SPSlogit()  invocation, and the second argument to 
SPSnbins()  is then the psrnk  (fourth) argument from that same SPSlogit()  invocation.  
Finally, the third (required) argument of SPSsbins()  is a variable name for a (new or already 
existing) propensity score bin number factor variable.  

 
14.  Supervised Step Two: Test for Within-Bin “Balance” on Covariates 
 
The “fundamental theorem” of PS states that, if an appropriate propensity scoring algorithm has 
been found, then there will be no difference in the distributions of covariate measurements 
between treatment groups with the same given propensity score.   In other words, although this 
distribution may be different at different numerical values for propensity score, treated and 
untreated patients have been relatively “well matched” when their propensity scores are nearly 
equal.  Specifically, treated and untreated patients can be expected to display essentially identical 
covariate distributions within each bin. 
 
The SPSbalan()  function is designed to detect “violations” of this fundamental PS balancing 
theorem, thereby implying that the current PS model is inadequate to explain treatment selection.  
Every covariate used in the second, "formula" argument to SPSlogit()  of SPS Step ONE is a 
candidate for the sort of testing performed here in SPS Step TWO. 
 
The R calling syntax for the function to detect treatment differences in the within-bin distribution 
of a single X covariate is… 
 

SPStest <- SPSbalan(dframe, xvar, trtm, qbin, faclev=3)  
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The first four arguments of SPSbalan()  are required, and the final two are optional.  For 
example, three consecutive R invocations could be  
 

  SPSout1 <- SPSbalan(PSframe, AGE, ABCIX, QUINT) 
 SPSout2 <- SPSbalan(PSframe, EJECTFMI, ABCIX, QUINT) 
 SPSout3 <- SPSbalan(PSframe, VES1PROC, ABCIX, QUINT)  

 
The arguments of  SPSbalan()  are as follows: 

 
SPSbalan's first argument, dframe=PSframe , is almost always a returned data.frame 
from SPSlogit().  
 
SPSbalan’s second and third arguments, xvar  and trtm , are usually terms from the S 
"formula" used in SPSlogit.  In fact, trtm  must be the “response” (first) term of that 
formula, while xvar  is almost always one of the “covariate” terms. 
 
SPSbalan's fourth argument, qbin=QUINT , is almost always the bin indicator variable 
name as in the previous SPSlogit()  or PSbinnum()  invocation. 

 
The optional argument to SPSbalan()  is 
 
      faclev  = the maximum number of distinct numerical values that a variable can 

assume and yet still be treated as an S "factor." 
 
The default value for this optional parameter is faclev=3. 
 
If the xvar  named in this invocation takes on no more than faclev  distinct numerical 
values, no graphics will be displayed.  On the other hand, when xvar  takes on more than 
faclev  distinct numerical values, xvar  is considered “continuous,” and a “SPSbalan” 
will be created. 

 
SPSbalan()  returns a list of objects containing analysis details.  However, in addition to the 
optional box plot “side effects” discussed above, Psdifcov() also prints out summaries of 
overall and within-bin analyses of trtm  effects on xvar . 
 

When the xvar  data contain faclev  or fewer levels, a summary of contingency table 
ChiSquare tests for trtm  effects is printed. 
 
When the xvar  data contain more than faclev  levels,  xvar  is considered 
“continuous,” and one-way and two-way ANOVA summaries are printed (trtm %in% 
bin  identifies treatment within bin effects.)  

 
If the above test results and/or box-plots indicate that the fundamental theorem of propensity 
scoring is not even approximately satisfied, then a revised model formula should be tried in 
SPSlogit() .  Typically, one would try adding powers or interaction terms between currently 
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used covariates, adding more covariates, or even defining propensity scores using a generalized 
additive model rather than a generalized linear model. 
 
Here are some examples of SPSbalan()  output for the abciximab case study:   
> SPSbalan(PSframe, age, abcix, QUINT) 
 
Test for Raw / Unadjusted Differences by Treatment 
   
AGE ~ ABCIX 
            Df Sum of Sq  Mean Sq      F Value     Pr(F)  
    ABCIX    1       0.0   0.0443 0.0003315842 0.9854754  <= NOT significant! 
Residuals 1009  134822.4 133.6198                        
   
Test for Treatment Differences within Paired PS Bins 
   
AGE ~ QUINT + ABCIX %in% QUINT 
                   Df Sum of Sq  Mean Sq  F Value     Pr(F)  
           QUINT    4     686.7 171.6847 1.295466 0.2699387 
ABCIX %in% QUINT    5    1475.8 295.1598 2.227162 0.0496073  <= significant? 
       Residuals 1001  132659.9 132.5274 
 

In other words, binning can appear to create a covariate difference!!! 
 
 
 
 
> SPSbalan(PSframe, ves1proc, abcix, QUINT)  
  
Test for Raw / Unadjusted Differences by Treatment 
   
VES1PROC ~ ABCIX 
            Df Sum of Sq  Mean Sq  F Value         Pr(F)  
    ABCIX    1   14.3135 14.31349 34.06864 7.164788e-009   <= Significant!!! 
Residuals 1009  423.9180  0.42014                        
   
Test for Treatment Differences within Paired PS Bins 
   
VES1PROC ~ QUINT + ABCIX %in% QUINT 
                   Df Sum of Sq  Mean Sq  F Value     Pr(F)  
           QUINT    4  164.5746 41.14364 151.0037 0.0000000 
ABCIX %in% QUINT    5    0.9167  0.18333   0.6729 0.6441004 <= NO PROBLEM!!! 
       Residuals 1001  272.7402  0.27247 
 

Much more commonly, appropriate estimates of propensity scores eliminate all within-bin 
covariate differences! 

 
To “visualize” within-cell balance, plot the SPSbalan()  output for a continuous variable: 
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15.  Supervised Step Three:  Display Within-Bin Treatment Differences by Outcome using 
SPSoutco()  
 
The calculations performed in Step TRHEE by SPSoutco()  assume that the PS model of Step 
ONE was found to (approximately) satisfy the fundamental balancing theorem in Step TWO.  In 
other words, treated and untreated patients have now been relatively “well matched” on 
covariates within bins.  As a result, within-bin mean outcome differences (treated minus 
untreated) can be expected to be relatively free of bias, at least compared with the corresponding 
overall mean outcome difference between treatment groups. 
 
An overall summary statistic estimating any true (treated minus untreated) outcome difference is 
usually desired.  As a result, within-bin estimates need to be averaged across bins using some 
weighting scheme.  SPSoutco()  displays two such weighted averages: 
  weighted proportional to the total number of patients in each bin, and  weighted inversely proportional to the estimated variance of the within-bin difference. 
 
The overall difference from the latter option will always appear to be more precise, but this 
weighting typically downweights results from the outer (first and last) bins.  The overall 
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difference using weights proportional to total numbers of patients (usually nearly equal across 
bins) may be much less biased, especially when the data contain outliers.  After all, outliers can 
greatly inflate within-bin variances because within-bin sample sizes are reduced by a factor of 
five or more.  
 
The R calling syntax for the function to compute “adjusted” outcome differences is… 
 

SPSoutco(dframe, yvar, trtm, qbin, faclev=3) 
 
The first four arguments of SPSoutco are required, and the other two are optional.  For example, 
two consecutive R invocations could be  
 

PSdie6mo <- SPSoutco(PSframe, lifepres, abcix, QUINT) 
PScrdbil <- SPSoutco(PSframe, cardbill, abcix, QUINT)  

 
The arguments to SPSoutco()  are as follows: 

 
SPSoutco 's first argument, dframe=PSframe, is almost always a returned data.frame 
from SPSlogit . 
 
SPSoutco ’s second argument, yvar, is an outcome measure for patients.  Outcomes are 
results that were unknown at the time when patients were assigned (possibly non-
randomly) to treatments.  “NA”s are allowed in this yvar. 
 
SPSoutco ’s third argument, trtm, is almost always the “response” (first) term from the 
S “formula” used in SPSlogit().  
 
SPSoutco 's fourth argument, qbin = QUINT, is almost always the same bin indicator 
variable name as in the previous SPSlogit()  or SPSnbins()  invocation. 

 
The optional argument for SPSoutco()  is 
 
 faclev  = the maximum number of distinct numerical values that a variable can   

assume and yet still be treated like an S “factor.” 
 
The default value for this optional parameter is faclev=3.  

 
SPSoutco()  returns a list of objects containing analysis details.  However, in addition to the 
optional histogram plot “side effects” discussed above, SPSoutco() also prints out summaries 
of overall and within-bin analyses of trtm  effects on yvar . 
 

When the yvar  data contain faclev  or fewer levels, a summary of contingency table 
ChiSquare tests for trtm  effects is printed.  On the other hand, if this yvar  actually is 
an R factor (character) variable, then SPSoutco()  histograms will display mean values 
computed as if the numerical values for factor levels are 1, …, faclev .  As a result, 



USPSinR vignette  Page ʹͻ 
 

any yvar  taking on only the numerical values 0 and 1 (meaning that outcome was not or 
was observed, respectively), should usually not be declared an R factor variable (with 
values “0”=1 and “1”=2.)       
 
When the yvar  data contain more than faclev  levels,  yvar  is considered 
“continuous” and one-way and two-way ANOVA summaries are printed.  (trtm %in% 
bin  identifies “treatment within bin” effects.) 

 
Note that SPSoutco()  describes treatment differences in the distributions of outcomes using 
the same methodologies (ChiSquare or ANOVA) used by SPSbalan()  on covariates.  The key 
distinction here is that any outcome differences remaining after propensity scoring are called 
“adjusted” differences and do NOT signal problems with assumptions in the current PS analysis. 
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16.  Supervised Step Four:  Explore Outcome Differences Expressed as Smooth Loess or 
Spline Functions of Propensity Score 

 
The calculations currently performed in Step FOUR by SPSloess()  and SPSsmoot()  can 
only be applied to outcome measures that are continuous.  And the logistic regression model fit 
in Step ONE using SPSlogit()  needs to have been found satisfactory in Step TWO.  After all, 
when one starts treating assigned propensity scores as continuous variables (rather than forming 
discrete bins of similar scores), it becomes much more difficult to test / verify the implications of 
the PS matching theorem (i.e. that the distribution of covariates is independent of treatment 
selection.) 
 
MOTIVATION:  Suppose one has fitted a somewhat smooth (loess or spline) curve through the 
observed outcome (Y) versus fitted propensity score (X) scatter for each of the two treatment 
groups. Now, consider the question: 
 

“Over the range where both smooth curves are defined (i.e. their common support), 
what is the (weighted) average signed difference between these two curves?” 

 
If the distribution of patients (either treated or untreated) were UNIFORM over this range, the 
(unweighted) average signed difference (treated minus untreated) would be an appropriate 
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estimate of the overall difference in outcome due to choice of treatment. 
 
Histogram patient counts within 100 cells of width 0.01 provide a naive “non-parametric density 
estimate” for the distribution of total patients (treated or untreated) along the propensity score 
axis.  The weighted average difference (and standard error) displayed by SPSloess()  and 
SPSsmoot()  are based on an R density()  smooth of these counts. 

 
In situations where the propensity scoring distribution for all patients in a therapeutic class is 
known to differ from that of the patients within the current study, that population weighted 
average would also be of interest.  Thus the SPSloess()  returned value contains two data 
frames, logrid  and lofit , useful in further computations; the corresponding data frames 
returned by SPSsmoot()  are named ssgrid  and ssfit . 
 
NOTE: The difference in average smooth (loess or spline) predictions (treated minus untreated) 
is not an appropriately weighted average, in the above sense.  While this sort of computation 
would use propensity scores to make a cost prediction for each patient, no “matching” of treated 
and untreated patients (with nearly equal propensity scores) is used in this sort of calculation. 
 
SYNTAX: The R calling syntax for the functions to compute outcome differences (treatment=1 
minus treatment=0) under the assumption that expected outcome is a smooth (lowess or spline) 
function of propensity score within each treatment cohort are… 
 

SPSloess(dframe, yvar, ps, trtm, faclev=3, display = T, deg=2, 
sp=0.75, fam="symmetric", tcol="black", ucol="red")  

 
and 

 
SPSsmoot(dframe, yvar, ps, trtm, faclev=3, df=5, spar=NULL, 

cv=F, penalty=1, display = T, tcol="black", ucol="red")  
 
The first four arguments of SPSloess and SPSsmoot are required, and the other five or six are 
optional.  For example, two consecutive R invocations could be  
 

PScbillo <- SPSloess(PSframe, cardbill, PSFIT, ABCIX) 
PSframe$TRIMBILL <- pmin( PSframe$cardbill, 50000) 
PStbillo <- SPSloess(PSframe, TRIMBILL, PSFIT, ABCIX)  
 

The fam=“symmetric”  default option of SPSloess tends to be fairly robust to outlying 
outcomes, at least when the loess span (default sp = 1/10) is wide enough.  Thus reducing 
(Winsorizing) outlying cardbill values to $50K (as illustrated above) should have little effect on 
a fitted loess smooth with an appropriate span.  Looking for the effects of Winsorizing on 
SPSloess()  or SPSsmoot()  results is a form of “sensitivity analysis.” 
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The arguments to SPSloess()  are as follows: 
 

SPSloess ’ first argument, dframe=PSframe , is almost always a returned data.frame 
from SPSlogit().  
 
SPSloess ’ second argument, yvar , must be a continuous outcome measure.  
Outcomes are results that were unknown at the time when patients were assigned 
(possibly non-randomly) to treatments.  “NA”s are allowed in this yvar. 
 
SPSloess ’ third argument, ps=PSFIT , is almost always a set of fitted propensity 
scores from a previous SPSlogit()  invocation. 
 
SPSloess ’ fourth argument, trtm , is almost always the “response” (first) term from 
the R “formula” used in SPSlogit() , which is a “factor” variable taking on only two 
different levels. 

 
The seven optional arguments of SPSloess( )  are 
 
 faclev  = the maximum number of distinct numerical values that a variable can 

assume and yet still be automatically converted into an R "factor", 
 

            display  = display graphical output (T or F.) 
 

   deg  = degree (1=linear or 2=quadratic) of the local fit. 
 
  sp  = span (zero to two) of the local regression fit, and 
 
 fam = “gaussian” or "symmetric." 
 
tcol = color loess curve for treated group (default “black”.) 
 
ucol = color loess curve for untreated group (default “red”.) 

 
 
The arguments to SPSsmoot( )  are as follows: 

 
SPSsmoot ’s first argument, dframe= PSframe, is almost always a returned data.frame 
from SPSlogit . 
 
SPSsmoot ’s second argument, yvar , must be a continuous outcome measure.  
Outcomes are results that were unknown at the time when patients were assigned 
(possibly non-randomly) to treatments.  “NA”s are allowed in this yvar. 
 
SPSsmoot ’s third argument, ps =  PSFIT, is almost always a set of fitted propensity 
scores from a previous SPSlogit()  invocation. 
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SPSsmoot ’s fourth argument, trtm , is almost always the “response” (first) term from 
the R “formula” used in SPSlogit() , which is a “factor” variable taking on only two 
different levels. 

 
The eight optional arguments of SPSsmoot( )  are 
 
 faclev  = the maximum number of distinct numerical values that a variable can assume 

and yet still be treated as an S "factor", 
 
    cv =  ordinary cross-validation (T) or generalized cross-validation, GCV (F).  
 

  df  = degrees-of-freedom of B-spline fit (5 bins . 
 
spar  = spar of the smooth.spline()  function, and 

 
penalty  = coefficient of penalty for df  in the GCV criterion. 

 
            display  = display graphical output (T or F.) 

 
tcol = color of spline for treated group (default “black”.) 
 
ucol = color of spline for untreated group (default “red”.) 

 
This scatterplot displays patient propensity score along the horizontal axis and his/her 
corresponding observed (continuous) outcome along the vertical axis.  Patients receiving 
the “standard” treatment (trtm=0 ) are represented by cyan circles, while patients 
receiving the “new” treatment (trtm=1 ) are represented by magenta triangles.  The 
smooth fits of outcome to propensity score within treatment cohorts are show as cyan 
(trtm=0 ) and magenta (trtm=1 ) curves, respectively, superimposed upon the scatter. 
 
The smooth fits can be difficult to see when the scatters contain many points.  Thus 
SPSloess and SPSsmoot each draw a second plot rescaled to show only the two smooth 
(lowess or spline) fits, again using cyan (trtm=0 ) and magenta (trtm=1 ) curves.  (For 
details, see the returned lofit  and ssfit  data frames.)  
 
Finally, SPSloess and SPSsmoot each draw a third plot to show total patient frequencies 
(black circles) within a 100-cell histogram along the propensity score axis as well as the 
corresponding density()  smooth in red.  (For details, see the returned logrid  and 
ssgrid  data frames.) 
 

In addition to the graphs described above, the primary “side effects” of  SPSloess( )  and  
SPSsmoot( )  consist of printouts of  outcome differences (unadjusted and adjusted) and their 
standard deviations. 
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The  SPSloess( )  or SPSsmoot( )  returned value is a list of two data frames, a grid  
frame and a fit  frame, plus other objects giving analysis details. 
 

logrid  and ssgrid  each contain 11 variables and 100 observations.  The PS variable 
(column one) contains propensity score “cell means” of 0.005 to 0.995 in steps of 0.010.  
Variables F0, S0 and C0 for treatment 0 and variables F1, S1 and C1 for treatment 1 
contain fitted smooth (lowess or spline) values, standard error estimates and patient 
counts, respectively.  Observations with “NA” for variables F0, S0, F1 or S1 represent 
“extremes” where the lowess fits could not be extrapolated because no observed 
outcomes were available.  The DIF  variable is simply (F1 F0),  the SED variable is 
sqrt(S1^2+S0^2) , the HST variable is proportional to (C0+C1) , and the DEN 
variable is the estimated probability density of patients along the PS axis. 
 
lofit  contains 4 variables for all observations in data frame = dframe  that have no 
“NA” values in the yvar, ps or trtm  variables.  These 4 variables are named PS, 
YVAR, TRT (with levels 0 and 1 recoded to 1 and 2, respectively) and FIT  = loess 
prediction for the specified “span” (default sp=1/10 .)   
 
ssfit  contains 4 variables for each distinct PS value in data frame = dframe .  These 4 
variables are named PS, YAVG, TRT (with levels 0 and 1 recoded to 1 and 2, 
respectively) and FIT  = spline prediction for the specified degrees-of-freedom (default 
df=10 .) 
 

 
Example SPSloess fit for cardbill versus Propensity Score 

 
 

Solid loess fit gives smoothed cardbill estimates for ABCIX patients. 
Dashed loess fit gives smoothed cardbill estimates for Usual-Care-Only patients. 
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Example SPSsmoot fit for cardbill versus Propensity Score 

 
 

Solid spline gives smoothed cardbill estimates for ABCIX patients. 
Dashed spline gives smoothed cardbill estimates for Usual-Care-Only patients. 

 
Example Patient Distribution (abcix + usual care) along fitted Propensity Score Axis 

 
Black circles give normalized histogram estimates for 100 cells (0.005 to 0.995). 

Red curve gives Gaussian kernel density estimator for the PS distribution of patients. 
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Note that the above distribution of patients at the Lindner Center is somewhat shifted to the right 
because almost 70% of all Lindner PCI patients did receive abciximab in 1997. 
 
 
17.  R and S-Plus functions that are (or could be) called in PS/NN/IV analyses. 
 
SPSlogit()  currently models propensity scores via a call to glm()  with family = 
binomial()  (and thus default link=logit ), but a variety of alternatives could be quite 
useful in applications.  For example, fits from gam() or a classification tree() model would 
relax the “linear functional” requirement of glm()  or automatically incorporate interactions 
among covariates, respectively.  The lrm()  function from the Harrell(1997) “design” library 
could be used to penalize logistic regression parameters, but it is debatable whether inter-
correlations (or even non-linear relationships) among covariates can be harmful in propensity 
score estimation.  After all, our primary interest here is restricted to simply making predictions; 
all we need are fitted values within the closed interval 0  PS  1 that estimate the probability of 
treatment choice give all available covariates.  Any potential problems with significance testing 
or (causal) interpretations for parameters are almost irrelevant.  In fact, D’Agostino(1998) 
essentially recommends drastic over-fitting by including all potentially relevant covariates in 
one’s PS model. 
 
SPSloess() and SPSsmoot()  use the R loess()  and smooth.spline()  functions, 
respectively.  Cleveland’s original lowess()  function could be used here because only one X 
variable (namely, fitted propensity score) is involved, but I choose loess()  to give users 
flexibility to choose between fam=“gaussian”  and fam=“symmetric” , which provides 
some resistance to outlying outcome values. 
 
The df  parameter of  SPSsmoot()  brings considerable intuitive appeal to one’s choice of 
smoothness; see Hastie and Tibshirani(1990).  For example, the SPSoutco()  approach with 
bins =5 clearly corresponds to df=5 , but “binning” outcome analyses correspond to fits that 
are discontinuous at cut points.  SPSsmoot()  fits cubic smoothing splines that are not only 
continuous but also have continuous first and second derivatives. 
 
SPSloess() and SPSsmoot()  both call the R density()  function to generate a non-
parametric probability density estimate for the distribution of patients along the fitted PS axis.  
This density is evaluated at 100 points evenly spaced between PS=0.005 and PS=0.995, and 
signed differences between the (lowess or cubic spline) smooths at these same points are 
weighted proportional to this density.  Bandwidth for this Gaussian kernel density estimator is 
chosen using the R default bw=“nrd0”  option.  Alternatively, see Venables and Ripley(1999), 
page 137. 
 
Like “Lattice” graphics in R, S-Plus “Trellis Graphics” can be extremely useful in visualizing 
within-bin balance achieved via propensity scoring.  For example, the plots below illustrate 
balance issues related to the “ves1proc” X-variable within the abciximab case study.  Even major 
overall distributional differences will, ideally, almost “disappear” as a result of PS binning. 
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18.  Summary 
 
As is clear from the above descriptions and examples, the SPSlogit(),  SPSbalan()  and 
SPSoutco() R functions provide only relatively simple and straight-forward analyses.  I started 
out performing such computations primarily in JMP and Stata.  I then used text files to port 
tables of means and sample sizes to Excel to draw histograms.  Although possibly pedagogical, I 
quickly realized that my original “mostly-point-and-click” analysis process was actually highly 
repetitive, tedious, error-prone and produced no satisfactory audit-trail for reproducing analyses. 
 
Like many other interesting forms of data analysis, I think that propensity scoring and 
instrumental variables adjustment methods need to be viewed as highly iterative, discovery 
processes.  Successfully making ones way through SPS step TWO can require several returns to 
SPS step ONE.  Only then can results from SPS steps THREE and FOUR be considered 
meaningful.  And convincing UPS analyses require exploring alternative clustering algorithms 
and patient dissimilarity metrics in step ONE as well as a varying numbers of cluster-bins in 
steps TWO and/or THREE.  Outliers and missing values (NAs) can provide frustrations 
throughout these journeys.  The R functions described here hopefully provide enough basic 
support (if only relief from tedium) to encourage PS practitioners to persevere and end up feeling 
confident that their “sensitivity analyses” have been thorough.   
 
The SPSloess()  and SPSsmoot()  functions are still in their early stages of development.  
SPSloess()  fits can tend to look rather “rough” compared to SPSsmoot()  fits.  Cubic 
spline smoothing appears to give answers that are interpretable as smoothed mean values for 
highly skewed distributions.  Loess smoothing, at least when fam=“symmetric ,”  tends to 
give answers more easily interpretable as modes or medians of highly skewed distributions.  This 
median versus mean analogy may help explain why the weighted average signed treatment 
differences from SPSloess()  tend to seem more precise than those from SPSsmoot() for 
highly skewed distributions.  
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Software Updates: 
 
2003.08 Fix error in standard deviation computation for the “weighted by bin size” 

treatment difference estimate in SPSoutco( )  and UPSnnltd( ).  
 
2004.01 Major upgrade to “object oriented” style; add UPS “sensitivity analysis” overview 

UPSgraph() ; fix SPSbalan()  trellis-style (lattice library) graphic; 
unfortunately, new argument sequencing not backward compatible with earlier 
versions. 

 
2006.09 Upgrade functions (fix bugs and clarify terminology / titles / labels) and add 

UPSaltdd() functionality for computing and visualizing the Artificial Distribution 
of LTDs due to random patient clusterings. 

 
2007.08 Upgrade plotting functions and make minor changes in terminology 
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2011.12 Update References and convert this file into a vignette. 
 
Unsupervised R functions: 
========================= 
 
xvars <- c("x1", "x2", ..., "xN") 
 
UPlinint <- function(q, xmin, n, x, w) 
 
UPShclus <- function(dframe, xvars, method=diana) 
    plot.UPShclus <- function(x) 
    print.UPShclus <- function(x) 
 
UPSaccum <- function(hiclus, dframe, trtm, yvar, faclev=3, 
                     accobj="UPSframe") 
 
UPSaltdd <- function(dframe, trtm, yvar, faclev=3, 
        scedas="homo", NNobj=NA, clus=50, 
    reps=10, seed=12345) 
    plot.UPSaltdd <- function(x, breaks=”Sturges”) 
    print.UPSaltdd <- function(x) 
 
UPSnnltd <- function(numclust) 
    plot.UPSnnltd <- function(x) 
    print.UPSnnltd <- function(x) 
    summary.UPSnnltd <- function(x) 
 
UPSivadj <- function(numclust) 
    plot.UPSivadj <- function(x) 
    print.UPSivadj <- function(x) 
    summary.UPSivadj <- function(x) 
 
UPSgraph <- function(nncol="red", nwcol="green3", ivcol="blue") 
 
 

Supervised R functions: 
======================= 
 
form <- trtm~x1+x2+...+xN 
 
SPSlogit <- function(dframe, form, pfit, prnk, qbin, bins=5, 
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                appn="") 
    print.SPSlogit <- function(x) 
 
SPSbalan <- function(dframe, trtm, qbin, xvar, faclev=3) 
    plot.SPSbalan <- function(x) 
    print.SPSbalan <- function(x) 
 
SPSoutco <- function(dframe, trtm, qbin, yvar, faclev=3) 
    plot.SPSoutco <- function(x) 
    print.SPSoutco <- function(x) 
    summary.SPSoutco <- function(x) 
 
SPSsmoot <- function(dframe, trtm, pscr, yvar, faclev=3, df=5, 
                     spar=NULL, cv=F, penalty=1) 
    plot.SPSsmoot <- function(x, tcol="blue", ucol="red", 
                                 dcol="green3") 
    print.SPSsmoot <- function(x) 
 
SPSloess <- function(dframe, trtm, pscr, yvar, faclev=3, deg=2, 
                     span=0.75, fam=symmetric) 
    plot.SPSloess <- function(x, tcol="blue", ucol="red", 
                     dcol="green3") 
    print.SPSloess <- function(x) 


