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This user’s guide defines syntax and illustsatse of updated “R” functions that perform a
variety of alternative approaches to ProjgnsScoring (PS) analyses. These functions
implement a variety of relatively new methofis statistical inference that use eitHaycal
Control patient clustering or else traditionphrametric prediction of Propensity (logistic
regression) to analyze data from non-staddatudies ...such a®bservational studies,
retrospective database analyses and poorlyoraizd (chaotic) studiesUSPS methods cannot
rely on the “balance” that is “expected” whesing traditional randomized assignment of
patients to treatments. After all, thisalance” frequently fails to result evapproximately in
(finite) purely random samples!!! Instead, the USPS methods implement various forms of a-
posteriori “blocking”, “matching’or “stratification” of patientsvho received only one of the two
treatments that are to be compared.
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1. Introduction.

Here we describe “R” language functions iempkenting rather new methods for “propensity
score” (PS) and/or “instrumemtaariable” (IV) adjustment to estimates of treatment effects.
These approaches adjust for treatment selection bregacterized by imbalance in patient
baseline characteristics between treatment grdapss, cohorts) in either nonrandomized or
poorly randomized studies. aditional “supervised” PS methodan be categorized as follows:
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The traditional “big three” Propensity Saogi methods require an estimate of the PS =
(conditional probability of treatment) for eachtipat ...usually from a fitted logit or probit
model.

[a] PS matching of patients in any fikeatio (as in case/control studies),

[b] PS binning of patients (sub-ckaication / stratification) and

[c] regression modeling using Heckman effects or inverse Mills’ ratios (nonlinear
functions of PS).

See D’Agostino(1998) for a gentle introdwcti to these three legively well-know
methods of supervised propensity scoring.

Two alternative (rather mottechnical) methods are:

[d] inverse probability weighting (IPW =1/ PS) and
[e] econometric simultamelis equations / instrumental variable models.

For key references on these methods, my “white paper,” Obenchain(2006a).

“Unsupervised” PS strategies start by clustepagents in baselineogariate X-space. The
two new approaches of this type thaa¢ implemented in “R” here are:

[f] Nearest Neighbor / Local Treatmt Differences (NN/LTD) plotting.

NN/LTD focuses on characterizing thdlfdistribution of truly “local”
treatment differences within clusters of relatively well-matched patients.

[g] Instrumental Variable / Local Outcome Averages (IV/LOA) plotting.

IV/ILOA focuses on how within-clustesutcome averages (regardless of
treatment) vary when clusters are plotted versus a within-cluster PS
estimate, the observed treatment peiage. This approach requires all X
covariates used to define clusters to be “instrumental variables;” i.e. to
effect outcome only (indirect)ythrough choice of treatmentUse of X
covariates which quantify disease s#ye or patient frailty is then
guestionable because such characteristics may also have direct effects on
outcomes, invalidating th&/LOA plotting approach.

Our “Unsupervised” PS designation comes framiliar jargon in literature on artificial
intelligence and data mininges Barlow(1989). Specificallf2S clustering methods proceed
without receiving any “hints” im a designated outcome me&sor a treatment indicator
variable to help “guide” fonation of patient subgroups In addition to clustering,
multivariate probability density estimation isatner example of an unsupervised statistical
method.

USPSinR vignette Page 3



The PS clustering approaches implementede hare like some early suggestions of
Rubin(1980), which apparently have not beesarly as widely wed as “supervised”
methods. After all, they tend to beuch more comput@mnally intensive.

Some supervised methods do have to rtesm numerical search methods over a p-
dimensional space of parameters (e.g. estimati@logit or probit regression model) rather
than use a closed form expression (such addhatdinary least squaseestimates in a linear
regression model.) On theher hand, unsupervised methods typically have to make the
nx(n-1)/2 pairwise comparisons gbatients needed to hierarchically cluster all study
subjects. The resulting increases in cotimgutime and memory allocation due to use of
unsupervised (Non-Polynomial Hard) methods barenormous, especially when n is much
larger than p (n >> p.) Besides, clustering itsstan also be highly ssitive to user choices

of patient similarity metric aior specific clustering algorithm.

In spite of their almost frustrating flexibility and sharply increased demand on computing
power, “clustering” approaches to adjustmént treatment selectiobias end up offering
two main advantages over supervised PS methods...

[1] At least when the numbenf clusters is relatively large (and thus the number of
patients in most clusters is relatively small), there is no real need to test whether patients
are relatively “well matched” on their X ahacteristics within individual clusters.
Clustering of patients on their X charactecsthas assured that almost any model for
predicting propensity scores that is tiedaly smooth over X space would confirm that

any within-cluster comparisons of treatrheutcome differences are relatively “fair”
comparisons.

[2] Results from clustering lend themselwesll to use of grapleal visualization and
sensitivity analysis techniques. For examplae the full hierarchical clustering tree has
been constructed, displays using alternativenbers of total clusters can be generated
relatively quickly. Thus clusring approaches can provide not only fundamental, robust
(non-parametric) insights but alaghly relevant informatiombout sensitivity of results

to “tuning” parameters. Furthermore, thesuking graphical dispis can dramatically
illustrate how traditional parametric modeling approaches, such as simultaneous
equations models, tend to emphasize sasgects of the data while de-emphasizing
other aspects.

Thanks to the considerable computing anghi@al display power omodern workstations,
clustering methods for PS adjustment are rpactically useful. Mykey strategy is to
emphasize their use in systematic sensitivity analy¥élsat is the full range of quantitative
treatment effect estimates supported by thelabhla data?” And, “Which patient subsets
tend to have extreme outcomes?”

Finally, “smoothing” of outcomes along a PS adéefined by a parametric prediction model
is a simple and intuitively appealing alternat{iretially suggested to me by Professor Frank
Harrell of Vanderbuilt) to thearlier PS “binning” approach.
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The computing algorithms disssed here are written in a diat of Version 3 of the “S”
language that is processed by thR” interpreter, Version 1.7+4available for download from
http://www.r-project.org R is a GNU (open source) ingphentation of the “S language and
environment for data analysis and graphicsSee Becker, Chambers and Wilks(1988) and
Chambers and Hastie(1992) for informatioroathS; see lhaka and Gentleman(1996) for the
original description of R as being “not unlike” S.

2. Fundamental Distinctions betveen Alternative PS Approaches.

Traditional “Supervised” forms of Propensity Scoring (PS) typicstiyt with a parametric logit
(or probit) model to estimate the conditionablpability of receiving treatment given certain
patient characteristics. [An average across s@mdomForest() of claggiation trees may well
be a superior way to “score” patients, but no Rcfions for this are currently provided here.]

The mandatory second step in all Supervispdr@aches is to verify that one’s estimated
propensity scores behave, kEast approximately, like (unknown) true propensity scores.
Specifically, they must conditionally “balancgjatients on all relevant X characteristic

distributions within all bins. Sections 3 and (Bupervised PS Step 2), below, discuss this topic
in detalil.

The steps in actually using estited propensity scores (PSsyalve: rank ordeng patients on
their estimated scores, sub-classifying patieint® “bins” (strata), computing within-bin
outcome differences between tirmant subgroups, and averagthgse differences across bins.

The “unsupervised” propensity scoring approadhé®duced here stress graphical methods for
detection of Local Treatment Differences (LTsjng Nearest NeighbdNN) Clustering in the
X-space of observed patient baseline charatiteyis Obenchain(2006a) argues that cluster
membership can provide better (less “coarsetjepa matchings than ppensity scores. This
general approach is definitetpt new. Obenchain(1979) used the underlying concept to develop
an AT&T measurement plan (PRRAP) thatded'customer trouble report rate” comparisons
among only relatively well-matched Bell 8gm plant maintenance districts.

3. The Fundamental “Balancing” Theorem of Propensity Scoring
Our basic notation for variables will be...

y = observed outcome variable(s)

x = observed baseline patient characteristic®variate(s) / instrumental variable(s)

t = observed treatment assignment (binary, O or 1; may be non-random)

z = unobserved explanatory variable(s)
Note that unobserved variables may provide unknowieausal effects on outcomeg, In
statistical/econometric model# is the existence of variables (as well as uncertainty in
measuring/ andx variables) that necessitates inaunsof “error terms” in models.

NOTE: Patient level genome information is mostly a giganti@ctor today (2006.) Some day
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soon, more and more of this softinformation will become routine variables.

The Propensity Score for thi patient is then defined to like following function of his/hex
characteristics...
PS =pk) =Pr(ti=1|x) = E(t [ X ). [1]

By definition, propensity scores are (conditionaipbabilities, which are numbers between zero
and one, inclusive. In words, the true propgnstore of a patient is the conditional probability
that he/she will receive treatment number ameen his/her vectorof observed, baseline
characteristics.

In many practical applications, only the raakders of (estimatedpropensity scores are
needed. In this sense, any monotone transtorymaf a set of propensity scores are another
set of propensity scores deivalent” to the first set. For example, when only one
(univariate)x variable is found to be predictive wéatment choice/assigient, that single
variable may (itself) bealled a propensity score.

One requirement of the above PS formulatioth& each patient relees one and only one
treatment. In other words, the formulatibare does not cover chronic conditions where a
cross-over design may access two (or more) tretisrusing sequential treatment periods for
each patient ...separated by adequate “wash-out” periods.

In the following (cartoon) proof of the “fundamahtheorem” of propensity scoring, it will be
essential to view a patient’'s prop#nsscore as the conditional probabilipl]. We will not
attempt any sort of a full-blown proof in teense that our notation only makes sense whsn
discrete and has only 2 levels. In othevords, we will not worryhere about notational details
for cases where componentsxdfave continuous distributions bhas more than 2 levels.

The “fundamental theorem” of propensity sogr Rosenbaum and Rui§l984), states that,

conditional upon a given value of the propensity scorg, ffe distribution of baseline patient
characteristics must be statistically independehttreatment choice. Mathematically, this
theorem simply implies that the joint distributionxadindt given p must factor as follows:

Pr(x,t[p) =Prik|p)Prt|x p)
=Pr(x|p) Pr|x)
=Pr(x| p) times p or @p)
=Pr(x|p) Pret|p) 2]

PROOF: In the first line of [2], we use theryelefinition of conditionbprobability to factor
the joint conditional distribution ok andt. In the second line, we note thak)p¢annot
contain any information not containedxntself. In the third line, we note that Rr[x ) is
either pk) or 1 — pKk). In the fourth and final line, we conclude that Pf& ) must depend
upon x only through pg.
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In other wordsx andt are, necessarily, conditionally ingkndent variables given the propensity
score, p = Pr€ = 1 |x). This is really a very simple theorem in statistics / probability that
requires only rather weak assumptions. In factyé¢laé “problem” in applications is simply that
the functional form of the true PS is usually nawn and, thus, needs to be estimated from data!

When the conditional distributions of baselindigrat characteristics and treatment choices “fail
to factor” as dictated by the fundamtal theorem of PS, [2], this rgyhtfully interpreted as clear
evidence that one’s estimates of the unknowrg BSs are not even approximately correct.

4. Case Study Example: Effects of Abciximause on both Survival and Cardiac Billing.

The (numerical and graphical) output illustrations provided here use the data from Kereiakes et
al. (2000). The correspondingromand file and data are disuted along with the UPS and

SPS “R” functions in the file@ABCIXini.R and ABCIX.CSV. In this prospective study,
outcomes variables (survival anddiac related costs) were colledtvia follow-up for at least 6
months on 996 PCI patients treated at the LindPamter, Christ Hospital, Cincinnati. Rather
than randomize patients to treatment, thedhar interventionists practiced “evidence based
medicine” in choosing between either augmantor not augmenting their “usual care” for
Percutaneous Coronary Intervention (PCI) with abciximab (Ré&dpra relatively expensive
lIb/llla cascade inhibitor. Ability-to-pay was not a factor in this treatment choice in the sense
that Lindner interventionists haatcess to “research use” abciximab.

Our objective in this “Ruser's manual” documentation forettUPS and SPS functions is not to

fully discuss and illustrate adispects of the abciximab case studyather, we simply wish to
illustrate some example UPS and SPS function invocations as well as the tabular and/or
graphical output that resultReaders interested mreading more abowiPS and SPS analyses
using the abciximab case study are referradydwhite paper,” Obenchain(2006a).

Variables in the Kereiakes et al2000) Abciximab / Lindner Data:

Description Name Values
Life Years Preserved = 0 dfied within 6 Months or lifepres Either 0 or 11.6 Years
11.6 Years given Survival for at least 6 Months
Total Cardiac Related Billing within 12 Months of cardbill $2,216 to $178,534 in
Patient’s Initial PCI at Lindner Center 1997 US Dollars
Was “Usual PCI Care” augmented with Abciximab? abcix 0=>No, 1=>Yes
Was a Stent (anti-colise device) Deployed? stent 0=>No, 1=>Yes
Patient Height in Centimeters height 108 cm to 196 cm
Patient Gender female 0=>No, 1=>Yes
Was the patient Diabetic? diabetic 0=>No, 1=>Yes
Had patient suffered an Acute Myocardial Infarctionacutemi 0=>No, 1=>Yes
within the Last Seven Days?
Left Ventricular Ejection Fraction ejecfrac 0% to 90%
Number of Vessels involved first PCI procedure veslproc Oto5
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5. Installing and Loading the “USPS” Package.

First, obtain the USPS_1 0.ZIP archive from thdwie of the Central Indiana ASA chapter,
www.math.iupui.edu\~indyasa\bobodown.htnor from CRAN. Then use the R &Ekages”
menu and the_fistall from local ZIP file” menu item. Then use theodd packages” sub-menu
to load “USPS.” The required “cluster”, ttee” and “spline” R packges will then be
automatically loaded for you.

All of the abciximab analyses and graphicedisas illustrations in this documentation (and
several more!) can then be generated by reading iabti®.R  source code file and executing
the resultingabcix()  function.

"abcix" <- function() {

#input the abciximab study data of Kereiakes et al. (2000).
Load(lindner)

# outcomes: lifepres & cardbill

# Define Divisive Cluster Hierarchy for UNSUPERVISED analyses...

UPSxvars <- c("stent","height","female","diabetic","acutemi",
"ejecfrac","veslproc")

UPSharch <<- UPShclus(lindner, UPSxvars, method="diana")

plot(UPSharch) # Top figure on page 13.

# Save UPSpars settings for NN/IV analyses of the "lifepres" outcome.
# Although the "lifepres" variable assumey onb different numerical values,ig not to be treated here as
# a“factor.” It's average value is to beeipreted as “proportion survivingimes 11.6 = expected years.
UPSaccum(UPSharch, lindner, abcix, lifepres, faclev=1 , accobj="ABClIife")

[if001nn <<- UPSnnitd( 1)
[if002nn <<- UPSnnltd( 2)
[if005nn <<- UPSnnltd( 5)
[if010Nnn <<- UPSnnltd( 10)
[if020Nnn <<- UPSnnltd( 20)
plot(lif020nn) # graphical display
[if030nn <<- UPSnnltd( 30)
[if040nn <<- UPSnnltd( 40)
lif050Nnn <<- UPSnnltd( 50)
lif060Nn <<- UPSnnltd( 60)
summary(lifo60nn) # brief console output
[if070nn <<- UPSnnltd( 70)
[if080nn <<- UPSnnltd( 80)
[if090Nn <<- UPSnnltd( 90)
plot(lif090nn) # graphical display

lif030iv <<- UPSivadj( 30)
lif040iv <<- UPSivadj( 40)
lif050iv <<- UPSivadj( 50)
lif060iv <<- UPSivadj( 60)
[if070iv <<- UPSivadj( 70)
[if080iv <<- UPSivadj( 80)
lif090iv <<- UPSivadj( 90)
plot(lif090iv) # graphical display
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lif100iv <<- UPSivadj(100)
lif200iv <<- UPSivadj(200)
lif300iv <<- UPSivadj(300)
lifo96iv <<- UPSivadj(996)

# Overall "Sensitivity Analysis" Summary...
UPSgraph()

cat("\n\nPress ENTER to add low-precision 1V estimates...\n\n")
scan()

lif003iv <<- UPSivadj( 3)

lif005iv <<- UPSivadj( 5)

lif010iv <<- UPSivadj( 10)

lif020iv <<- UPSivadj( 20)

# Display Augmented "Sensitivity Analysis" Summary...

UPSgraph()

# Display contents of UPSdf...

ABClife

cat("\n\n Press ENTER to Analyze Costs... \n\n")
scan()

# Save UPSpars settings for NN/IV analyses of the "cardbill" outcome
UPSaccum(UPSharch, lindner, abcix, cardbill, accobj="ABCcost")

cst001nn <<- UPSnnitd( 1)
cst002nn <<- UPSnnitd( 2)
cst005nn <<- UPSnnlitd( 5)
¢st010nn <<- UPSnnltd( 10)
¢st020nn <<- UPSnnltd( 20)
cst030nn <<- UPSnnltd( 30)

plot(cst030nn) # graphical display (Figure on page 15.)

cst040nn <<- UPSnnlitd( 40)
cst050nn <<- UPSnnltd( 50)
cst060nn <<- UPSnnltd( 60)
cst070nn <<- UPSnnltd( 70)
cst080nn <<- UPSnnltd( 80)
¢st090nn <<- UPSnnltd( 90)

plot(cst090nn) # graphical display (Figure on page 16.)

cst030iv <<- UPSivadij( 30) # plot cst030iv is top figure on page 18.
cst040iv <<- UPSivadj( 40)
cst050iv <<- UPSivadj( 50)
cst060iv <<- UPSivadj( 60)
cst070iv <<- UPSivadj( 70)
cst080iv <<- UPSivadj( 80)
cst090iv <<- UPSivadj( 90)

plot(cst090iv) # graphical display (Bottom figure on page 18.)
cst100iv <<- UPSivadj(100)
cst200iv <<- UPSivadj(200)
cst300iv <<- UPSivadj(300)
cst996iv <<- UPSivadj(996)
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# Overall "Sensitivity Analysis" Summary (Figure on page 19.)
UPSgraph()

cat("\n\nPress ENTER to add low-precision 1V estimates...\n\n")
scan()

cst003iv <<- UPSivadj( 3)

cst005iv <<- UPSivadj( 5)

cst010iv <<- UPSivadj( 10)

cst020iv <<- UPSivadj( 20)

# Augmented "Sensitivity Analysis" Summary (Figure on page 20.)
UPSgraph()

# Display contents of UPSdf...
ABCcost

# End of UNSUPERVISED analyses.

# Define Logit Model for Treatment Choice in SUPERVISED analyses
PStreat <- abcix~stent+height+female+diabetic+acutemi+ejecfrac+veslproc

# Store Propensity Score info (default=5 bins) in frame named "lindSPS"

logtSPS <<- SPSlogit(lindner, PStreat, PSfit, PSrnk, PSbin,
appn="lindSPS")
logtSPS

# Testing for Within-Bin Balance on Continuous Covariates...
SPSbalht <<- SPSbalan(lindSPS, abcix, PSbin, height)
plot(SPSbalht)

print(SPSbalht)

SPSbalej <<- SPSbhalan(lindSPS, abcix, PShin, ejecfrac)

plot(SPSbalej) # Figure on page 25.
print(SPSbalej)

SPSbhalvs <<- SPSbhalan(lindSPS, abcix, PSbin, veslproc)
plot(SPSbalvs)

print(SPSbalvs)

# Testing for Within-Bin Balance on Binary (Dichotomous) Covariates...
SPShalst <<- SPSbalan(lindSPS, abcix, PShin, stent)

print(SPSbalst)

SPSbhalfm <<- SPSbalan(lindSPS, abcix, PShin, female)
print(SPSbalfm)

SPSbhaldi <<- SPSbalan(lindSPS, abcix, PSbin, diabetic)
print(SPSbaldi)

SPSbalam <<- SPSbalan(lindSPS, abcix, PShin, acutemi)
print(SPSbalam)

# Test for Within-Bin Outcome Differences...

lindlife <<- SPSoutco(lindSPS, abcix, PSbin, lifepres, faclev=1)
plot(lindlife)

print(lindlife)

scan()

lindcost <<- SPSoutco(lindSPS, abcix, PSbin, cardbill)

plot(lindcost) # Both Figures on page 28.
print(lindcost)
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# Cubic smoothing spline analyses...

SPSchill <<- SPSsmoot(lindSPS, abcix, PSfit, cardbill)
plot(SPSchill)

SPSchil7 <<- SPSsmoot(lindSPS, abcix, PSfit, cardbill, df=7)

plot(SPSchil7) # Figures on pages 33 and 34.
SPSchil3 <<- SPSsmoot(lindSPS, abcix, PSfit, cardbill, df=3)
plot(SPSchil3)

# Loess "symmetric" smoothing analyses...

SPSchlss <<- SPSloess(lindSPS, abcix, PSfit, cardbill)
plot(SPSchlss)

SPScbhls5 <<- SPSloess(lindSPS, abcix, PSfit, cardbill, span=.5)

plot(SPSchlis5) # Top Figure on page 33.
SPSchls9 <<- SPSloess(lindSPS, abcix, PSfit, cardbill, span=.9)
plot(SPSchls9)

}

Part I: Unsupervised PS Analyses

In data mining terminology, the approach herams“unsupervised” form of propensity score
binning, which (in turn) is a fornof retrospective patient sub-classification or stratification
(matching without using any fixedtra of treated-to-untreated patits.) Specifically, we will
use observed patient X-characteristics to clusteilairpatients together rather than to directly
predict (non-random) treatment choicka fact, here our unsuperviséduster-binning) strategy
will typically use...

e many more bins (say, 50 instead of 5) and/or

e bins with a potentially wide range of difient sizes (wide variation in total numbers

of patients.)

7. Unsupervised Step One: Compute thHierarchical Clustering Tree usingUSPhclus()

The UPS hierarchicallustering functionUPShclus() , must be invoked before any of the four
other UPS functions. The R callj syntax for this function is

UPShclus(dframe, xvars, method="diana"),

where the first two arguments are required andhivd is optional (because a default value is
provided.) The R invocation &fPShclus() used in the abciximab case study is

UPSharch <- UPShclus(lindner, UPSxvars)
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...which implies that the default (divisive) ctesing method = "diana” will be used and that all
relevant hierarchical clustering informati is to saved in aR object of class UPShclus ”
named UPSharch. ”

The three arguments of UPShclus() are as follows:

The first argument, dframe = lindner, musttbe name of an existing data.frame object.

SPSlogit’'s second argument, xvars = UPSxvarsstrbe a list (concatenation) of “quoted”
names (in character format) of variables existing within the data.frame that will be used to
discover clusters representingearest neighbors in X-space.”

UPSxvars <- c("stent","height","female","diabetic","acutemi”,"ejecfrac","veslproc")

The final (optional) argument definése clustering algorithm to be used U?Shclus()

The (default) method isdiana ” for the Dlvisive ANAlysis method of Kaufman and
Rousseeuw (1990), and the other twdiays currently available are:afines” for the
Aglomerative NESting method of Kaufmaand Rousseeuw(1990) and the original
“hclust " method implemented in Fortran codentributed to STATLIB by F. Murtagh.

Unfortunately, the current implementationdPShclus provides only one possible metric,
Mahalanobis distance, Rubin(1980), for determgnpatient dissimilarity in X-space. Thus
each X variable used witdPShclus() needs to be coded as eitta continuous (interval)
or a “dummy” (0 or 1) varide. Factors with more than two unordered (but numerical
levels) would be inapproprigly analyzed by the currebiPShclus() implementation

The object list returned byPShclus()  will contain an object (x$upshcl) of class diana, agnes
or hclust and must be saved to some name becausgRBikclus() “output list” must be
specified as the first, required argument tolli®Saccum() function.

The graphical output generated for@RShclus() output object is a “dendrogram” display of
the resulting hierarchical clustering tree, sashthe following “dianatree for the abciximab
data.
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Unsupervised Divisive Hierarchy

Height

Divisive Coefficient = 0.84

For comparison with th&JPShclus() “diana” tree above, note the considerably different
appearance of the corpemding “agnes” tree, below, for the same data and dissimilarity metric.

Unsupervised Agglomerative Hierarchy

Height

| i I'|I'" ‘I';Th 1

Agglomerative Coefficient = 0.96
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8. Unsupervised Step Two: Specify Treatnmeé and Outcome variables to prepare for
Accumulation of NN and/or IV information with UPSaccum()

Invoking UPSaccum() creates an R object named “UPSpamsbverwrites angxisting object
with this name.

UPSaccum(hiclus, dframe, trtm, yvar, faclev=3, accobj="UPSframe")

The six possible arguments ofPSaccum() are as follows:

UPSaccum's first argumerticlus=ABChclus , must be an R object of class diana,
agnes or hclust ...usually the oljeeturned by amvocation ofUPShclus()

UPSaccum’s second argumemframe=lindner , is usually the data.frame that
provided X-covariates to the most recetShclus() invocation.

UPSaccum's third and fourth argumerntsn=abcix and yvar=cardbill , are
almost always the treatment and outcome variable nartles the data.frame that also
provided the X-covariates in the most reddRtShclus() invocation.

The two optional arguments WPSaccum() are

faclev. = the maximum number of distinctumerical values that an outcome
variable can assume within the inputadtame and yet still be treated as a
discrete R “factor” variable. The defavalues for this optional parameter
is faclev=3.

accobj =  the quoted name of the R ebj that will hold "UPSframe"

Whenyvar takes on more thafaclev distinct numerical values within the specified
data.frameyvar will be considered to be a “continuous” variable.

9. Unsupervised Step Three: Us&PSnnltd() to Compute Nearest Neighbor / Local
Treatment Differences (NN/LTD) for aspecified Number of Cluster-Bins.

In these “Step 3” analyses, wealculate Nearest-Neighbor iinn cluster-bin) statistics
describing “Local Treatment Differences” via R function calls of the form:

out##H#nn <- UPSnnltd(numclust)
Here are some example invocations ofuliSnnltd()  family of functions:

cst030nn <- UPSnnltd(30)
cst030nn # shorthand for... print(cst030nn)
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summary(cst030nn)
plot(cst030nn)

The graphical output generated tplot.UPSnnltd()” is called a “Nearest Neighbors:
Local Treatment Differences” (NN/LTD) plot. This graphic displays a circular symbol
representing each “informative” cluster-binusing horizontal and vecal coordinates that
convey within-cluster-bin meaand precision information about local treatment differences
Specifically, the horizontal coontiaite conveys the average outmodifference (treated minus
untreated) within a single clustbin, the vertical coordinateonveys the corresponding outcome
difference standard error (treated minus untreateithin that same cluster-bin, and the area of
the circular plotting symbol dered the total number of patients (either treated or untreated)
within that cluster-bin. To be fully “informative,” a cluster-bin must contain at least two patients
on each treatment. After all, laast 2 patients on each treatment are needed to provide not only a
treatment differencepoint estimate but also an observed standard damithat treatment
difference!

Here is the NN/LTD plot for 30 “diana” cluster-bins for tbardbill outcome within the
abciximab case study. Note that only 21 of ¢h@8 clusters are fully informative about local
treatment differences.

Unsupervised Nearest Neighbor BINS = 30
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For comparison with the above NN/LTD plot based upon 30 cluster-bins, here is the
corresponding PS plot for 90 diankster-bins. Note that onl§4 of these 90 cluster-bins are
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fully “informative” about treatment differencesTwenty additional cluer-bins out of the
original 90 contained just one patient on oneb@h) of the two treatments and thus provided no
“local” standard error infornteon to supplement its local treaent difference point estimate.

Unsupervised Nearest Neighbor BINS = 90
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Note that eactuPSnnltd() plot also displays 3 vertical linesA solid vertical line is always
drawn at the position denoting an outcome treatrdéfd@rence of zero. A dashed vertical line is
then drawn at the position corresponding te tverall weighted average outcome treatment
difference, with weights proportional to the fotaumber of patients with each cluster-bin.
Finally, a dotted vertical lines drawn at the position o@sponding to the supposedly
“optimally” weighted average ocbme treatment difference, witlreights inversely proportional

to estimated within-cluster-bin variance ...distated by the Gauss-Markov theorem for the
known variance case.

10. Unsupervised Step Four: UsEPSivadj() to Compute Instrumental Variable /
Local Outcome Averages (IV/LOA) for a specified Number of Cluster-Bins

In this step, we generate “IV plots” of withaluster Local-Outcome-Averages (regardless of
treatment) versus within-cluster treatment percentages (PS estimates.) A key assumption here is
that all X-variables used to define clusters are instrumental variabldge sense that they
influence expected outcome onlydhgh treatment choice. I.E. noakthe X-variables used to

define clusters should have direct influencetloa outcome to be analyzed. The appropriate R
function calls are then of the form:
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UPSivadj(numclust)

Any two IV cluster-bins can beonnected by a straight lingtivout any apparent lack-of-fiand
there is no way to define such a lwéh a single alster. Thusumclust must be at least 3 in
eachUPSivadj() invocation.

Possible invocations of tHgPSivadj()  family of functions for the abciximab case study are
of the form:

lindcost <- UPSivadj(90)

lindcost # or print(lindcost)

summary(lindcost)

plot(lindcost)

WARNING: Several of the X-variablassed to define clusters the abciximatstudy are likely
to have_direct effectsn survival and/or cost as well Ggdemonstrated) infience upon treatment
choice. In other words, these X-variablestaghly unlikely to be pure “instruments.”

The graphical output thatan be requested fromWPSivadj()  output object is called an “IV
plot” ...as in Figure 1 of Mc@llan, McNeil and Newhouse (1994.)his graphic displays a
circular plotting symbol representing each clust@ using horizontal and vertical coordinates
that convey how within-cluster-bin autme averages vary across clusteiSpecifically, the
horizontal coordinate for each cluster displélys within-cluster-bin PS estimate (fraction of
treated patients relaBvto total patients), & vertical coordinateonveys the corresponding
average outcome (regardless of treatment) withat same cluster-bin, and the area of the
circular plotting symbol depicts the relative siaethe total number of patients (treated plus
untreated) within that cluster-bin.

The first plot on page 18 shlays calculations frordPSivadj()  for 30 diana cluster-bins on
the cardbill outcome in the abciximab case studiote that “pure”cluster-bins (with
extreme within-bin PS estimates of either 0%100%) are not only informative in this type of
analysis ...they are potenitidigh-leverage” points!

In sharp contrast with “NN/LTD plot” analyses relatively much larger number of cluster-bins
may be highly desirable in the “IV plotting” apaah. For example, the first IV plot below with
“only” 30 cluster-bins suggestsahtreatment with abciximab mighé expected to result in a net
cost savings! On the other hand, the second ¢V g page 18, with 90 cluster-bins, suggest an
average overall treatment effect much more ékémates from NN/LTD plots with a relatively
wide range of numbers of clustieins (either small or large.)

Again, the fundamental problem with the abeiab examples of IV/LOA analyses may well be

that some of the X covariates used here are not “instrumental variables.” Encouragingly, the
UPSgraph() “systematic sensitivity summary” plot will dramaticallgepict the instability in
numerical signs of potential answeesulting from alternative 1V analyses for this example!
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Is the cardbill cost difference (abcixminus usual care) negative?

UPS IV Plot: Cluster BINS =30
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Or is this cost difference (abtx minus usual care) positive?

UPS IV Plot: Cluster BINS = 90
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11. Unsupervised Step Five: UsePSgraph() to Graphically Display a Systematic
Sensitivity Summary of NN and/or IV Analyses to choice of Number of Cluster-Bins

While the user of the UPS functions certainlyg liae option to make a NN/LTD or IV/LOA plot
immediately after each call tdPSnnltd() or UPSivadj() for a specified number of cluster-

bins, the fundamental strategy adated here is to generate rikswver a sufficiently wide range

for number-of-clusters to genéeaa meaningful “systematic sensitivity summary” plot resulting
from an invocation olJPSgraph() . For example, it is alwaya good idea to invoke both
UPSnnitd(1) and UPSivadj(Cmax) , where Cmax = maximum possible number of
clusters = total number of subjects in the inpu data.frame. After all, these seemingly
“extreme” cases are actually guaranteed to give the same (“unadjusted”) estimates of the overall
average outcome differea ...and of its precision!

Here is what thaJPSgraph() summary for thecardbill outcome in the abciximab case
study looks like before (very low precisiobPSivadj()  results have been accumulated for
fewer than 30 cluster-bins.
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Calculating UPSivadij() results for 20, 10, 5 and 3 cluster-bins forces WSgraph()
summary plot for theardbill outcome in the abciximab / lindner case study to “Zoom Out
so as to accommodate the much wider (vejticahge of treatment difference uncertainties
displayed in the updated UPSgraph() below.
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12. Unsupervised Step Six: UsbPSaltdd() to Compare the NN/LTD Distribution for a
given number of Clusters in X-space with tle Corresponding “Artificial” Distribution from
Random Clusters.

After displaying outcome LTD sensitivity over angge of alternative numbers-of-clusters using
UPSgraph() , the user will usuallywish to focus on visualimg details of the NN/LTD
distribution for some sgific number-of-clusters The UPSaltdd() function displays Cumulative
Distribution Functions (CDFsgnd Histogram pairs that ageite helpful in doing this.

UPSnnltd() makes only the “more” or “most” redmt patient comparisons in the specified X-
space for a given requested number-of-clusters. ltiRHpallows users to compare and contrast
this NN/LTD distribution with the correspomdj “Artificial” LTD di stribution from_random
clusterings (ignoring the specifie variables.) This allowshe user to literally seleow much
treatment-selection-bias (imbata) has been “detected” usitite specified X-space clustering
metric, clustering algorithm and number-of-clusters. If the NN/LTD and Artificial LTD
distributions are not clearly “lerent,” then no meaningfufadjustment” for X-variables has
occurred.

For example, consider the following R code fragtrfer the abciximab / lindner example. Here,
we specify faclev=1 because the expedifyears preserve(continuous) variableljfepres,
assumes only two distinct valu@if died within 6 mortts, or 11.6 years otherwise):
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abcdf <- UPSaltdd(lindner, abcix, lifepres, faclev=1, NNobj=lif050nn)

The R commandorint(abcdf) then produces the following output:

UPSaltdd Object: Atrtificial Distribution of LTDs for random clusters...
Data Frame: lindner

Outcome Variable: lifepres

Treatment Factor: abcix

Scedasticity assumption: homo

Number of Replications: 10

Number of Clusters per Replication: 50

Total Number of Informative Clusters = 494

Mean Artificial Treatment Difference = 0.4275955
Number of Smoothed Sample Quantiles = 309
Mean of Smoothed Sample Quantiles =0.4251765
Std. Deviation of Sample Quantiles = 1.254298

UPSnnltd Object: 1if050nn
Number of Informative Clusters = 9

Mean of Observed LTD Distribution = 0.3592107
Number of Smoothed Sample Quantiles = 37

Mean of Smoothed Sample Quantiles =0.2331547
Std. Deviation of Sample Quantiles = 0.9594896

Unfortunately, the above printout is rather midieg. As we will see, #htwo distributions to
be compared are skeweohd have_different rangesThus the order ofheir mean values is
relatively meaningless because means are pw@sures of location in this situationWe do
learn that the NN/LTD disibution has a slightly lower medgand slightly higher precision) than
the Artificial LTD distribution. Much more infonative and meaningful insights are provided by
the R plot(abcdf,breaks=20) command that produces thg@kbts on the next page.

These plots allow the user to literally “see” tha NN/LTD and Atrtificial LTD distributions are
quite differentand also skewed in opposite directioriBhe Artificial LTD CDF and Histogram
(in the top 2 plots) show that this distribution hsde < Median = 0< Mean = 0.43 years and
contains a large, outlying value of +11.6 yga@rsandom cluster where all abciximab augmented
patients survived for at least 6 months aflduaaugmented patientsetl.) Meanwhile, the
NN/LTD CDF and Histogram (on the bottom of thguie) show that this distribution has Mean
= 0.36 years Median = 0.59 years < Modewith an upper limit of ~2.§ears. In other words,
relative to the (biased) Artificial LTD distrution, the LTD distribtion resulting from NN
“adjustment” using 50 clusters of relatively well-matched patients in the X-space defined by
seven patient characteristicstgnt, height, female, diabetic, acutemi,

ejecfrac & veslproc ) strikes me as beingearly more favorable to demonstrating the
“effectiveness” of augmenting “uabPCI care” with abciximab.

Again, means are not “robust” measures of locatiba;means of these two distributions are in
the “wrong order” simply due to a single outlierthe simulated Artificial LTD distribution!
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Part Il: Supervised PS Analyses

13. Supervised Step One: EstimatBropensity Scores and Form Bins
The propensity scoring “definition” functio®PSlogit() , provides...

(1) estimates a logistic regression model foedicting observed treatment choice (zero or
one) from specified covaries observed on all patients,

(2) estimates the probability (propensity score) #aath patient would have been selected to
receive treatment number one (&t than treatment number zero),

(3) rank orders all patients (allowing for ties) aating to these estimated probabilities, and

(4) groups patients into “bins” defiddby equal ranges of PS ranks.

NOTE: Defining bins using tied rank ranges assuihat no two patients with identical estimated
propensity scores will end up in difent bins. The bin number for tHegdatient will be 1 +
floor(bins*rank][i]/(1+totd number of patients)).

The R calling syntax for this “define” function is
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SPSlogit( dframe, form, psfit, psrnk, gbin, bins=5, appn="")

SPSilogit’s first five arguments are required while lgst two are optionalThe R invocation of
SPSlogit() illustrated in the numerical example is

SPSobj <- SPSlogit(PCI, PSform, PSFIT, PSRNK, QUINT)

The arguments o65PSloqgit() are as follows:

SPSlogit's first argument, dframe=PClI,shbe an existing data.frame name.

SPSlogit's second argument, form=PSform, mibstan S “formula” for predicting the
treatment facto(ABCIX) using available data.frame covariates.

PSform <- ABCIX ~ STENT + HEIGHT + FEMALE + DIABETIC +
ACUTEMI + EJECFRAC + VES1PROC

SPSlogit's third, fourth and fifth argumengssfit = PSFIT, pstk = PSRNK and gbin =

QUINT, supply_namesor the fitted propensity scor¢sstimated treatment probabilities), the
propensity score rankand the_propensity see bin number factothat are created by
SPSlogit.

Note 1: Although missing valuesNA's) are allowed, it is best to make predictions for
as many patients asamtically possible. Ading a covariate wittNAs for patients who
do not haveNAs in any other current covariate iarthe response (treatment) variable,
will cause additionaNAs in thepsfit, psrnk and gbin variables created by
SPSlogit().

Note 2: SPSlogit() does_notuse regression subset selection methods because this
tactic can create “ties” between propensitpre predictions. Ties can cause the total
number of patients per bin to vary from bnbin. Also, see comments in the section
“R and S-Plus functions that are (uld be) called in PS analyses.”

The optional arguments ®8PSlogit() are

bins = the number of bins to be formed, and
appn = name of output data.frame withpended columns, as a quoted string.

The default value fobins is 5. Thus, users need to sfpe@ value for “bin” only when
they wishSPSlogit()  to form more than 5 or fewer than 5 bins.

The default value foappn is “” , which means that the usesishes to revise the input
data.frame by appending the calculapsdit, psrnk andqgbin variables to it. Thus,
the user needs to specify a nrempty quoted string (such appn="SPSdf2” ) if he/she
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does not wish to modify / overwrite the inpdéta.frame named in the first argument to
SPSlogit() . For example, the treatment indicatori@ble will have been declared to be a
“factor” in the revised data.frame.

The output list returned bpPSlogit() needs be saved to avoid printing of summary()
information about the “glm” object created ByPSlogit() . This summary information as
well as details on th8PSlogit() invocation can then be printed later from the saved object
using print(SPSobj)

NOTE: TheSPSnbins() function creates a new (or modifies an existing) propensity score bin
number factowariable to change the number of PS pigpical R invocations are of the general
form...

PSframe <- SPSnbins( PSframe, psrnk, octile, bins=8)

or
PSframe <- SPSnbins( PSframe, psrnk, decile, bins=10)

All four arguments t&SPSnbins() are usually specified; the first three are required, and the
default value for the fourth isins=8 . SPSnbins() does not re-calculateS fitted values or
re-rank patients. Specifidp] the first argument taSPSnbins() is almost always the
data.frame output Wae of a previousSPSlogit() invocation, and the second argument to
SPSnbins() is then thepsrnk (fourth) argument from that sansSlogit() invocation.
Finally, the third (rquired) argument c8PSsbins() is a variable name for a (new or already
existing)_propensity score bin number factariable.

14. Supervised Step Two: Test for Within-Bin “Balance” on Covariates

The “fundamental theorem” of PS states thafnifappropriate propets scoring algorithm has

been found, then there will be no differencette distributions of covariate measurements
between treatment groupsth the same given propensity scordn other words, although this
distribution may be different adifferent numerical values fopropensity score, treated and
untreated patients have been relatively “well et when their propeny scores are nearly
equal. Specifically, tread and untreated patients can be expected to display essentially identical
covariate distributionsvithin each bin.

The SPSbalan() function is designed to detect “violations” of this fundamental PS balancing
theorem, thereby implying that the current PS model is inadetpuatglain treatment selection.
Every covariate used in tlsecond, "formula” argument 8P Slogit() of SPS Step ONE is a
candidate for the sort of testipgrformed here in SPS Step TWO.

The R calling syntax for the funoti to detect treatment differendaghe within-bin distribution
of a single X covariate is...

SPStest <- SPSbalan(dframe, xvar, trtm, gbin, faclev=3)
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The first four arguments ddPSbalan() are required, and the final two are optional. For
example, three consecutive R invocations could be

SPSoutl <- SPSbalan(PSframe, AGE, ABCIX, QUINT)
SPSout2 <- SPSbalan(PSframe, EJECTFMI, ABCIX, QUINT)
SPSout3 <- SPSbhalan(PSframe, VES1PROC, ABCIX, QUINT)

The arguments oSPSbalan() are as follows:

SPSbalan's first argumernframe=PSframe , is almost always a returned data.frame
from SPSlogit().

SPSbalan’s second and third argumexisy andtrtm , are usually terms from the S
"formula” used in SPSlogit. In fadiitm must be the “response” (first) term of that
formula, whilexvar is almost always one of the “covariate” terms.

SPSbalan's fourth argumenbin=QUINT , is almost always thbin indicator variable
nameas in the previouSPSlogit()  or PSbinnum() invocation.

The optional argument t8PSbalan() is

faclev =the maximum number a@listinct numerical values that a variable can
assume and yet still beetited as an S “factor.”

The default value for this optional parameter is faclev=3.

If the xvar named in this invocation takes on no more tfzahev  distinct numerical
values, no graphics will be disgyed. On the other hand, whevar takes on more than
faclev  distinct numerical valuesyvar is considered “continuous,” and a “SPSbalan”
will be created.

SPSbalan() returns a list of objects containing analysis details. However, in addition to the
optional box plot “side effects” discussed aboRedifcov() also prints out summariesf
overall and within-bin analyses ifm effects orxvar .

When thexvar data contaifaclev  or fewer levels, a summaof contingency table
ChiSquare tests fartm effects is printed.

When the xvar data contain more thafaclev levels, xvar is considered
“continuous,” and one-way and two-way ANOVA summaries are pririteéd 0in%
bin identifies treatment within bin effects.)

If the above test results and/or box-plots cadie that the fundamental theorem of propensity
scoring is not even approximately satisfiederntha revised model fouma should be tried in
SPSlogit() . Typically, one would try adding poweos interaction terms between currently
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used covariates, adding more co&tes, or even defining propetysscores using a generalized
additivemodel rather than a generalized lineardel.

Here are some examplesSPSbalan() output for the abciximab case study:

> SPShalan(PSframe, age, abcix, QUINT)
Test for Raw / Unadjusted Differences by Treatment

AGE ~ ABCIX
Df Sumof Sg Mean Sq FValue Pr(F)
ABCIX 1 0.0 0.0443 0.0003315842 0.9854754 <= NOT significant!
Residuals 1009 134822.4 133.6198

Test for Treatment Differences within Paired PS Bins

AGE ~ QUINT + ABCIX %in% QUINT
Df Sum of S Mean Sq F Value Pr(F)
QUINT 4 686.7 171.6847 1.295466 0.2699387
ABCIX %in% QUINT 5 1475.8 295.1598 2.227162 0.0496073 <= significant?
Residuals 1001 132659.9 132.5274

In other words, binning can appearcteate a covariate difference!!!

> SPSbhalan(PSframe, veslproc, abcix, QUINT)
Test for Raw / Unadjusted Differences by Treatment

VES1PROC ~ ABCIX
Df Sum of Sqg Mean Sq F Value Pr(F)
ABCIX 1 14.3135 14.31349 34.06864 7.164788e-009 <= Significant!!!
Residuals 1009 423.9180 0.42014

Test for Treatment Differences within Paired PS Bins

VES1PROC ~ QUINT + ABCIX %in% QUINT
Df Sum of Sqg Mean Sq F Value Pr(F)
QUINT 4 164.5746 41.14364 151.0037 0.0000000
ABCIX %in% QUINT 5 0.9167 0.18333 0.6729 0.6441004 <= NO PROBLEM!!!
Residuals 1001 272.7402 0.27247

Much more commonly, appropriate estimatespobpensity scores eliminate all within-bin
covariate differences!

To “visualize” within-cell balance, plot trfePSbalan() output for a continuous variable:
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15. Supervised Step Three: Display Within-B Treatment Differences by Outcome using
SPSoutco()

The calculations performed in Step TRHEES®Soutco() assume that the PS model of Step
ONE was found to (approximately) satisfy the fundatakebalancing theorem in Step TWO. In
other words, treated and untreated patientge haow been relatively “well matched” on
covariates_within _bins As a result, within-bin mean outcome differences (treated minus
untreated) can be expected to be relatively free of bias, at least edmptr the corresponding
overall mean outcome differenbetween treatment groups.

An overall summary statistic estimating any tttreated minus untreated) outcome difference is
usually desired. As a result, within-b&stimates need to be averaged across usimg some
weighting schemeSPSoutco() displays two such weighted averages:

¢ weighted proportional to the total number of patients in each bin, and
e weighted inversely proportiohto the estimated variance of the within-bin difference.

The overall difference from the latter optiavill always appear to be more preciseit this
weighting typically downweights results fromethouter (first and last) bins. The overall
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difference using weights proportional to totalnmhers of patients (usliy nearly equal across
bins) may be much less biasespecially when the data comtautliers. After all, outliers can
greatly inflate_within-bin variancelsecause within-bin sample sizes are reduced by a factor of
five or more.

The R calling syntax for the function to compute “adjusted” outcome differences is...

SPSoutco(dframe, yvar, trtm, gbin, faclev=3)

The first four arguments of SPSoutco are requiaed the other two are optional. For example,
two consecutive R invocations could be

PSdieébmo <- SPSoutco(PSframe, lifepres, abcix, QUINT)
PScrdbil <- SPSoutco(PSframe, cardbill, abcix, QUINT)

The arguments t8PSoutco() are as follows:

SPSoutco 's first argument, dframe=PSframe,abnost always a returned data.frame
from SPSlogit

SPSoutco ’'s second argument, yvar, a& outcome measure fpatients. Outcomes are
results that were unknown at the time emhpatients were assigned (possibly non-
randomly) to treatments. “NA”s are allowed in this yvar.

SPSoutco ’s third argument, trtm, is almost alygathe “response” (fat) term from the
S “formula” used irSPSlogit().

SPSoutco 's fourth argument, gbir QUINT, is almost alwayshe same bin indicator
variable_names in the previouSPSlogit() @ or SPSnbins() invocation.

The optional argument f@PSoutco() is

faclev = =the maximum number of distinct numerical values that a variable can
assume and yet still beetited like an S “factor.”

The default value for this optional parameteiadev=3.

SPSoutco() returns a list of objects containing analysis details. However, in addition to the
optional histogram plot “sil effects” discussed abov@PSoutco() also prints out summaries
of overall and withirbin analyses dfitm effects oryvar .

When theyvar data contairfaclev  or fewer levels, a summaof contingency table
ChiSquare tests fdrtm effects is printed. On the other hand, if yvar actually is
an R _factor(character) variable, theé8PSoutco() histograms will display mean values
computed as if the numericahlues for factor levels ark ..., faclev . As a result,
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anyyvar taking on only the numerical valuesfid 1 (meaning that outcome was oot
was observed, respectively3hould usually not be declared an_R faactariable (with
values “0"=1 and “1"=2.)

When theyvar data contain more thafaclev levels, yvar is considered
“continuous” and one-way and two-w&ANOVA summaries are printedirifn %in%
bin identifies “treatment within bin” effects.)

Note thatSPSoutco() describes treatment differencesthe distributions of outcomes using
the same methodologies (Slgjuare or ANOVA) used b$PSbalan() on covariates. The key
distinction here ighat any_outcomelifferences remaining aftgropensity scoring are called
“adjusted” differences and do NOT signal problenithassumptions in the current PS analysis.
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16. Supervised Step Four: Explore OutcomBifferences Expressed as Smooth Loess or
Spline Functions of Propensity Score

The calculations currently dermed in Step FOUR b$PSloess() andSPSsmoot() can

only be applied to outcome measures that anéiraeous. And the logistic regression model fit

in Step ONE usingPSlogit() needs to have been found satisfactory in Step TWO. After all,
when one starts treating assigned propensityescas continuous variaklé¢rather than forming
discrete bins of similar scores), it becomes much more difficult to test / verify the implications of
the PS matching theorem (i.e. that the distrdyutof covariates is independent of treatment
selection.)

MOTIVATION: Suppose one has fitted a somewhat smooth (loess or spline) curve through the
observed outcome (Y) verstitted propensity score (X$catter for each of the two treatment
groups. Now, consider the question:

“Over the range where both smooth curves a defined (i.e. their common support),
what is the (weighted) average signedifference between these two curves?”

If the distribution of patientgeither treated or urgated) were UNIFORMver this range, the
(unweighted) average signed difference (treated minus untreated) would be an appropriate
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estimate of the overall difference intoame due to choice of treatment.

Histogram patient counts within 100 cells of width 0.01 provide a naive “non-parametric density
estimate” for the distribution of tal patients (treated or untted) along the propensity score
axis. The weighted average diffecen(and standard error) displayed $pSloess() and
SPSsmoot() are based on andrensity() smooth of these counts.

In situations where the propensity scoring distidou for all patients in a therapeutic class is
known to differ from that of the patients withthe current study, thgiopulation weighted
averagewould also be of interest. Thus t&#Sloess() returned value contains two data
frames,logrid  andlofit , useful in further computationghe corresponding data frames
returned bySPSsmoot() are namedsgrid andssfit

NOTE: The difference in average smooth (loesspine) predictions (treated minus untreated)
is not an appropriately weighted average, & #foove sense. While this sort of computation
would use propensity scores to make a cost piedifor each patient, no “matching” of treated

and untreated patients (witlearly equal propensity scojas used in this sort of calculation.

SYNTAX: The R calling syntax for the functions to compute outcome differences (treatment=1
minus treatment=0) under the assumption thatebga outcome is a smooth (lowess or spline)
function of propensity score witheach treatment cohort are...

SPSloess(dframe, yvar, ps, trtm, faclev=3, display = T, deg=2,
sp=0.75, fam="symmetric", tcol="black", ucol="red")

and

SPSsmoot(dframe, yvar, ps, trtm, faclev=3, df=5, spar=NULL,
cv=F, penalty=1, display = T, tcol="black", ucol="red")

The first four arguments of SPSloess and SPSsareotequired, and thetar five or six are
optional. For example, two caesutive R invocations could be

PSchillo <- SPSloess(PSframe, cardbill, PSFIT, ABCIX)
PSframe$TRIMBILL <- pmin( PSframe$cardbill, 50000)
PStbillo <- SPSloess(PSframe, TRIMBILL, PSFIT, ABCIX)

The fam="symmetric” default option of SPSloess tends lie fairly robust to outlying
outcomes, at least when the loess span (ttesmu= 1/10) is wideenough. Thus reducing
(Winsorizing) outlying cardbill vales to $50K (as illustrated abgw&hould have little effect on
a fitted loess smooth with an appropriate spdrooking for the effest of Winsorizing on
SPSloess() orSPSsmoot() results is a form of “sensitivity analysis.”
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The arguments t8PSloess() are as follows:

SPSloess ' first argumentdframe=PSframe , is almost always a returned data.frame
from SPSlogit().

SPSloess ' second argumentyvar , must be a_continuous®utcome measure.
Outcomes are results that were unknowntlreg time when patients were assigned
(possibly non-randomly) to treatmentdNA's are allowed in this yvar.

SPSloess ’ third argument,ps=PSFIT , is almost always a set of fitted propensity
scores from a previouSPSlogit() invocation.

SPSloess ’ fourth argumentfrtm , is almost always the “response” (first) term from
the R “formula” used irBPSlogit() , which is a “factor” variable taking on only two
different levels.

The seven optional arguments3®Sloess() are

faclev = =the maximum number of distinct numerical values that a variable can
assume and yet still be automallicaonverted into an R "factor”,

display = display graphical output (T or F.)
deg = degree (1=linear or 2=qdiatic) of the local fit.

sp = span (zero to two) of the local regression fit, and

fam = “gaussian” or "symmetric."
tcol =  color loess curve for tread group (default “black”.)
ucol =  color loess curve for untaged group (default “red”.)

The arguments t8PSsmoot() are as follows:

SPSsmoot’s first argumentdframe= PSframe, is almost always a returned data.frame
from SPSlogit

SPSsmoot’s second argumentyvar , must be a_continuousutcome measure.
Outcomes are results that were unknowntleg time when patients were assigned
(possibly non-randomly) to treatment$®NA”s are allowal in this yvar.

SPSsmoot’s third argumentps = PSFIT, is almost always a set of fitted propensity
scores from a previousPSlogit()  invocation.
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SPSsmoot’s fourth argumentirtm , is almost always the “response” (first) term from
the R “formula” used irBPSlogit() , which is a “factor” variable taking on only two
different levels.

The eight optional arguments 8PSsmoot() are

faclev = the maximum number of distinct nuneai values that a variable can assume
and yet still be treateas an S "factor",

cv ordinary cross-validation (T) or geralized cross-valation, GCV (F).

df = degrees-of-freedom of B-spline fit (5 bins .
spar = spar of thesmooth.spline() function, and
penalty = coefficient of penalty fodf in the GCV criterion.
display = display graphical output (T or F.)
tcol =  color of spline for treatkgroup (default “black”.)
ucol =  color of spline for untreatd group (default “red”.)

This scatterplot displays patient propenstgore along the horiztal axis and his/her
corresponding observed (continuous) outcome albag/ertical axis. Patients receiving
the “standard” treatmenttrim=0 ) are represented by cyan circles, while patients
receiving the “new” treatmentrfm=1 ) are represented by magenta triangles. The
smooth fits of outcome to propensity scorihi treatment cohorts are show as cyan
(trtm=0 ) and magentartm=1 ) curves, respectively, superimposed upon the scatter.

The smooth fits can be difficult to see whire scatters contain many points. Thus
SPSloess and SPSsmoot each draw a secondeptiled to show only the two smooth
(lowess or spline) fits, again using cyariii=0 ) and magentaiitm=1 ) curves. (For
details, see the returnéafit  andssfit data frames.)

Finally, SPSloess and SPSsmoot each draw @ pihat to show total patient frequencies
(black circles) within a 100-dehistogram along the propensity score axis as well as the
correspondinglensity() smooth in red. (For d&ls, see the returnddgrid and
ssgrid data frames.)

In addition to the graphs describelose, the primary “side effects” oSPSloess() and
SPSsmoot() consist of printouts of outcome diffeies (unadjusted and adjusted) and their
standard deviations.
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The SPSloess() or SPSsmoot( ) returned valuas a list of two data frames, grid
frame and dit frame, plus other objectgving analysis details.

logrid andssgrid each contain 11 variables and 100 observations. PBhariable
(column one) contains propensity score “cedlans” of 0.005 to 0.995 steps of 0.010.
VariablesF0, SO andCO for treatment O and variabléd, S1 andC1 for treatment 1
contain fitted smooth (lowess or spline)lues, standard error estimates and patient
counts, respectivelyObservations withNA’ for variablesFO, SO, F1 or S1 represent
“extremes” where the lowess fits could not be extrapolated because no observed
outcomes were available. TIEF variable is simply(F1 —F0), the SEDvariable is
sqrt(S172+S072) , the HST variable is proportional t¢C0+C1) , and theDEN
variable is the estimated probability density of patients along the PS axis.

lofit contains 4 variables for adlbservations in data framedframe that have no
“NA’ values in theyvar, ps or trtm  variables. These 4 variables are naiR&l
YVAR TRT (with levels 0 and 1 recoded to 1 and 2, respectively) Fifid = loess
prediction for the specified “span” (defasft=1/10 .)

ssfit  contains 4 variables for each distinct PS vatugata frame =lframe . These 4
variables are name®S, YAVG TRT (with levels 0 andl recoded to 1 and 2,
respectively) andFIT = spline prediction for the specified degrees-of-freedom (default
df=10 .)

Example SPSloess fit for cardbi versus Propensity Score

PS Loess Fit, Span = 0.5

Smoothed cardbill
12000 14000 16000
! ! |

10000
|

8000

T T T
0.4 0.6 0.8

Estimated Propensity Score

Solid loess fit gives smoothed cdbill estimates for ABCIX patients.
Dashed loess fit gives smoothed cardbill estimates for Usual-Care-Only patients.

USPSinR vignette Page 34



Example SPSsmoot fit for cardbill versus Propensity Score

Solid spline gives smoothed cardBiestimates for ABCIX patients.

Smoothed cardbill

15000 20000 25000

10000

P8 Smoothing Splines, df =7

\ T T
0.4 06 08

Estimated Propensity Score

Dashed spline gives smoothed cardbill estimates for Usual-Care-Only patients.

Example Patient Distribution (abcix + usualcare) along fitted Propensity Score Axis

PS Probability Density

o

0.2 04 0.6 0.8

Estimated Propensity Score

Black circles give normalized histogramestimates for 100 cells (0.005 to 0.995).
Red curve gives Gaussian kernel density estator for the PS distribution of patients.
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Note that the above distribution pétients at the Lindn&Zenter is somewhahifted to the right
because almost 70% of all Lindner PCI patients did receive abciximab in 1997.

17. R and S-Plus functions that are (ocould be) called in PS/NN/IV analyses.

SPSlogit() currently models propeitg scores via a call tgim() with family =
binomial() (and thus defaullink=logit ), but a variety of altmatives could be quite
useful in applications.For example, fits frongam() or a classificatioriree() model would
relax the “linear functional” requirement gim() or automatically incorporate interactions
among covariates, respectivelyThelrm() function from the Harrell(1997) “design” library
could be used to penalize Istic regression parameters, kutis debatable whether inter-
correlations (or evenam-linear relationships) among covaeatcan be harmful in propensity
score estimation. After all, our primary interest here is restricted to simply making predictions
all we need are fitted valu@gthin the closed interval 8 PS< 1 that estimate the probability of
treatment choice give all available covariatégy potential problems with significance testing
or (causal) interpretations for parameters atmost irrelevant. In fact, D’Agostino(1998)
essentially recommends drastiger-fitting by includingall potentially relevant covariates in
one’s PS model.

SPSloess() and SPSsmoot() use the Rioess() andsmooth.spline() functions,
respectively. Cleveland’s originldwess()  function could be usekere because only one X
variable (namely, fitted propensity score) is involved, but | chdosss() to give users
flexibility to choose betweefam=“gaussian” and fam="symmetric” , which provides
some resistance to outlying outcome values.

The df parameter of SPSsmoot() brings considerable intuittvappeal to one’s choice of
smoothness; see Hastie and Tibsmhi(1990). For example, ti8PSoutco() approach with
bins =5 clearly corresponds tdf=5 , but “binning” outcome analyses correspond to fits that
are discontinuous at cut pointSPSsmoot() fits cubic smoothing splas that are not only
continuous but also have continsdirst and second derivatives.

SPSloess() and SPSsmoot() both call the Rdensity() function to generate a non-
parametric probability density estimate for the distribution of patients along the fitted PS axis.
This density is evaluated at 100 points evenly spaced between PS=0.005 and PS=0.995, and
signed differences between the (lowess or cupline) smooths at these same points are
weighted proportional to this datys Bandwidth for tis Gaussian kernel density estimator is
chosen using the R defaliv="nrd0” option. Alternatively, s& Venables and Ripley(1999),

page 137.

Like “Lattice” graphics in R, S-Plus “Trelli&raphics” can be extremely useful in visualizing
within-bin balance achieved via propensity sogr For example, the plots below illustrate
balance issues related to th@&tproc” X-variable within thabciximab case study. Even major
overall distributional differences will, ideg/lalmost “disappear” as a result of PS binning.
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Overall “veslproc” Distributions Within-Bin “veslproc” Distributions

18. Summary
As is clear from the above descriptions and examplesSE&iogit(), SPSbalan() and

SPSoutco() R functions provide only relatively simpéand straight-forward analyses. | started
out performing such computatiopsimarily in JMP and Stata. | then used text files to port
tables of means and sample sizes to Excétda histograms. Although possibly pedagogical, |
quickly realized that my original “mostly-poHaind-click” analysis praess was actually highly
repetitive, tedious, error-prone and produced tisfaatory audit-trail for reproducing analyses.

Like many other interesting forms of datmalysis, | think thatpropensity scoring and
instrumental variables adjustment methods needbe viewed as highly iterative, discovery
processes. Successfully making ones way thr@Rf& step TWO can require several returns to
SPS step ONE. Only then can results fr&RS steps THREE and FOUR be considered
meaningful. And convincing UPS analyses reguxploring alternative clustering algorithms
and patient dissimilarity metrics in step ONEvasll as a varying numberof cluster-bins in
steps TWO and/or THREE. @ers and missing valuesNfs) can provide frustrations
throughout these journeys. The R functialescribed here hopefully provide enough basic
support (if only relief from tedium) to encourag8 practitioners to persevere and end up feeling
confident that their “sensitivity analyses” have been thorough.

The SPSloess() andSPSsmoot() functions are still in their ely stages of development.
SPSloess() fits can tend to look rather “rough” comparedS8Ssmoot() fits. Cubic
spline smoothing appears to give answibeg are interpretable as smoothed mealues for
highly skewed distributions. Loess smoothing, at least viaer"symmetric ,” tends to
give answers more easily interpretable as modesedian®f highly skewed distributions. This
median versus mean analogy may help erplahy the weighted a&rage signed treatment
differences fromSPSloess() tend to seem more precise than those f&PSsmoot() for

highly skewed distributions.
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Software Updates:

2003.08 Fix error in standard deviation conrgtion for the “weighted by bin size”
treatment difference estimate$®Soutco() andUPSnnltd().

2004.01 Major upgrade to “object oriented” stylagd UPS “sensitivity analysis” overview
UPSgraph() ; fix SPSbalan() trellis-style (lattce library) graphic;
unfortunately, new argument sequencing lextkward compatible with earlier
versions.

2006.09 Upgrade functions (fix bugs and clgrilerminology / titles / labels) and add
UPSaltdd() functionality for computinghd visualizing the Artificial Distribution
of LTDs due to random patient clusterings.

2007.08 Upgrade plotting functions and make minor changes in terminology
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2011.12 Update References and contrastfile into a vignette.

Unsupervised R functions:

xvars <- c("x1", "x2", ..., "XN")
UPlinint <- function(g, xmin, n, x, w)

UPShclus <- function(dframe, xvars, method=diana)
plot.UPShclus <- function(x)
print. UPShclus <- function(x)

UPSaccum <- function(hiclus, dframe, trtm, yvar, faclev=3,
accobj="UPSframe")

UPSaltdd <- function(dframe, trtm, yvar, faclev=3,
scedas="homo", NNobj=NA, clus=50,
reps=10, seed=12345)
plot.UPSaltdd <- function(x, breaks="Sturges”)
print. UPSaltdd <- function(x)

UPSnnltd <- function(numclust)
plot.UPSnnltd <- function(x)
print. UPSnnltd <- function(x)
summary.UPSnnltd <- function(x)

UPSivad] <- function(numclust)
plot.UPSivadj <- function(x)
print. UPSivadj <- function(x)
summary.UPSivadj <- function(x)

UPSgraph <- function(nncol="red", nwcol="green3", ivcol="blue")

Supervised R functions:

form <- trtm~x1+x2+...+xN

SPSlogit <- function(dframe, form, pfit, prnk, gbin, bins=5,
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appn="")
print. SPSlogit <- function(x)

SPSbalan <- function(dframe, trtm, gbin, xvar, faclev=3)
plot.SPSbalan <- function(x)
print. SPSbalan <- function(x)

SPSoutco <- function(dframe, trtm, gbin, yvar, faclev=3)
plot.SPSoutco <- function(x)
print. SPSoutco <- function(x)
summary.SPSoutco <- function(x)

SPSsmoot <- function(dframe, trtm, pscr, yvar, faclev=3, df=5,
spar=NULL, cv=F, penalty=1)
plot.SPSsmoot <- function(x, tcol="blue", ucol="red",
dcol="green3")
print. SPSsmoot <- function(x)

SPSloess <- function(dframe, trtm, pscr, yvar, faclev=3, deg=2,
span=0.75, fam=symmetric)
plot.SPSloess <- function(x, tcol="blue", ucol="red",
dcol="green3")
print. SPSloess <- function(x)
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