
USPSinR vignette Page ͳ

Unsupervised and Supervised
Propensity Scoring in “R”:

Nearest Neighbor, Instrumental Variable, Parametric
Prediction and Smoothing Methods of Adjustment for

Treatment Selection Bias in Non-Standard Studies.

USPSinR, Version 1.2-1, December 2011

Bob Obenchain
Principal Consultant, Risk Benefit Statistics LLC

13212 Griffin Run, Carmel, IN 46033-9935
317-580-0144, wizbob@att.net

This user’s guide defines syntax and illustrates use of updated “R” functions that perform a
variety of alternative approaches to Propensity Scoring (PS) analyses. These functions
implement a variety of relatively new methods for statistical inference that use either Local
Control patient clustering or else traditional parametric prediction of Propensity (logistic
regression) to analyze data from non-standard studies …such as observational studies,
retrospective database analyses and poorly randomized (chaotic) studies. USPS methods cannot
rely on the “balance” that is “expected” when using traditional randomized assignment of
patients to treatments. After all, this “balance” frequently fails to result even approximately in
(finite) purely random samples!!! Instead, the USPS methods implement various forms of a-
posteriori “blocking”, “matching” or “stratification” of patients who received only one of the two
treatments that are to be compared.

Table of Contents Page

Introduction

2

Distinctions between Alternative PS Approaches

5

The Fundamental (Balancing) Theorem of Propensity Scoring

5

Numerical Illustrations: Effects of Abciximab use on Survival and Total Cardiac Billing

7

USPSinR vignette Page ʹ

Preliminary Setup of R Functions 8

Part I: Unsupervised Propensity Scoring Methods

11

Step One: Specify X Covariates and Compute Hierarchical Clustering Tree using
USPhclus()

11

Step Two: Specify Treatment and Outcome Variables with UPSaccum() to start
Accumulating NN and/or IV information

14

Step Three: Compute NN Local Treatment Differences (LTD) for a specified Number
of Cluster-Bins with UPSnnltd()

14

Step Four: Compute IV Local Treatment Averages (LTA) for a specified Number of
Cluster-Bins with UPSivadj()

16

Step Five: Graphically Summarize Sensitivity of NN and/or IV Analyses to Choice of
Number of Cluster-Bins with UPSgraph()

19

Step Six: Compare the UPS LTD Distribution for a given number of Clusters with
the Corresponding “Artificial” (potentially biased) Distribution from
Random Clusters with UPSaltdd()

20

Part II: Supervised Propensity Scoring Methods

22

Step One:

Estimate Parametric Propensity Scores and Form Bins using
SPSlogit() and SPSnbins()

22

Step Two: Check for Within-Bin Balance on Covariates using SPSbalan()

24

Step Three: Display Outcome Differences within Bins using SPSoutco()

27

Step Four: Display Outcome Differences expressed as smooth (lowess or cubic spline)
functions using SPSloess() and SPSsmoot()

30

Technical Matters

R and S-Plus functions that are (or could be) called in NN and IV analyses 36
Summary 37
References 38
Software Update History 39
Brief Synopsis of UPS and SPS Functions and Their Arguments 39

1. Introduction.

Here we describe “R” language functions implementing rather new methods for “propensity
score” (PS) and/or “instrumental variable” (IV) adjustment to estimates of treatment effects.
These approaches adjust for treatment selection bias, characterized by imbalance in patient
baseline characteristics between treatment groups (arms, cohorts) in either nonrandomized or
poorly randomized studies. Traditional “supervised” PS methods can be categorized as follows:

USPSinR vignette Page ͵

The traditional “big three” Propensity Scoring methods require an estimate of the PS =
(conditional probability of treatment) for each patient …usually from a fitted logit or probit
model.

[a] PS matching of patients in any fixed ratio (as in case/control studies),
[b] PS binning of patients (sub-classification / stratification) and
[c] regression modeling using Heckman effects or inverse Mills’ ratios (nonlinear

functions of PS).

See D’Agostino(1998) for a gentle introduction to these three relatively well-know
methods of supervised propensity scoring.

Two alternative (rather more technical) methods are:

[d] inverse probability weighting (IPW = 1 / PS) and
[e] econometric simultaneous equations / instrumental variable models.

For key references on these methods, see my “white paper,” Obenchain(2006a).

“Unsupervised” PS strategies start by clustering patients in baseline covariate X-space. The
two new approaches of this type that are implemented in “R” here are:

[f] Nearest Neighbor / Local Treatment Differences (NN/LTD) plotting.

NN/LTD focuses on characterizing the full distribution of truly “local”
treatment differences within clusters of relatively well-matched patients.

[g] Instrumental Variable / Local Outcome Averages (IV/LOA) plotting.

IV/LOA focuses on how within-cluster outcome averages (regardless of
treatment) vary when clusters are plotted versus a within-cluster PS
estimate, the observed treatment percentage. This approach requires all X
covariates used to define clusters to be “instrumental variables;” i.e. to
effect outcome only (indirectly) through choice of treatment. Use of X
covariates which quantify disease severity or patient frailty is then
questionable because such characteristics may also have direct effects on
outcomes, invalidating the IV/LOA plotting approach.

Our “Unsupervised” PS designation comes from familiar jargon in literature on artificial
intelligence and data mining; see Barlow(1989). Specifically, PS clustering methods proceed
without receiving any “hints” from a designated outcome measure or a treatment indicator
variable to help “guide” formation of patient subgroups. In addition to clustering,
multivariate probability density estimation is another example of an unsupervised statistical
method.

USPSinR vignette Page Ͷ

The PS clustering approaches implemented here are like some early suggestions of
Rubin(1980), which apparently have not been nearly as widely used as “supervised”
methods. After all, they tend to be much more computationally intensive.

Some supervised methods do have to resort to numerical search methods over a p-
dimensional space of parameters (e.g. estimation of a logit or probit regression model) rather
than use a closed form expression (such as that for ordinary least squares estimates in a linear
regression model.) On the other hand, unsupervised methods typically have to make the
n(n1)/2 pairwise comparisons of patients needed to hierarchically cluster all study
subjects. The resulting increases in computing time and memory allocation due to use of
unsupervised (Non-Polynomial Hard) methods can be enormous, especially when n is much
larger than p (n >> p.) Besides, clustering results can also be highly sensitive to user choices
of patient similarity metric and/or specific clustering algorithm.

In spite of their almost frustrating flexibility and sharply increased demand on computing
power, “clustering” approaches to adjustment for treatment selection bias end up offering
two main advantages over supervised PS methods…

[1] At least when the number of clusters is relatively large (and thus the number of
patients in most clusters is relatively small), there is no real need to test whether patients
are relatively “well matched” on their X characteristics within individual clusters.
Clustering of patients on their X characteristics has assured that almost any model for
predicting propensity scores that is relatively smooth over X space would confirm that
any within-cluster comparisons of treatment outcome differences are relatively “fair”
comparisons.

[2] Results from clustering lend themselves well to use of graphical visualization and
sensitivity analysis techniques. For example, once the full hierarchical clustering tree has
been constructed, displays using alternative numbers of total clusters can be generated
relatively quickly. Thus clustering approaches can provide not only fundamental, robust
(non-parametric) insights but also highly relevant information about sensitivity of results
to “tuning” parameters. Furthermore, the resulting graphical displays can dramatically
illustrate how traditional parametric modeling approaches, such as simultaneous
equations models, tend to emphasize some aspects of the data while de-emphasizing
other aspects.

Thanks to the considerable computing and graphical display power of modern workstations,
clustering methods for PS adjustment are now practically useful. My key strategy is to
emphasize their use in systematic sensitivity analyses: “What is the full range of quantitative
treatment effect estimates supported by the available data?” And, “Which patient subsets
tend to have extreme outcomes?”

Finally, “smoothing” of outcomes along a PS axis defined by a parametric prediction model
is a simple and intuitively appealing alternative (initially suggested to me by Professor Frank
Harrell of Vanderbuilt) to the earlier PS “binning” approach.

USPSinR vignette Page ͷ

The computing algorithms discussed here are written in a dialect of Version 3 of the “S”
language that is processed by the “R” interpreter, Version 1.7+, available for download from
http://www.r-project.org. R is a GNU (open source) implementation of the “S language and
environment for data analysis and graphics.” See Becker, Chambers and Wilks(1988) and
Chambers and Hastie(1992) for information about S; see Ihaka and Gentleman(1996) for the
original description of R as being “not unlike” S.

2. Fundamental Distinctions between Alternative PS Approaches.

Traditional “Supervised” forms of Propensity Scoring (PS) typically start with a parametric logit
(or probit) model to estimate the conditional probability of receiving treatment given certain
patient characteristics. [An average across some randomForest() of classification trees may well
be a superior way to “score” patients, but no R functions for this are currently provided here.]

The mandatory second step in all Supervised approaches is to verify that one’s estimated
propensity scores behave, at least approximately, like (unknown) true propensity scores.
Specifically, they must conditionally “balance” patients on all relevant X characteristic
distributions within all bins. Sections 3 and 11 (Supervised PS Step 2), below, discuss this topic
in detail.

The steps in actually using estimated propensity scores (PSs) involve: rank ordering patients on
their estimated scores, sub-classifying patients into “bins” (strata), computing within-bin
outcome differences between treatment subgroups, and averaging these differences across bins.

The “unsupervised” propensity scoring approaches introduced here stress graphical methods for
detection of Local Treatment Differences (LTDs) using Nearest Neighbor (NN) Clustering in the
X-space of observed patient baseline characteristics. Obenchain(2006a) argues that cluster
membership can provide better (less “coarse”) patient matchings than propensity scores. This
general approach is definitely not new. Obenchain(1979) used the underlying concept to develop
an AT&T measurement plan (PRRAP) that made “customer trouble report rate” comparisons
among only relatively well-matched Bell System plant maintenance districts.

3. The Fundamental “Balancing” Theorem of Propensity Scoring

Our basic notation for variables will be…

y = observed outcome variable(s)
x = observed baseline patient characteristic(s) / covariate(s) / instrumental variable(s)
t = observed treatment assignment (binary, 0 or 1; may be non-random)
z = unobserved explanatory variable(s)

Note that unobserved z variables may provide unknown, causal effects on outcomes, y. In
statistical/econometric models, it is the existence of z variables (as well as uncertainty in
measuring y and x variables) that necessitates inclusion of “error terms” in models.

NOTE: Patient level genome information is mostly a gigantic z–vector today (2006.) Some day

USPSinR vignette Page ͸

soon, more and more of this sort of information will become routine x variables.

The Propensity Score for the ith patient is then defined to be the following function of his/her x
characteristics…

PS = p(xi) = Pr(ti = 1 | xi) = E(ti | xi). [1]

By definition, propensity scores are (conditional) probabilities, which are numbers between zero
and one, inclusive. In words, the true propensity score of a patient is the conditional probability
that he/she will receive treatment number one given his/her vector of observed, baseline
characteristics, x.

In many practical applications, only the rank orders of (estimated) propensity scores are
needed. In this sense, any monotone transformation of a set of propensity scores are another
set of propensity scores “equivalent” to the first set. For example, when only one
(univariate) x variable is found to be predictive of treatment choice/assignment, that single x
variable may (itself) be called a propensity score.

One requirement of the above PS formulation is that each patient receives one and only one
treatment. In other words, the formulation here does not cover chronic conditions where a
cross-over design may access two (or more) treatments using sequential treatment periods for
each patient …separated by adequate “wash-out” periods.

In the following (cartoon) proof of the “fundamental theorem” of propensity scoring, it will be
essential to view a patient’s propensity score as the conditional probability, [1]. We will not
attempt any sort of a full-blown proof in the sense that our notation only makes sense when x is
discrete and t has only 2 levels. In other words, we will not worry here about notational details
for cases where components of x have continuous distributions or t has more than 2 levels.

The “fundamental theorem” of propensity scoring, Rosenbaum and Rubin(1984), states that,
conditional upon a given value of the propensity score, p(x), the distribution of baseline patient
characteristics must be statistically independent of treatment choice. Mathematically, this
theorem simply implies that the joint distribution of x and t given p must factor as follows:

Pr(x, t | p) = Pr(x | p) Pr(t | x, p)

= Pr(x | p) Pr(t | x)
= Pr(x | p) times p or (1p)
= Pr(x | p) Pr(t | p) [2]

PROOF: In the first line of [2], we use the very definition of conditional probability to factor
the joint conditional distribution of x and t. In the second line, we note that p(x) cannot
contain any information not contained in x itself. In the third line, we note that Pr(t | x) is
either p(x) or 1 – p(x). In the fourth and final line, we conclude that Pr(t | x) must depend
upon x only through p(x).

USPSinR vignette Page ͹

In other words, x and t are, necessarily, conditionally independent variables given the propensity
score, p = Pr(t = 1 | x). This is really a very simple theorem in statistics / probability that
requires only rather weak assumptions. In fact, the real “problem” in applications is simply that
the functional form of the true PS is usually unknown and, thus, needs to be estimated from data!

When the conditional distributions of baseline patient characteristics and treatment choices “fail
to factor” as dictated by the fundamental theorem of PS, [2], this is rightfully interpreted as clear
evidence that one’s estimates of the unknown, true PSs are not even approximately correct.

4. Case Study Example: Effects of Abciximab use on both Survival and Cardiac Billing.

The (numerical and graphical) output illustrations provided here use the data from Kereiakes et
al. (2000). The corresponding command file and data are distributed along with the UPS and
SPS “R” functions in the files ABCIXini.R and ABCIX.CSV. In this prospective study,
outcomes variables (survival and cardiac related costs) were collected via follow-up for at least 6
months on 996 PCI patients treated at the Lindner Center, Christ Hospital, Cincinnati. Rather
than randomize patients to treatment, the Lindner interventionists practiced “evidence based
medicine” in choosing between either augmenting or not augmenting their “usual care” for
Percutaneous Coronary Intervention (PCI) with abciximab (Reopro), a relatively expensive
IIb/IIIa cascade inhibitor. Ability-to-pay was not a factor in this treatment choice in the sense
that Lindner interventionists had access to “research use” abciximab.

Our objective in this “R user’s manual” documentation for the UPS and SPS functions is not to
fully discuss and illustrate all aspects of the abciximab case study. Rather, we simply wish to
illustrate some example UPS and SPS function invocations as well as the tabular and/or
graphical output that results. Readers interested in reading more about UPS and SPS analyses
using the abciximab case study are referred to my “white paper,” Obenchain(2006a).

Variables in the Kereiakes et al (2000) Abciximab / Lindner Data:

Description Name

Values

Life Years Preserved = 0 if died within 6 Months or
11.6 Years given Survival for at least 6 Months

lifepres Either 0 or 11.6 Years

Total Cardiac Related Billing within 12 Months of
Patient’s Initial PCI at Lindner Center

cardbill $2,216 to $178,534 in
1997 US Dollars

Was “Usual PCI Care” augmented with Abciximab? abcix 0 => No, 1 => Yes
Was a Stent (anti-collapse device) Deployed? stent 0 => No, 1 => Yes
Patient Height in Centimeters height 108 cm to 196 cm
Patient Gender female 0 => No, 1 => Yes
Was the patient Diabetic? diabetic 0 => No, 1 => Yes
Had patient suffered an Acute Myocardial Infarction
within the Last Seven Days?

acutemi 0 => No, 1 => Yes

Left Ventricular Ejection Fraction ejecfrac 0% to 90%
Number of Vessels involved in first PCI procedure ves1proc 0 to 5

USPSinR vignette Page ͺ

5. Installing and Loading the “USPS” Package.

First, obtain the USPS_1_0.ZIP archive from the web site of the Central Indiana ASA chapter,
www.math.iupui.edu\~indyasa\bobodown.htm , or from CRAN. Then use the R “Packages”
menu and the “Install from local ZIP file” menu item. Then use the “Load packages” sub-menu
to load “USPS.” The required “cluster”, “lattice” and “spline” R packages will then be
automatically loaded for you.

All of the abciximab analyses and graphics used as illustrations in this documentation (and
several more!) can then be generated by reading in the abcix.R source code file and executing
the resulting abcix() function.

 "abcix" <- function() {

 #input the abciximab study data of Kereiakes et al. (2000).
 Load(lindner)

 # outcomes: lifepres & cardbill
 # Define Divisive Cluster Hierarchy for UNSUPERVISED analyses...
 UPSxvars <- c("stent","height","female","diabetic","acutemi",
 "ejecfrac","ves1proc")
 UPSharch <<- UPShclus(lindner, UPSxvars, method="diana")

 plot(UPSharch) # Top figure on page 13.

 # Save UPSpars settings for NN/IV analyses of the "lifepres" outcome.
 # Although the "lifepres" variable assumes only two different numerical values, it is not to be treated here as
 # a “factor.” It’s average value is to be interpreted as “proportion surviving” times 11.6 = expected years.
 UPSaccum(UPSharch, lindner, abcix, lifepres, faclev=1 , accobj="ABClife")

 lif001nn <<- UPSnnltd(1)
 lif002nn <<- UPSnnltd(2)
 lif005nn <<- UPSnnltd(5)
 lif010nn <<- UPSnnltd(10)
 lif020nn <<- UPSnnltd(20)
 plot(lif020nn) # graphical display
 lif030nn <<- UPSnnltd(30)
 lif040nn <<- UPSnnltd(40)
 lif050nn <<- UPSnnltd(50)
 lif060nn <<- UPSnnltd(60)
 summary(lif060nn) # brief console output
 lif070nn <<- UPSnnltd(70)
 lif080nn <<- UPSnnltd(80)
 lif090nn <<- UPSnnltd(90)
 plot(lif090nn) # graphical display

 lif030iv <<- UPSivadj(30)
 lif040iv <<- UPSivadj(40)
 lif050iv <<- UPSivadj(50)
 lif060iv <<- UPSivadj(60)
 lif070iv <<- UPSivadj(70)
 lif080iv <<- UPSivadj(80)
 lif090iv <<- UPSivadj(90)
 plot(lif090iv) # graphical display

USPSinR vignette Page ͻ

 lif100iv <<- UPSivadj(100)
 lif200iv <<- UPSivadj(200)
 lif300iv <<- UPSivadj(300)
 lif996iv <<- UPSivadj(996)

 # Overall "Sensitivity Analysis" Summary...
 UPSgraph()

 cat("\n\nPress ENTER to add low-precision IV estimates...\n\n")
 scan()
 lif003iv <<- UPSivadj(3)
 lif005iv <<- UPSivadj(5)
 lif010iv <<- UPSivadj(10)
 lif020iv <<- UPSivadj(20)
 # Display Augmented "Sensitivity Analysis" Summary...
 UPSgraph()

 # Display contents of UPSdf...
 ABClife

 cat("\n\n Press ENTER to Analyze Costs... \n\n")
 scan()

 # Save UPSpars settings for NN/IV analyses of the "cardbill" outcome
 UPSaccum(UPSharch, lindner, abcix, cardbill, accobj="ABCcost")

 cst001nn <<- UPSnnltd(1)
 cst002nn <<- UPSnnltd(2)
 cst005nn <<- UPSnnltd(5)
 cst010nn <<- UPSnnltd(10)
 cst020nn <<- UPSnnltd(20)
 cst030nn <<- UPSnnltd(30)

 plot(cst030nn) # graphical display (Figure on page 15.)

 cst040nn <<- UPSnnltd(40)
 cst050nn <<- UPSnnltd(50)
 cst060nn <<- UPSnnltd(60)
 cst070nn <<- UPSnnltd(70)
 cst080nn <<- UPSnnltd(80)
 cst090nn <<- UPSnnltd(90)

 plot(cst090nn) # graphical display (Figure on page 16.)

 cst030iv <<- UPSivadj(30) # plot cst030iv is top figure on page 18.
 cst040iv <<- UPSivadj(40)
 cst050iv <<- UPSivadj(50)
 cst060iv <<- UPSivadj(60)
 cst070iv <<- UPSivadj(70)
 cst080iv <<- UPSivadj(80)
 cst090iv <<- UPSivadj(90)

 plot(cst090iv) # graphical display (Bottom figure on page 18.)
 cst100iv <<- UPSivadj(100)
 cst200iv <<- UPSivadj(200)
 cst300iv <<- UPSivadj(300)
 cst996iv <<- UPSivadj(996)

USPSinR vignette Page ͳͲ

 # Overall "Sensitivity Analysis" Summary (Figure on page 19.)...
 UPSgraph()

 cat("\n\nPress ENTER to add low-precision IV estimates...\n\n")
 scan()
 cst003iv <<- UPSivadj(3)
 cst005iv <<- UPSivadj(5)
 cst010iv <<- UPSivadj(10)
 cst020iv <<- UPSivadj(20)

 # Augmented "Sensitivity Analysis" Summary (Figure on page 20.)...
 UPSgraph()

 # Display contents of UPSdf...
 ABCcost

 # End of UNSUPERVISED analyses.

 # Define Logit Model for Treatment Choice in SUPERVISED analyses
 PStreat <- abcix~stent+height+female+diabetic+acutemi+ejecfrac+ves1proc

 # Store Propensity Score info (default=5 bins) in frame named "lindSPS"

 logtSPS <<- SPSlogit(lindner, PStreat, PSfit, PSrnk, PSbin,
 appn="lindSPS")
 logtSPS

 # Testing for Within-Bin Balance on Continuous Covariates...
 SPSbalht <<- SPSbalan(lindSPS, abcix, PSbin, height)
 plot(SPSbalht)
 print(SPSbalht)
 SPSbalej <<- SPSbalan(lindSPS, abcix, PSbin, ejecfrac)

 plot(SPSbalej) # Figure on page 25.
 print(SPSbalej)
 SPSbalvs <<- SPSbalan(lindSPS, abcix, PSbin, ves1proc)
 plot(SPSbalvs)
 print(SPSbalvs)

 # Testing for Within-Bin Balance on Binary (Dichotomous) Covariates...
 SPSbalst <<- SPSbalan(lindSPS, abcix, PSbin, stent)
 print(SPSbalst)
 SPSbalfm <<- SPSbalan(lindSPS, abcix, PSbin, female)
 print(SPSbalfm)
 SPSbaldi <<- SPSbalan(lindSPS, abcix, PSbin, diabetic)
 print(SPSbaldi)
 SPSbalam <<- SPSbalan(lindSPS, abcix, PSbin, acutemi)
 print(SPSbalam)

 # Test for Within-Bin Outcome Differences...
 lindlife <<- SPSoutco(lindSPS, abcix, PSbin, lifepres, faclev=1)
 plot(lindlife)
 print(lindlife)
 scan()

 lindcost <<- SPSoutco(lindSPS, abcix, PSbin, cardbill)

 plot(lindcost) # Both Figures on page 28.
 print(lindcost)

USPSinR vignette Page ͳͳ

 # Cubic smoothing spline analyses...
 SPScbill <<- SPSsmoot(lindSPS, abcix, PSfit, cardbill)
 plot(SPScbill)
 SPScbil7 <<- SPSsmoot(lindSPS, abcix, PSfit, cardbill, df=7)

 plot(SPScbil7) # Figures on pages 33 and 34.
 SPScbil3 <<- SPSsmoot(lindSPS, abcix, PSfit, cardbill, df=3)
 plot(SPScbil3)

 # Loess "symmetric" smoothing analyses...
 SPScblss <<- SPSloess(lindSPS, abcix, PSfit, cardbill)
 plot(SPScblss)
 SPScbls5 <<- SPSloess(lindSPS, abcix, PSfit, cardbill, span=.5)

 plot(SPScbls5) # Top Figure on page 33.
 SPScbls9 <<- SPSloess(lindSPS, abcix, PSfit, cardbill, span=.9)
 plot(SPScbls9)
 }

Part I: Unsupervised PS Analyses

In data mining terminology, the approach here is an “unsupervised” form of propensity score
binning, which (in turn) is a form of retrospective patient sub-classification or stratification
(matching without using any fixed ratio of treated-to-untreated patients.) Specifically, we will
use observed patient X-characteristics to cluster similar patients together rather than to directly
predict (non-random) treatment choice. In fact, here our unsupervised (cluster-binning) strategy
will typically use…  many more bins (say, 50 instead of 5) and/or  bins with a potentially wide range of different sizes (wide variation in total numbers

of patients.)

7. Unsupervised Step One: Compute the Hierarchical Clustering Tree using USPhclus()

The UPS hierarchical clustering function, UPShclus() , must be invoked before any of the four
other UPS functions. The R calling syntax for this function is

UPShclus(dframe, xvars, method="diana"),

where the first two arguments are required and the third is optional (because a default value is
provided.) The R invocation of UPShclus() used in the abciximab case study is

 UPSharch <- UPShclus(lindner, UPSxvars)

USPSinR vignette Page ͳʹ

…which implies that the default (divisive) clustering method = "diana" will be used and that all
relevant hierarchical clustering information is to saved in an R object of class “UPShclus ”
named “UPSharch. ”

The three arguments of UPShclus() are as follows:

The first argument, dframe = lindner, must be the name of an existing data.frame object.

SPSlogit’s second argument, xvars = UPSxvars, must be a list (concatenation) of “quoted”
names (in character format) of variables existing within the data.frame that will be used to
discover clusters representing “nearest neighbors in X-space.”

 UPSxvars <- c("stent","height","female","diabetic","acutemi","ejecfrac","ves1proc")

The final (optional) argument defines the clustering algorithm to be used by UPShclus() .
The (default) method is “diana ” for the DIvisive ANAlysis method of Kaufman and
Rousseeuw (1990), and the other two options currently available are: “agnes ” for the
Aglomerative NESting method of Kaufman and Rousseeuw(1990) and the original
“hclust ” method implemented in Fortran code contributed to STATLIB by F. Murtagh.

Unfortunately, the current implementation of UPShclus provides only one possible metric,
Mahalanobis distance, Rubin(1980), for determining patient dissimilarity in X-space. Thus
each X variable used with UPShclus() needs to be coded as either a continuous (interval)
or a “dummy” (0 or 1) variable. Factors with more than two unordered (but numerical
levels) would be inappropriately analyzed by the current UPShclus() implementation.

The object list returned by UPShclus() will contain an object (x$upshcl) of class diana, agnes
or hclust and must be saved to some name because this UPShclus() “output list” must be
specified as the first, required argument to the UPSaccum() function.

The graphical output generated for an UPShclus() output object is a “dendrogram” display of
the resulting hierarchical clustering tree, such as the following “diana” tree for the abciximab
data.

USPSinR vignette Page ͳ͵

For comparison with the UPShclus() “diana” tree above, note the considerably different
appearance of the corresponding “agnes” tree, below, for the same data and dissimilarity metric.

USPSinR vignette Page ͳͶ

8. Unsupervised Step Two: Specify Treatment and Outcome variables to prepare for
Accumulation of NN and/or IV information with UPSaccum()

Invoking UPSaccum() creates an R object named “UPSpars” or overwrites any existing object
with this name.

UPSaccum(hiclus, dframe, trtm, yvar, faclev=3, accobj="UPSframe")

The six possible arguments of UPSaccum() are as follows:

UPSaccum's first argument, hiclus=ABChclus , must be an R object of class diana,
agnes or hclust …usually the object returned by an invocation of UPShclus() .

UPSaccum’s second argument, dframe=lindner , is usually the data.frame that
provided X-covariates to the most recent UPShclus() invocation.

UPSaccum's third and fourth arguments, trtm=abcix and yvar=cardbill , are
almost always the treatment and outcome variable names within the data.frame that also
provided the X-covariates in the most recent UPShclus() invocation.

The two optional arguments to UPSaccum() are

faclev = the maximum number of distinct numerical values that an outcome
variable can assume within the input data.frame and yet still be treated as a
discrete R “factor” variable. The default values for this optional parameter
is faclev=3.

accobj = the quoted name of the R object that will hold "UPSframe"

When yvar takes on more than faclev distinct numerical values within the specified
data.frame, yvar will be considered to be a “continuous” variable.

9. Unsupervised Step Three: Use UPSnnltd() to Compute Nearest Neighbor / Local
Treatment Differences (NN/LTD) for a specified Number of Cluster-Bins.

In these “Step 3” analyses, we calculate Nearest-Neighbor (within cluster-bin) statistics
describing “Local Treatment Differences” via R function calls of the form:

out###nn <- UPSnnltd(numclust)

Here are some example invocations of the UPSnnltd() family of functions:

cst030nn <- UPSnnltd(30)
cst030nn # shorthand for… print(cst030nn)

USPSinR vignette Page ͳͷ

summary(cst030nn)
plot(cst030nn)

The graphical output generated by “plot.UPSnnltd()” is called a “Nearest Neighbors:
Local Treatment Differences” (NN/LTD) plot. This graphic displays a circular symbol
representing each “informative” cluster-bin …using horizontal and vertical coordinates that
convey within-cluster-bin mean and precision information about local treatment differences.
Specifically, the horizontal coordinate conveys the average outcome difference (treated minus
untreated) within a single cluster-bin, the vertical coordinate conveys the corresponding outcome
difference standard error (treated minus untreated) within that same cluster-bin, and the area of
the circular plotting symbol denotes the total number of patients (either treated or untreated)
within that cluster-bin. To be fully “informative,” a cluster-bin must contain at least two patients
on each treatment. After all, at least 2 patients on each treatment are needed to provide not only a
treatment difference point estimate but also an observed standard error for that treatment
difference!

Here is the NN/LTD plot for 30 “diana” cluster-bins for the cardbill outcome within the
abciximab case study. Note that only 21 of these 30 clusters are fully informative about local
treatment differences.

For comparison with the above NN/LTD plot based upon 30 cluster-bins, here is the
corresponding PS plot for 90 diana cluster-bins. Note that only 34 of these 90 cluster-bins are

USPSinR vignette Page ͳ͸

fully “informative” about treatment differences. Twenty additional cluster-bins out of the
original 90 contained just one patient on one (or both) of the two treatments and thus provided no
“local” standard error information to supplement its local treatment difference point estimate.

Note that each UPSnnltd() plot also displays 3 vertical lines. A solid vertical line is always
drawn at the position denoting an outcome treatment difference of zero. A dashed vertical line is
then drawn at the position corresponding to the overall weighted average outcome treatment
difference, with weights proportional to the total number of patients within each cluster-bin.
Finally, a dotted vertical line is drawn at the position corresponding to the supposedly
“optimally” weighted average outcome treatment difference, with weights inversely proportional
to estimated within-cluster-bin variance …as dictated by the Gauss-Markov theorem for the
known variance case.

10. Unsupervised Step Four: Use UPSivadj() to Compute Instrumental Variable /
Local Outcome Averages (IV/LOA) for a specified Number of Cluster-Bins

In this step, we generate “IV plots” of within-cluster Local-Outcome-Averages (regardless of
treatment) versus within-cluster treatment percentages (PS estimates.) A key assumption here is
that all X-variables used to define clusters are instrumental variables in the sense that they
influence expected outcome only through treatment choice. I.E. none of the X-variables used to
define clusters should have direct influence on the outcome to be analyzed. The appropriate R
function calls are then of the form:

USPSinR vignette Page ͳ͹

UPSivadj(numclust)

Any two IV cluster-bins can be connected by a straight line without any apparent lack-of-fit, and
there is no way to define such a line with a single cluster. Thus numclust must be at least 3 in
each UPSivadj() invocation.

Possible invocations of the UPSivadj() family of functions for the abciximab case study are
of the form:

lindcost <- UPSivadj(90)
lindcost # or print(lindcost)
summary(lindcost)
plot(lindcost)

WARNING: Several of the X-variables used to define clusters in the abciximab study are likely
to have direct effects on survival and/or cost as well as (demonstrated) influence upon treatment
choice. In other words, these X-variables are highly unlikely to be pure “instruments.”

The graphical output that can be requested from a UPSivadj() output object is called an “IV
plot” …as in Figure 1 of McClellan, McNeil and Newhouse (1994.) This graphic displays a
circular plotting symbol representing each cluster-bin using horizontal and vertical coordinates
that convey how within-cluster-bin outcome averages vary across clusters. Specifically, the
horizontal coordinate for each cluster displays the within-cluster-bin PS estimate (fraction of
treated patients relative to total patients), the vertical coordinate conveys the corresponding
average outcome (regardless of treatment) within that same cluster-bin, and the area of the
circular plotting symbol depicts the relative size of the total number of patients (treated plus
untreated) within that cluster-bin.

The first plot on page 18 displays calculations from UPSivadj() for 30 diana cluster-bins on
the cardbill outcome in the abciximab case study. Note that “pure” cluster-bins (with
extreme within-bin PS estimates of either 0% or 100%) are not only informative in this type of
analysis …they are potential “high-leverage” points!

In sharp contrast with “NN/LTD plot” analyses, a relatively much larger number of cluster-bins
may be highly desirable in the “IV plotting” approach. For example, the first IV plot below with
“only” 30 cluster-bins suggests that treatment with abciximab might be expected to result in a net
cost savings! On the other hand, the second IV plot on page 18, with 90 cluster-bins, suggest an
average overall treatment effect much more like estimates from NN/LTD plots with a relatively
wide range of numbers of cluster-bins (either small or large.)

Again, the fundamental problem with the abciximab examples of IV/LOA analyses may well be
that some of the X covariates used here are not “instrumental variables.” Encouragingly, the
UPSgraph() “systematic sensitivity summary” plot will dramatically depict the instability in
numerical signs of potential answers resulting from alternative IV analyses for this example!

USPSinR vignette Page ͳͺ

Is the cardbill cost difference (abcix minus usual care) negative?

Or is this cost difference (abcix minus usual care) positive?

USPSinR vignette Page ͳͻ

11. Unsupervised Step Five: Use UPSgraph() to Graphically Display a Systematic
Sensitivity Summary of NN and/or IV Analyses to choice of Number of Cluster-Bins

While the user of the UPS functions certainly has the option to make a NN/LTD or IV/LOA plot
immediately after each call to UPSnnltd() or UPSivadj() for a specified number of cluster-
bins, the fundamental strategy advocated here is to generate results over a sufficiently wide range
for number-of-clusters to generate a meaningful “systematic sensitivity summary” plot resulting
from an invocation of UPSgraph() . For example, it is always a good idea to invoke both
UPSnnltd(1) and UPSivadj(Cmax) , where Cmax = maximum possible number of
clusters = total number of subjects in the input R data.frame. After all, these seemingly
“extreme” cases are actually guaranteed to give the same (“unadjusted”) estimates of the overall
average outcome difference …and of its precision!

Here is what the UPSgraph() summary for the cardbill outcome in the abciximab case
study looks like before (very low precision) UPSivadj() results have been accumulated for
fewer than 30 cluster-bins.

Calculating UPSivadj() results for 20, 10, 5 and 3 cluster-bins forces the UPSgraph()
summary plot for the cardbill outcome in the abciximab / lindner case study to “Zoom Out”
so as to accommodate the much wider (vertical) range of treatment difference uncertainties
displayed in the updated UPSgraph() below.

USPSinR vignette Page ʹͲ

12. Unsupervised Step Six: Use UPSaltdd() to Compare the NN/LTD Distribution for a
given number of Clusters in X-space with the Corresponding “Artificial” Distribution from
Random Clusters.

After displaying outcome LTD sensitivity over a range of alternative numbers-of-clusters using
UPSgraph() , the user will usually wish to focus on visualizing details of the NN/LTD
distribution for some specific number-of-clusters. The UPSaltdd() function displays Cumulative
Distribution Functions (CDFs) and Histogram pairs that are quite helpful in doing this.

UPSnnltd() makes only the “more” or “most” relevant patient comparisons in the specified X-
space for a given requested number-of-clusters. UPSaltdd() allows users to compare and contrast
this NN/LTD distribution with the corresponding “Artificial” LTD di stribution from random
clusterings (ignoring the specified X variables.) This allows the user to literally see how much
treatment-selection-bias (imbalance) has been “detected” using the specified X-space clustering
metric, clustering algorithm and number-of-clusters. If the NN/LTD and Artificial LTD
distributions are not clearly “different,” then no meaningful “adjustment” for X-variables has
occurred.

For example, consider the following R code fragment for the abciximab / lindner example. Here,
we specify faclev=1 because the expected life years preserved (continuous) variable, lifepres,
assumes only two distinct values (0 if died within 6 months, or 11.6 years otherwise):

USPSinR vignette Page ʹͳ

abcdf <- UPSaltdd(lindner, abcix, lifepres, faclev=1, NNobj=lif050nn)

The R command print(abcdf) then produces the following output:

UPSaltdd Object: Artificial Distribution of LTDs for random clusters...
Data Frame: lindner
Outcome Variable: lifepres
Treatment Factor: abcix
Scedasticity assumption: homo
Number of Replications: 10
Number of Clusters per Replication: 50
Total Number of Informative Clusters = 494

 Mean Artificial Treatment Difference = 0.4275955
 Number of Smoothed Sample Quantiles = 309
 Mean of Smoothed Sample Quantiles = 0.4251765
 Std. Deviation of Sample Quantiles = 1.254298

UPSnnltd Object: lif050nn
Number of Informative Clusters = 9

 Mean of Observed LTD Distribution = 0.3592107
 Number of Smoothed Sample Quantiles = 37
 Mean of Smoothed Sample Quantiles = 0.2331547
 Std. Deviation of Sample Quantiles = 0.9594896

Unfortunately, the above printout is rather misleading. As we will see, the two distributions to
be compared are skewed and have different ranges. Thus the order of their mean values is
relatively meaningless because means are poor measures of location in this situation. We do
learn that the NN/LTD distribution has a slightly lower mean (and slightly higher precision) than
the Artificial LTD distribution. Much more informative and meaningful insights are provided by
the R plot(abcdf,breaks=20) command that produces the 4 plots on the next page.

These plots allow the user to literally “see” that the NN/LTD and Artificial LTD distributions are
quite different and also skewed in opposite directions. The Artificial LTD CDF and Histogram
(in the top 2 plots) show that this distribution has Mode < Median = 0 < Mean = 0.43 years and
contains a large, outlying value of +11.6 years (a random cluster where all abciximab augmented
patients survived for at least 6 months and all unaugmented patients died.) Meanwhile, the
NN/LTD CDF and Histogram (on the bottom of the figure) show that this distribution has Mean
= 0.36 years < Median = 0.59 years < Mode with an upper limit of ~2.5 years. In other words,
relative to the (biased) Artificial LTD distribution, the LTD distribution resulting from NN
“adjustment” using 50 clusters of relatively well-matched patients in the X-space defined by
seven patient characteristics (stent, height, female, diabetic, acutemi,
ejecfrac & ves1proc) strikes me as being clearly more favorable to demonstrating the
“effectiveness” of augmenting “usual PCI care” with abciximab.

Again, means are not “robust” measures of location; the means of these two distributions are in
the “wrong order” simply due to a single outlier in the simulated Artificial LTD distribution!

USPSinR vignette Page ʹʹ

Part II: Supervised PS Analyses

13. Supervised Step One: Estimate Propensity Scores and Form Bins

The propensity scoring “definition” function, SPSlogit() , provides…

(1) estimates a logistic regression model for predicting observed treatment choice (zero or
one) from specified covariates observed on all patients,

(2) estimates the probability (propensity score) that each patient would have been selected to

receive treatment number one (rather than treatment number zero),

(3) rank orders all patients (allowing for ties) according to these estimated probabilities, and

(4) groups patients into “bins” defined by equal ranges of PS ranks.

NOTE: Defining bins using tied rank ranges assures that no two patients with identical estimated
propensity scores will end up in different bins. The bin number for the ith patient will be 1 +
floor(bins*rank[i]/(1+total number of patients)).

The R calling syntax for this “define” function is

USPSinR vignette Page ʹ͵

SPSlogit(dframe, form, psfit, psrnk, qbin, bins=5, appn="")

SPSlogit’s first five arguments are required while the last two are optional. The R invocation of
SPSlogit() illustrated in the numerical example is

SPSobj <- SPSlogit(PCI, PSform, PSFIT, PSRNK, QUINT)

The arguments of SPSlogit() are as follows:

SPSlogit's first argument, dframe=PCI, must be an existing data.frame name.

SPSlogit’s second argument, form=PSform, must be an S “formula” for predicting the
treatment factor (ABCIX) using available data.frame covariates.

PSform <- ABCIX ~ STENT + HEIGHT + FEMALE + DIABETIC +

 ACUTEMI + EJECFRAC + VES1PROC

SPSlogit's third, fourth and fifth arguments, psfit = PSFIT, psrnk = PSRNK and qbin =
QUINT, supply names for the fitted propensity scores (estimated treatment probabilities), the
propensity score ranks and the propensity score bin number factor that are created by
SPSlogit.

Note 1: Although missing values (“NA”s) are allowed, it is best to make predictions for
as many patients as practically possible. Adding a covariate with NAs for patients who
do not have NAs in any other current covariate or in the response (treatment) variable,
will cause additional NAs in the psfit, psrnk and qbin variables created by
SPSlogit().

Note 2: SPSlogit() does not use regression subset selection methods because this
tactic can create “ties” between propensity score predictions. Ties can cause the total
number of patients per bin to vary from bin to bin. Also, see comments in the section
“R and S-Plus functions that are (or could be) called in PS analyses.”

The optional arguments to SPSlogit() are

bins = the number of bins to be formed, and
appn = name of output data.frame with appended columns, as a quoted string.

The default value for bins is 5. Thus, users need to specify a value for “bin” only when
they wish SPSlogit() to form more than 5 or fewer than 5 bins.

The default value for appn is “” , which means that the user wishes to revise the input
data.frame by appending the calculated psfit, psrnk and qbin variables to it. Thus,
the user needs to specify a non-empty quoted string (such as appn=“SPSdf2”) if he/she

USPSinR vignette Page ʹͶ

does not wish to modify / overwrite the input data.frame named in the first argument to
SPSlogit() . For example, the treatment indicator variable will have been declared to be a
“factor” in the revised data.frame.

The output list returned by SPSlogit() needs be saved to avoid printing of summary()
information about the “glm” object created by SPSlogit() . This summary information as
well as details on the SPSlogit() invocation can then be printed later from the saved object
using print(SPSobj) .

NOTE: The SPSnbins() function creates a new (or modifies an existing) propensity score bin
number factor variable to change the number of PS bins; typical R invocations are of the general
form…

PSframe <- SPSnbins(PSframe, psrnk, octile, bins=8)
or

PSframe <- SPSnbins(PSframe, psrnk, decile, bins=10)

All four arguments to SPSnbins() are usually specified; the first three are required, and the
default value for the fourth is bins=8 . SPSnbins() does not re-calculate PS fitted values or
re-rank patients. Specifically, the first argument to SPSnbins() is almost always the
data.frame output value of a previous SPSlogit() invocation, and the second argument to
SPSnbins() is then the psrnk (fourth) argument from that same SPSlogit() invocation.
Finally, the third (required) argument of SPSsbins() is a variable name for a (new or already
existing) propensity score bin number factor variable.

14. Supervised Step Two: Test for Within-Bin “Balance” on Covariates

The “fundamental theorem” of PS states that, if an appropriate propensity scoring algorithm has
been found, then there will be no difference in the distributions of covariate measurements
between treatment groups with the same given propensity score. In other words, although this
distribution may be different at different numerical values for propensity score, treated and
untreated patients have been relatively “well matched” when their propensity scores are nearly
equal. Specifically, treated and untreated patients can be expected to display essentially identical
covariate distributions within each bin.

The SPSbalan() function is designed to detect “violations” of this fundamental PS balancing
theorem, thereby implying that the current PS model is inadequate to explain treatment selection.
Every covariate used in the second, "formula" argument to SPSlogit() of SPS Step ONE is a
candidate for the sort of testing performed here in SPS Step TWO.

The R calling syntax for the function to detect treatment differences in the within-bin distribution
of a single X covariate is…

SPStest <- SPSbalan(dframe, xvar, trtm, qbin, faclev=3)

USPSinR vignette Page ʹͷ

The first four arguments of SPSbalan() are required, and the final two are optional. For
example, three consecutive R invocations could be

 SPSout1 <- SPSbalan(PSframe, AGE, ABCIX, QUINT)
 SPSout2 <- SPSbalan(PSframe, EJECTFMI, ABCIX, QUINT)
 SPSout3 <- SPSbalan(PSframe, VES1PROC, ABCIX, QUINT)

The arguments of SPSbalan() are as follows:

SPSbalan's first argument, dframe=PSframe , is almost always a returned data.frame
from SPSlogit().

SPSbalan’s second and third arguments, xvar and trtm , are usually terms from the S
"formula" used in SPSlogit. In fact, trtm must be the “response” (first) term of that
formula, while xvar is almost always one of the “covariate” terms.

SPSbalan's fourth argument, qbin=QUINT , is almost always the bin indicator variable
name as in the previous SPSlogit() or PSbinnum() invocation.

The optional argument to SPSbalan() is

 faclev = the maximum number of distinct numerical values that a variable can

assume and yet still be treated as an S "factor."

The default value for this optional parameter is faclev=3.

If the xvar named in this invocation takes on no more than faclev distinct numerical
values, no graphics will be displayed. On the other hand, when xvar takes on more than
faclev distinct numerical values, xvar is considered “continuous,” and a “SPSbalan”
will be created.

SPSbalan() returns a list of objects containing analysis details. However, in addition to the
optional box plot “side effects” discussed above, Psdifcov() also prints out summaries of
overall and within-bin analyses of trtm effects on xvar .

When the xvar data contain faclev or fewer levels, a summary of contingency table
ChiSquare tests for trtm effects is printed.

When the xvar data contain more than faclev levels, xvar is considered
“continuous,” and one-way and two-way ANOVA summaries are printed (trtm %in%
bin identifies treatment within bin effects.)

If the above test results and/or box-plots indicate that the fundamental theorem of propensity
scoring is not even approximately satisfied, then a revised model formula should be tried in
SPSlogit() . Typically, one would try adding powers or interaction terms between currently

USPSinR vignette Page ʹ͸

used covariates, adding more covariates, or even defining propensity scores using a generalized
additive model rather than a generalized linear model.

Here are some examples of SPSbalan() output for the abciximab case study:
> SPSbalan(PSframe, age, abcix, QUINT)

Test for Raw / Unadjusted Differences by Treatment

AGE ~ ABCIX
 Df Sum of Sq Mean Sq F Value Pr(F)
 ABCIX 1 0.0 0.0443 0.0003315842 0.9854754 <= NOT significant!
Residuals 1009 134822.4 133.6198

Test for Treatment Differences within Paired PS Bins

AGE ~ QUINT + ABCIX %in% QUINT
 Df Sum of Sq Mean Sq F Value Pr(F)
 QUINT 4 686.7 171.6847 1.295466 0.2699387
ABCIX %in% QUINT 5 1475.8 295.1598 2.227162 0.0496073 <= significant?
 Residuals 1001 132659.9 132.5274

In other words, binning can appear to create a covariate difference!!!

> SPSbalan(PSframe, ves1proc, abcix, QUINT)

Test for Raw / Unadjusted Differences by Treatment

VES1PROC ~ ABCIX
 Df Sum of Sq Mean Sq F Value Pr(F)
 ABCIX 1 14.3135 14.31349 34.06864 7.164788e-009 <= Significant!!!
Residuals 1009 423.9180 0.42014

Test for Treatment Differences within Paired PS Bins

VES1PROC ~ QUINT + ABCIX %in% QUINT
 Df Sum of Sq Mean Sq F Value Pr(F)
 QUINT 4 164.5746 41.14364 151.0037 0.0000000
ABCIX %in% QUINT 5 0.9167 0.18333 0.6729 0.6441004 <= NO PROBLEM!!!
 Residuals 1001 272.7402 0.27247

Much more commonly, appropriate estimates of propensity scores eliminate all within-bin
covariate differences!

To “visualize” within-cell balance, plot the SPSbalan() output for a continuous variable:

USPSinR vignette Page ʹ͹

15. Supervised Step Three: Display Within-Bin Treatment Differences by Outcome using
SPSoutco()

The calculations performed in Step TRHEE by SPSoutco() assume that the PS model of Step
ONE was found to (approximately) satisfy the fundamental balancing theorem in Step TWO. In
other words, treated and untreated patients have now been relatively “well matched” on
covariates within bins. As a result, within-bin mean outcome differences (treated minus
untreated) can be expected to be relatively free of bias, at least compared with the corresponding
overall mean outcome difference between treatment groups.

An overall summary statistic estimating any true (treated minus untreated) outcome difference is
usually desired. As a result, within-bin estimates need to be averaged across bins using some
weighting scheme. SPSoutco() displays two such weighted averages:
  weighted proportional to the total number of patients in each bin, and  weighted inversely proportional to the estimated variance of the within-bin difference.

The overall difference from the latter option will always appear to be more precise, but this
weighting typically downweights results from the outer (first and last) bins. The overall

USPSinR vignette Page ʹͺ

difference using weights proportional to total numbers of patients (usually nearly equal across
bins) may be much less biased, especially when the data contain outliers. After all, outliers can
greatly inflate within-bin variances because within-bin sample sizes are reduced by a factor of
five or more.

The R calling syntax for the function to compute “adjusted” outcome differences is…

SPSoutco(dframe, yvar, trtm, qbin, faclev=3)

The first four arguments of SPSoutco are required, and the other two are optional. For example,
two consecutive R invocations could be

PSdie6mo <- SPSoutco(PSframe, lifepres, abcix, QUINT)
PScrdbil <- SPSoutco(PSframe, cardbill, abcix, QUINT)

The arguments to SPSoutco() are as follows:

SPSoutco 's first argument, dframe=PSframe, is almost always a returned data.frame
from SPSlogit .

SPSoutco ’s second argument, yvar, is an outcome measure for patients. Outcomes are
results that were unknown at the time when patients were assigned (possibly non-
randomly) to treatments. “NA”s are allowed in this yvar.

SPSoutco ’s third argument, trtm, is almost always the “response” (first) term from the
S “formula” used in SPSlogit().

SPSoutco 's fourth argument, qbin = QUINT, is almost always the same bin indicator
variable name as in the previous SPSlogit() or SPSnbins() invocation.

The optional argument for SPSoutco() is

 faclev = the maximum number of distinct numerical values that a variable can

assume and yet still be treated like an S “factor.”

The default value for this optional parameter is faclev=3.

SPSoutco() returns a list of objects containing analysis details. However, in addition to the
optional histogram plot “side effects” discussed above, SPSoutco() also prints out summaries
of overall and within-bin analyses of trtm effects on yvar .

When the yvar data contain faclev or fewer levels, a summary of contingency table
ChiSquare tests for trtm effects is printed. On the other hand, if this yvar actually is
an R factor (character) variable, then SPSoutco() histograms will display mean values
computed as if the numerical values for factor levels are 1, …, faclev . As a result,

USPSinR vignette Page ʹͻ

any yvar taking on only the numerical values 0 and 1 (meaning that outcome was not or
was observed, respectively), should usually not be declared an R factor variable (with
values “0”=1 and “1”=2.)

When the yvar data contain more than faclev levels, yvar is considered
“continuous” and one-way and two-way ANOVA summaries are printed. (trtm %in%
bin identifies “treatment within bin” effects.)

Note that SPSoutco() describes treatment differences in the distributions of outcomes using
the same methodologies (ChiSquare or ANOVA) used by SPSbalan() on covariates. The key
distinction here is that any outcome differences remaining after propensity scoring are called
“adjusted” differences and do NOT signal problems with assumptions in the current PS analysis.

USPSinR vignette Page ͵Ͳ

16. Supervised Step Four: Explore Outcome Differences Expressed as Smooth Loess or
Spline Functions of Propensity Score

The calculations currently performed in Step FOUR by SPSloess() and SPSsmoot() can
only be applied to outcome measures that are continuous. And the logistic regression model fit
in Step ONE using SPSlogit() needs to have been found satisfactory in Step TWO. After all,
when one starts treating assigned propensity scores as continuous variables (rather than forming
discrete bins of similar scores), it becomes much more difficult to test / verify the implications of
the PS matching theorem (i.e. that the distribution of covariates is independent of treatment
selection.)

MOTIVATION: Suppose one has fitted a somewhat smooth (loess or spline) curve through the
observed outcome (Y) versus fitted propensity score (X) scatter for each of the two treatment
groups. Now, consider the question:

“Over the range where both smooth curves are defined (i.e. their common support),
what is the (weighted) average signed difference between these two curves?”

If the distribution of patients (either treated or untreated) were UNIFORM over this range, the
(unweighted) average signed difference (treated minus untreated) would be an appropriate

USPSinR vignette Page ͵ͳ

estimate of the overall difference in outcome due to choice of treatment.

Histogram patient counts within 100 cells of width 0.01 provide a naive “non-parametric density
estimate” for the distribution of total patients (treated or untreated) along the propensity score
axis. The weighted average difference (and standard error) displayed by SPSloess() and
SPSsmoot() are based on an R density() smooth of these counts.

In situations where the propensity scoring distribution for all patients in a therapeutic class is
known to differ from that of the patients within the current study, that population weighted
average would also be of interest. Thus the SPSloess() returned value contains two data
frames, logrid and lofit , useful in further computations; the corresponding data frames
returned by SPSsmoot() are named ssgrid and ssfit .

NOTE: The difference in average smooth (loess or spline) predictions (treated minus untreated)
is not an appropriately weighted average, in the above sense. While this sort of computation
would use propensity scores to make a cost prediction for each patient, no “matching” of treated
and untreated patients (with nearly equal propensity scores) is used in this sort of calculation.

SYNTAX: The R calling syntax for the functions to compute outcome differences (treatment=1
minus treatment=0) under the assumption that expected outcome is a smooth (lowess or spline)
function of propensity score within each treatment cohort are…

SPSloess(dframe, yvar, ps, trtm, faclev=3, display = T, deg=2,
sp=0.75, fam="symmetric", tcol="black", ucol="red")

and

SPSsmoot(dframe, yvar, ps, trtm, faclev=3, df=5, spar=NULL,

cv=F, penalty=1, display = T, tcol="black", ucol="red")

The first four arguments of SPSloess and SPSsmoot are required, and the other five or six are
optional. For example, two consecutive R invocations could be

PScbillo <- SPSloess(PSframe, cardbill, PSFIT, ABCIX)
PSframe$TRIMBILL <- pmin(PSframe$cardbill, 50000)
PStbillo <- SPSloess(PSframe, TRIMBILL, PSFIT, ABCIX)

The fam=“symmetric” default option of SPSloess tends to be fairly robust to outlying
outcomes, at least when the loess span (default sp = 1/10) is wide enough. Thus reducing
(Winsorizing) outlying cardbill values to $50K (as illustrated above) should have little effect on
a fitted loess smooth with an appropriate span. Looking for the effects of Winsorizing on
SPSloess() or SPSsmoot() results is a form of “sensitivity analysis.”

USPSinR vignette Page ͵ʹ

The arguments to SPSloess() are as follows:

SPSloess ’ first argument, dframe=PSframe , is almost always a returned data.frame
from SPSlogit().

SPSloess ’ second argument, yvar , must be a continuous outcome measure.
Outcomes are results that were unknown at the time when patients were assigned
(possibly non-randomly) to treatments. “NA”s are allowed in this yvar.

SPSloess ’ third argument, ps=PSFIT , is almost always a set of fitted propensity
scores from a previous SPSlogit() invocation.

SPSloess ’ fourth argument, trtm , is almost always the “response” (first) term from
the R “formula” used in SPSlogit() , which is a “factor” variable taking on only two
different levels.

The seven optional arguments of SPSloess() are

 faclev = the maximum number of distinct numerical values that a variable can

assume and yet still be automatically converted into an R "factor",

 display = display graphical output (T or F.)

 deg = degree (1=linear or 2=quadratic) of the local fit.

 sp = span (zero to two) of the local regression fit, and

 fam = “gaussian” or "symmetric."

tcol = color loess curve for treated group (default “black”.)

ucol = color loess curve for untreated group (default “red”.)

The arguments to SPSsmoot() are as follows:

SPSsmoot ’s first argument, dframe= PSframe, is almost always a returned data.frame
from SPSlogit .

SPSsmoot ’s second argument, yvar , must be a continuous outcome measure.
Outcomes are results that were unknown at the time when patients were assigned
(possibly non-randomly) to treatments. “NA”s are allowed in this yvar.

SPSsmoot ’s third argument, ps = PSFIT, is almost always a set of fitted propensity
scores from a previous SPSlogit() invocation.

USPSinR vignette Page ͵͵

SPSsmoot ’s fourth argument, trtm , is almost always the “response” (first) term from
the R “formula” used in SPSlogit() , which is a “factor” variable taking on only two
different levels.

The eight optional arguments of SPSsmoot() are

 faclev = the maximum number of distinct numerical values that a variable can assume

and yet still be treated as an S "factor",

 cv = ordinary cross-validation (T) or generalized cross-validation, GCV (F).

 df = degrees-of-freedom of B-spline fit (5 bins .

spar = spar of the smooth.spline() function, and

penalty = coefficient of penalty for df in the GCV criterion.

 display = display graphical output (T or F.)

tcol = color of spline for treated group (default “black”.)

ucol = color of spline for untreated group (default “red”.)

This scatterplot displays patient propensity score along the horizontal axis and his/her
corresponding observed (continuous) outcome along the vertical axis. Patients receiving
the “standard” treatment (trtm=0) are represented by cyan circles, while patients
receiving the “new” treatment (trtm=1) are represented by magenta triangles. The
smooth fits of outcome to propensity score within treatment cohorts are show as cyan
(trtm=0) and magenta (trtm=1) curves, respectively, superimposed upon the scatter.

The smooth fits can be difficult to see when the scatters contain many points. Thus
SPSloess and SPSsmoot each draw a second plot rescaled to show only the two smooth
(lowess or spline) fits, again using cyan (trtm=0) and magenta (trtm=1) curves. (For
details, see the returned lofit and ssfit data frames.)

Finally, SPSloess and SPSsmoot each draw a third plot to show total patient frequencies
(black circles) within a 100-cell histogram along the propensity score axis as well as the
corresponding density() smooth in red. (For details, see the returned logrid and
ssgrid data frames.)

In addition to the graphs described above, the primary “side effects” of SPSloess() and
SPSsmoot() consist of printouts of outcome differences (unadjusted and adjusted) and their
standard deviations.

USPSinR vignette Page ͵Ͷ

The SPSloess() or SPSsmoot() returned value is a list of two data frames, a grid
frame and a fit frame, plus other objects giving analysis details.

logrid and ssgrid each contain 11 variables and 100 observations. The PS variable
(column one) contains propensity score “cell means” of 0.005 to 0.995 in steps of 0.010.
Variables F0, S0 and C0 for treatment 0 and variables F1, S1 and C1 for treatment 1
contain fitted smooth (lowess or spline) values, standard error estimates and patient
counts, respectively. Observations with “NA” for variables F0, S0, F1 or S1 represent
“extremes” where the lowess fits could not be extrapolated because no observed
outcomes were available. The DIF variable is simply (F1 F0), the SED variable is
sqrt(S1^2+S0^2) , the HST variable is proportional to (C0+C1) , and the DEN
variable is the estimated probability density of patients along the PS axis.

lofit contains 4 variables for all observations in data frame = dframe that have no
“NA” values in the yvar, ps or trtm variables. These 4 variables are named PS,
YVAR, TRT (with levels 0 and 1 recoded to 1 and 2, respectively) and FIT = loess
prediction for the specified “span” (default sp=1/10 .)

ssfit contains 4 variables for each distinct PS value in data frame = dframe . These 4
variables are named PS, YAVG, TRT (with levels 0 and 1 recoded to 1 and 2,
respectively) and FIT = spline prediction for the specified degrees-of-freedom (default
df=10 .)

Example SPSloess fit for cardbill versus Propensity Score

Solid loess fit gives smoothed cardbill estimates for ABCIX patients.
Dashed loess fit gives smoothed cardbill estimates for Usual-Care-Only patients.

USPSinR vignette Page ͵ͷ

Example SPSsmoot fit for cardbill versus Propensity Score

Solid spline gives smoothed cardbill estimates for ABCIX patients.
Dashed spline gives smoothed cardbill estimates for Usual-Care-Only patients.

Example Patient Distribution (abcix + usual care) along fitted Propensity Score Axis

Black circles give normalized histogram estimates for 100 cells (0.005 to 0.995).

Red curve gives Gaussian kernel density estimator for the PS distribution of patients.

USPSinR vignette Page ͵͸

Note that the above distribution of patients at the Lindner Center is somewhat shifted to the right
because almost 70% of all Lindner PCI patients did receive abciximab in 1997.

17. R and S-Plus functions that are (or could be) called in PS/NN/IV analyses.

SPSlogit() currently models propensity scores via a call to glm() with family =
binomial() (and thus default link=logit), but a variety of alternatives could be quite
useful in applications. For example, fits from gam() or a classification tree() model would
relax the “linear functional” requirement of glm() or automatically incorporate interactions
among covariates, respectively. The lrm() function from the Harrell(1997) “design” library
could be used to penalize logistic regression parameters, but it is debatable whether inter-
correlations (or even non-linear relationships) among covariates can be harmful in propensity
score estimation. After all, our primary interest here is restricted to simply making predictions;
all we need are fitted values within the closed interval 0  PS  1 that estimate the probability of
treatment choice give all available covariates. Any potential problems with significance testing
or (causal) interpretations for parameters are almost irrelevant. In fact, D’Agostino(1998)
essentially recommends drastic over-fitting by including all potentially relevant covariates in
one’s PS model.

SPSloess() and SPSsmoot() use the R loess() and smooth.spline() functions,
respectively. Cleveland’s original lowess() function could be used here because only one X
variable (namely, fitted propensity score) is involved, but I choose loess() to give users
flexibility to choose between fam=“gaussian” and fam=“symmetric” , which provides
some resistance to outlying outcome values.

The df parameter of SPSsmoot() brings considerable intuitive appeal to one’s choice of
smoothness; see Hastie and Tibshirani(1990). For example, the SPSoutco() approach with
bins =5 clearly corresponds to df=5 , but “binning” outcome analyses correspond to fits that
are discontinuous at cut points. SPSsmoot() fits cubic smoothing splines that are not only
continuous but also have continuous first and second derivatives.

SPSloess() and SPSsmoot() both call the R density() function to generate a non-
parametric probability density estimate for the distribution of patients along the fitted PS axis.
This density is evaluated at 100 points evenly spaced between PS=0.005 and PS=0.995, and
signed differences between the (lowess or cubic spline) smooths at these same points are
weighted proportional to this density. Bandwidth for this Gaussian kernel density estimator is
chosen using the R default bw=“nrd0” option. Alternatively, see Venables and Ripley(1999),
page 137.

Like “Lattice” graphics in R, S-Plus “Trellis Graphics” can be extremely useful in visualizing
within-bin balance achieved via propensity scoring. For example, the plots below illustrate
balance issues related to the “ves1proc” X-variable within the abciximab case study. Even major
overall distributional differences will, ideally, almost “disappear” as a result of PS binning.

USPSinR vignette Page ͵͹

Overall “ves1proc” Distributions Within-Bin “ves1proc” Distributions

0 1

ABCIX Treatment

0

1

2

3

4

5

V
E

S
1P

R
O

C
 B

ox
 P

lo
ts

0 1 0 1

ABCIX Treatment

2

5

2

5

2

5

V
E

S
1P

R
O

C
 B

ox
 P

lo
ts

1 2

3 4

5

18. Summary

As is clear from the above descriptions and examples, the SPSlogit(), SPSbalan() and
SPSoutco() R functions provide only relatively simple and straight-forward analyses. I started
out performing such computations primarily in JMP and Stata. I then used text files to port
tables of means and sample sizes to Excel to draw histograms. Although possibly pedagogical, I
quickly realized that my original “mostly-point-and-click” analysis process was actually highly
repetitive, tedious, error-prone and produced no satisfactory audit-trail for reproducing analyses.

Like many other interesting forms of data analysis, I think that propensity scoring and
instrumental variables adjustment methods need to be viewed as highly iterative, discovery
processes. Successfully making ones way through SPS step TWO can require several returns to
SPS step ONE. Only then can results from SPS steps THREE and FOUR be considered
meaningful. And convincing UPS analyses require exploring alternative clustering algorithms
and patient dissimilarity metrics in step ONE as well as a varying numbers of cluster-bins in
steps TWO and/or THREE. Outliers and missing values (NAs) can provide frustrations
throughout these journeys. The R functions described here hopefully provide enough basic
support (if only relief from tedium) to encourage PS practitioners to persevere and end up feeling
confident that their “sensitivity analyses” have been thorough.

The SPSloess() and SPSsmoot() functions are still in their early stages of development.
SPSloess() fits can tend to look rather “rough” compared to SPSsmoot() fits. Cubic
spline smoothing appears to give answers that are interpretable as smoothed mean values for
highly skewed distributions. Loess smoothing, at least when fam=“symmetric ,” tends to
give answers more easily interpretable as modes or medians of highly skewed distributions. This
median versus mean analogy may help explain why the weighted average signed treatment
differences from SPSloess() tend to seem more precise than those from SPSsmoot() for
highly skewed distributions.

USPSinR vignette Page ͵ͺ

References

Alzola C, Harrell FE. An Introduction to S-Plus and the Hmisc and Design Libraries. School

of Medicine, University of Virginia, Charlottesville, VA. 1999.

Angrist JD, Imbens GW, Rubin DB. "Identification of Causal Effects Using Instrumental

Variables." J Amer Stat Assoc 1996; 91: 444-472.

Barlow HB. “Unsupervised learning.” Neural Computation 1989; 1: 295-311.

Becker RA, Chambers JM, Wilks AR. The New S Language. Chapman & Hall, New York.

1988.

Chambers JM, Hastie TJ, eds. Statistical Models in S. Chapman & Hall, New York. 1992.

Cleveland WS, Devlin SJ (1988) “Locally-weighted regression: an approach to regression

analysis by local fitting.” J Amer Stat Assoc 83, 596-610.

Cochran WG. “The effectiveness of adjustment by subclassification in removing bias in

observational studies.” Biometrics 1968; 24: 205-213.

D’Agostino RB Jr. “Tutorial in Biostatistics: Propensity score methods for bias reduction in the

comparison of a treatment to a non-randomized control group.” Stat Med 1998; 17,
2265-2281.

Efron B. 1979, Computers and the Theory of Statistics: Thinking the Unthinkable, SIAM Review

1979; 21: 460-480.

Hastie TJ, Tibshirani RJ. Generalized Additive Models. Chapman and Hall, London. 1990.

Harrell FE (1997) Predicting Outcomes: Applied Survival Analysis and Logistic Regression.

University of Virginia, Charlottesville, VA.

Ho DE, Imai K, King G, Stuart EA. Matching as Nonparametric Preprocessing for Reducing

Model Dependence in Parametric Causal Inference, Political Analysis 2007: 15: 199-
236.

Hong Q, Obenchain RL, Zagar A, Faries DE. An Archive of R-code and Datasets for

Comparison of Observational Data Analyses via calls to SAS/STAT Procedures and
Macros, 2011; Unpublished Technical Materials. http://members.iquest.net/~softrx

Ihaka R, Gentleman R. “R: A language for data analysis and graphics.” J Comp & Graph Stat
1996; 5(3): 299-314.

Kaufman L, Rousseeuw PJ. Finding Groups in Data. An Introduction to Cluster Analysis.
New York: John Wiley and Sons. 1990.

USPSinR vignette Page ͵ͻ

Kereiakes DJ, Obenchain RL, Barber BL, Smith A, McDonald M, Broderick TM, Runyon JP,
Shimshak TM, Schneider JF, Hattemer CH, Roth EM, Whang DD, Cocks DL,
Abbottsmith CW. Abciximab provides cost effective survival advantage in high volume
interventional practice. Am Heart J 2000; 140: 603-610.

McClellan M, McNeil BJ, Newhouse JP. “Does More Intensive Treatment of Myocardial
Infarction in the Elderly Reduce Mortality?: Analysis Using Instrumental Variables.”
JAMA 1994; 272: 859-866.

Obenchain RL. “Nearest Neighbors Analysis for PRRAP, the Probable Report Rate Analysis

Plan.” Bell Laboratories TM-79-1711-4. 1979. Holmdel, NJ.

Obenchain RL, Melfi CA. “Propensity Score and Heckman Adjustments for Treatment

Selection Bias in Database Studies.” Proceedings of the Biopharmaceutical Section,
1997; 297-306. Washington, DC: American Statistical Association.

Obenchain RL. “Unsupervised Propensity Scoring: NN and IV Plots.” 2004 Proceedings of the

American Statistical Association (on CD.) 8 pages.

Obenchain RL. SAS Macros for Local Control (Phases One and Two), Observational Medical

Outcomes Partnership (OMOP), Foundation for the National Institutes of Health (Apache
2.0 License) 2009; http://members.iquest.net/~softrx

Obenchain RL. The Local Control Approach using JMP, Analysis of Observational Health Care

Data Using SAS, Faries DE, Leon AC, Haro JM, Obenchain RL, eds. Cary, NC: SAS
Press 2010; 151–192.

Obenchain RL. Observational Data Analysis Competition: Heterogeneous Response Challenge.

MBSW 2011; http://www.mbswonline.com/presentationyear.php?year=2011

Obenchain RL, Hong Q, Zagar A, Faries DE. Observational Data Simulation Scenarios for

Windzorized Yearly Costs of Patients with Major Depressive Disorder, 2011;
Unpublished Technical Materials. http://members.iquest.net/~softrx

Obenchain RL, Hong Q, Zagar A, Faries DE. Observational Data Analysis: MSE Loss
Comparisons of Local Control versus Parametric Models, 2011; Submitted.

Rosenbaum PR, Rubin RB. "The Central Role of the Propensity Score in Observational Studies

for Causal Effects.'' Biometrika 1983; 70: 41-55.

Rosenbaum PR, Rubin DB. "Reducing Bias in Observational Studies Using Subclassification on

a Propensity Score." J Amer Stat Assoc 1984; 79: 516-524.

Rosenbaum PR, Rubin DB. Constructing a control group using multivariate matched sampling

methods that incorporate the propensity score. Amer Statist 1985; 39: 33-38.

USPSinR vignette Page ͶͲ

Rosenbaum PR. “Optimal matching in observational studies.” J Amer Stat Assoc 1989; 84:
1024-1032.

Rosenbaum PR. “Multivariate matching methods.” In: Kotz S, Read CR, Banks D, eds.

Encyclopedia of Statistical Sciences, Update Volume 2. New York: J Wiley 1998: 435-
438.

Rosenbaum PR. Observational Studies, Second Edition. New York: Springer-Verlag 2002.

Rubin DB. “Bias reduction using Mahalanobis metric matching.” Biometrics 1980; 36: 293-

298.

S-PLUS User’s Guide (1999) and “S-PLUS 2000 On-Line Help” for the loess(),

smooth.spline(), predict() and density() functions. Data Analysis Products Division,
Insightful Corporation, Seattle, WA.

Stuart EA. Matching Methods for Causal Inference: A Review and a Look Forward, Statistical

Science 2010; 25: 1–21.
van der Laan M, Rose S. Statistics Ready for a Revolution: Next Generation of Statisticians must

build Tools for Massive Data Sets, AMStat News, 2010; September: 38-39.

Venables WN, Ripley BD. Modern Applied Statistics with S-Plus, Third Edition. New York;

SpringerVerlag. 1999.

Venables WN, Ripley BD. S Programming. New York; SpringerVerlag. 2000.

Software Updates:

2003.08 Fix error in standard deviation computation for the “weighted by bin size”

treatment difference estimate in SPSoutco() and UPSnnltd().

2004.01 Major upgrade to “object oriented” style; add UPS “sensitivity analysis” overview

UPSgraph() ; fix SPSbalan() trellis-style (lattice library) graphic;
unfortunately, new argument sequencing not backward compatible with earlier
versions.

2006.09 Upgrade functions (fix bugs and clarify terminology / titles / labels) and add

UPSaltdd() functionality for computing and visualizing the Artificial Distribution
of LTDs due to random patient clusterings.

2007.08 Upgrade plotting functions and make minor changes in terminology

USPSinR vignette Page Ͷͳ

2011.12 Update References and convert this file into a vignette.

Unsupervised R functions:
=========================

xvars <- c("x1", "x2", ..., "xN")

UPlinint <- function(q, xmin, n, x, w)

UPShclus <- function(dframe, xvars, method=diana)
 plot.UPShclus <- function(x)
 print.UPShclus <- function(x)

UPSaccum <- function(hiclus, dframe, trtm, yvar, faclev=3,
 accobj="UPSframe")

UPSaltdd <- function(dframe, trtm, yvar, faclev=3,
 scedas="homo", NNobj=NA, clus=50,
 reps=10, seed=12345)
 plot.UPSaltdd <- function(x, breaks=”Sturges”)
 print.UPSaltdd <- function(x)

UPSnnltd <- function(numclust)
 plot.UPSnnltd <- function(x)
 print.UPSnnltd <- function(x)
 summary.UPSnnltd <- function(x)

UPSivadj <- function(numclust)
 plot.UPSivadj <- function(x)
 print.UPSivadj <- function(x)
 summary.UPSivadj <- function(x)

UPSgraph <- function(nncol="red", nwcol="green3", ivcol="blue")

Supervised R functions:
=======================

form <- trtm~x1+x2+...+xN

SPSlogit <- function(dframe, form, pfit, prnk, qbin, bins=5,

USPSinR vignette Page Ͷʹ

 appn="")
 print.SPSlogit <- function(x)

SPSbalan <- function(dframe, trtm, qbin, xvar, faclev=3)
 plot.SPSbalan <- function(x)
 print.SPSbalan <- function(x)

SPSoutco <- function(dframe, trtm, qbin, yvar, faclev=3)
 plot.SPSoutco <- function(x)
 print.SPSoutco <- function(x)
 summary.SPSoutco <- function(x)

SPSsmoot <- function(dframe, trtm, pscr, yvar, faclev=3, df=5,
 spar=NULL, cv=F, penalty=1)
 plot.SPSsmoot <- function(x, tcol="blue", ucol="red",
 dcol="green3")
 print.SPSsmoot <- function(x)

SPSloess <- function(dframe, trtm, pscr, yvar, faclev=3, deg=2,
 span=0.75, fam=symmetric)
 plot.SPSloess <- function(x, tcol="blue", ucol="red",
 dcol="green3")
 print.SPSloess <- function(x)

