
A User’s Guide to the SpatialExtremes Package

Mathieu Ribatet† & Simone Padoan∗

Copyright ©2008

†Chair of Statistics
École Polytechnique Fédérale de Lausanne

Switzerland
∗Laboratory of Environmental Fluid Mechanics and Hydrology

École Polytechnique Fédérale de Lausanne
Switzerland

 100

 1
00

 100

 110

 110

 110

 110

 120

 1
30

 140

 150

 160

 160

 170

 1
70

 180

 1
80

 190

Contents

Introduction 2

1 An Introduction to Max-Stable Processes 4

1.1 The Smith’s Model . 4
1.2 The Schlather’s Model . 5

2 Fitting a Max-Stable Process to Data 6

2.1 Assuming Unit Fréchet Margins . 6
2.2 With Unknown GEV Margins . 8
2.3 Assessing Uncertainties . 10
2.4 Model Selection . 10

3 Manipulating and Visualising Fitted Models 12

3.1 Prediction of the GEV parameters . 12
3.2 Visualising the Extremal Coefficient . 12
3.3 Visualising the Covariance Function . 14
3.4 Producing a map of the GEV parameters and return levels 15

A Density and Gradient Computations 17

A.1 The Smith’s Model . 17
A.1.1 Useful quantities . 17
A.1.2 Density computation . 17
A.1.3 Gradient computation . 19

A.2 The Schlather’s Model . 22
A.2.1 Density computation . 22
A.2.2 Gradient computation . 23

i

List of Figures

3.1 Evolution of the (non-parametric) estimates of the extremal coefficient as the distance
increases. 13

3.2 Evolution of the extremal coefficient function in R2. 14
3.3 Comparison between the fitted covariance function and the theoretical one. 15

1

Introduction

What is the SpatialExtremes package?

The SpatialExtremes package is an add-on package for the R [?] statistical computing system. It
provides functions for the analysis of spatial extremes.
All comments, criticisms and queries on the package or associated documentation are gratefully received.

Obtaining the package/guide

The package can be downloaded from CRAN (The Comprehensive R Archive Network) at http://
cran.r-project.org/. This guide (in pdf) will be in the directory SpatialExtremes/doc/ underneath
wherever the package is installed. You can get it by invoking

> vignette("SpatialExtremesGuide")

Contents

This guide contains a few elements of theory on the modelling of spatial extremes as well as examples on
the use of the SpatialExtremes package. Section 1 gives an (light) introduction to max-stable processes
and defines two different characterisations of such processes. Section 2 presents the methodology used in
the package to fit max-stable processes to data while section 3 describes useful functions for prediction
and visualizing fitted models. Details for the computation of the pairwise density and gradient are
reported into the Annex A.

Caveat

I have checked these functions as best I can but, as ever, they may contain bugs. If you find a bug
or suspected bug in the code or the documentation please report it to me at mathieu.ribatet@epfl.ch.
Please include an appropriate subject line.

Legalese

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful, but without any warranty; without even
the implied warranty of merchantability or fitness for a particular purpose. See the GNU General Public
License for more details.
A copy of the GNU General Public License can be obtained from http://www.gnu.org/copyleft/gpl.
html.

2

http://cran.r-project.org/
http://cran.r-project.org/
mailto:mathieu.ribatet@epfl.ch
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

Acknowledgements

This work has been supported by the Competence Center Environment and Sustainability within the
EXTREMES project.

3

http://www.cces.ethz.ch/index
http://www.cces.ethz.ch/projects/hazri/EXTREMES

Chapter 1

An Introduction to Max-Stable
Processes

A max-stable process Z(·) is the limit process of maxima of independent identically distributed random
fields Yi(x), x ∈ Rd. Namely, for suitable an(x) > 0 and bn(x) ∈ R,

Z(x) = lim
n→+∞

maxni=1 Yi(x)− bn(x)
an(x)

, x ∈ Rd (1.1)

Note that (1.1) does not ensure that the limit exists. However, provided it does and from (1.1), we can
see that max-stable processes might be appropriate models for modelling annual maxima of spatial data.
Currently, there are two different characterisations of a max-stable process. The first one, often re-
ferred to the rainfall-storm model, as first been introduced by ?. More recently, ? introduced a new
characterisation of a max-stable process allowing for a random shape.
It is out of the scope of this document to describe fully the main differences between the two canonical
constructions. We will restrict our attention to particular cases of these characterisations.
Unfortunately, closed forms for the density of these two models are only known for two different points in
Rd. Consequently, fitting max-stable processes to data is not straightforward and the SpatialExtremes
package provides convenient tools for it.

1.1 The Smith’s Model

The Smith’s model1 is given by:

Pr[Z1 ≤ z1, Z2 ≤ z2] = exp
[
− 1
z1

Φ
(
a

2
+

1
a

log
z2

z1

)
− 1
z2

Φ
(
a

2
+

1
a

log
z1

z2

)]
(1.2)

where Φ is the standard normal cumulative distribution function and, for two given locations #1 and #2

a2 = ∆xTΣ−1∆x and Σ =
[
cov11 cov12

cov12 cov22

]
or Σ =

cov11 cov12 cov13

cov12 cov22 cov23

cov13 cov23 cov33

 and so forth

where ∆x is the distance vector between location #1 and location #2.
The derivation of the density is reported in section A.1.2. Currenlty, the package only handle 2 by 2 or
3 by 3 covariance matrix Σ.

1There’s another form of the Smith’s model that uses a Student distribution instead of the Normal one. However, it is
not currently implemented.

4

1.2 The Schlather’s Model

The Schlather’s model is given by:

Pr[Z1 ≤ z1, Z2 ≤ z2] = exp
[
−1

2

(
1
z1

+
1
z2

)(
1 +

√
1− 2(ρ(h) + 1)

z1z2

(z1 + z2)2

)]
(1.3)

where h is the distance between location #1 and location #2 and ρ(h) is a valid correlation function
such as −1 ≤ ρ(h) ≤ 1.
Currently, there is three types of covariance functions implemented:

Whittle-Matérn ρ(h) = sill 21−smooth

Γ(smooth)

(
h

range

)smooth
Ksmooth

(
h

range

)
Cauchy ρ(h) = sill

[
1 +

(
h

range

)2
]−smooth

Powered Exponential ρ(h) = sill exp
[
−
(

h
range

)smooth]
where h is the distance between locations #1 and #2, sill, range and smooth are the sill, the range and
the smooth parameters of the covariance function, Γ is the gamma function and Ksmooth is the modified
Bessel function of the third kind with order smooth.
The derivation of the density is reported in section A.2.1.

5

Chapter 2

Fitting a Max-Stable Process to
Data

As stated in the previous chapter, the densities of the two max-stable characterisations are only known
for two different locations. The strategy used in the package is to use pairwise-likelihood instead of the
“full” likelihood. Namely, the log pairwise-likelihood is given by:

`p(y;ψ) =
∑
i<j

ni,j∑
k=1

log f(y(i)
k , y

(j)
k) (2.1)

where y is the data available on the whole region, ni,j is the number of common observations between
sites i and j, y(i)

k is the k-th observation of the i-th site and f(·, ·) is the bivariate distribution of the
max-stable process - see Annex A for the analytical forms.
Consequently, the max-stable process is fitted to data by maximizing the log pairwise-likelihood1. Prop-
erties of the maximum composite likelihood estimator2 are well known [??]. In particular, because
each pairwise score equation is unbiased, the sum of these score equations is unbiased too and leads to
consistent estimations.
If one is interested only in fitting the covariance matrix Σ or the covariance function ρ to data, another
fitting procedure is available. The strategy is estimate the extremal coefficient and to fit either the
Smith’s or the Schlather’s models using a least square criterion.

2.1 Assuming Unit Fréchet Margins

To start working with the SpatialExtremes package, let consider a simple case study for which each
location is unit Fréchet distributed. M. Schlather developed a R package called RandomFields to simulate
spatial random fields from a max-stable process. Consequently, all we need is to define the coordinate
of each location as well as the parameters of the covariance function in equation (A.29).

> library(RandomFields)

> n.site <- 40

> locations <- matrix(runif(2 * n.site, 0, 10), ncol = 2)

> colnames(locations) <- c("lon", "lat")

> ms0 <- MaxStableRF(locations[, 1], locations[, 2], grid = FALSE,

+ model = "wh", param = c(0, 1, 0.2, 3, 1.2), maxstable = "extr",

+ n = 80)

> ms0 <- t(ms0)

1This is why the fitting procedure may be time consuming with large region.
2In our case, the maximum pairwise likelihood estimator

6

For this application, the covariance function is taken to be the Whittle-Matérn covariance function with
sill, range and smooth parameters equal to 0.8 (1 - 0.2), 3 and 1.2 respectively. The locations are
distributed uniformly on the square [0, 10]2.
To fit a max-stable process using pairwise likelihood and assuming unit Fréchet margins, all we have to
do is to invoke:

> fitmaxstab(ms0, locations, cov.mod = "whitmat", fit.marge = FALSE)

Estimator: MPLE
Model: Schlather

Pair. Deviance: 492581.5
TIC: NA

Covariance Family: Whittle-Matern

Estimates
Marginal Parameters:
Assuming unit Frechet.
Dependence Parameters:
sill range smooth

0.8580 4.8095 0.6701

Optimization Information
Convergence: successful
Function Evaluations: 232

From this output, we can see that we indeed use the Schlather’s representation with a Whittle-Matérn
covariance function. The pairwise deviance is given and the Takeuchi’s information criterion (TIC) is not
available (NA) - see section 2.4 for more details. The convergence was successful and the estimates of the
covariance function are accessible. Note that large deviations from the theoretical values are not fatal as
the parameters of the Whittle-Matérn covariance function are far from orthogonal. Thus, the range and
smooth estimates may be totally different while leading (approximately) to the same covariance function.
When using the Whittle-Matérn covariance function, it is sometimes preferable to fix the smooth param-
eter using prior knowledge on the process smoothness [?]. This can be done by:

> fitmaxstab(ms0, locations, cov.mod = "whitmat", smooth = 1.2,

+ fit.marge = FALSE)

Despite the Whittle-Matérn is a flexible covariance function, one may want to consider other types of
covariance functions. This is achieved by invoking:

> fitmaxstab(ms0, locations, cov.mod = "cauchy", fit.marge = FALSE)

> fitmaxstab(ms0, locations, cov.mod = "powexp", fit.marge = FALSE)

One may also consider the Smith’s characterisation instead of the Schlather’s one:

> sigma = matrix(c(100, 25, 25, 220), ncol = 2)

> sigma.inv = solve(sigma)

> sqrtCinv = t(chol(sigma.inv))

> model = list(list(model = "gauss", var = 1, aniso = sqrtCinv/2))

> msSmith <- MaxStableRF(locations[, 1], locations[, 2], grid = FALSE,

+ model = model, maxstable = "Bool", n = 50)

> msSmith <- t(msSmith)

> fitmaxstab(msSmith, locations, cov.mod = "gauss", fit.marge = FALSE)

Obvisously, for each covariance model, one can fix any parameter; so that all the two following codes are
valid:

7

> fitmaxstab(ms0, locations, cov.mod = "gauss", cov12 = 0, fit.marge = FALSE)

> fitmaxstab(ms0, locations, cov.mod = "cauchy", range = 3, fit.marge = FALSE)

Note that passing fit.marge = TRUE in all the previous codes will result in fitting the GEV parameters
for each location. However, be careful as it will be really CPU demanding as there will be 3 n.site + p
parameters to estimate - where p is the number of parameters for the covariance part.
It is also possible to used different optimization routines to fit the model to data. This is achieved by
passing the method argument. For instance, if one want to use the BFGS method:

> fitmaxstab(ms0, locations, cov.mod = "gauss", cov12 = 0, fit.marge = FALSE,

+ method = "BFGS")

Instead of using the optim function, one may want to use the nlm or nlminb functions. This is done as
before using the method = "nlm" or method = "nlminb" option.
If now, we want to fit the model using the least square criterion:

> fitcovmat(ms0, locations)

> fitcovariance(ms0, locations, "whitmat")

2.2 With Unknown GEV Margins

In practice, the observations will never be drawn from a unit Fréchet distribution so that the previous
section won’t help much with concrete applications. One way to avoid this problem is to fit a GEV to
each location and then transform all data to unit Fréchet. This is done using the gev2frech function
and the following code:

> x <- c(2.2975896, 1.6448808, 1.3323833, -0.4464904, 2.2737603,

+ -0.2581876, 9.5184398, -0.5899699, 0.4974283, -0.8152157)

> gev2frech(x, 1, 2, 0.2)

[1] 1.8404710 1.3667970 1.1776129 0.4578484 1.8211427 0.5105137
[7] 21.7781994 0.4207148 0.7727342 0.3673129

The drawback of this approach is that standard errors are definitively lost as the margins are first fitted
and then the covariance structure. Consequently, the standard errors related to the covariance function
are underestimated as we suppose that data are originally unit Fréchet.
Fortunately, the SpatialExtremes solves this problem by fitting in one step both GEV and covariance
parameters. This could be done in two ways. First, one can pass the option fit.marge = TRUE. However,
as said in the previous section this will be really time consuming. Another drawback is that prediction
at ungauged location won’t be possible.
Another way may be to fit a response surface for the GEV parameters. Currently, the response surfaces
allowed by the package are polynomial surfaces or a penalized smoothing spline3.
The SpatialExtremes package defines response surfaces using the R formula approach e.g.

> y ~ lat + I(lon^2)

for a polynomial surface and

> n.knots <- 5

> knots <- quantile(locations[, 2], prob = 1:n.knots/(n.knots +

+ 1))

> y ~ rb(lat, knots = knots, degree = 3, penalty = 0.5)

3this is an exclusive “or” (or xor) i.e. a response surface with a polynomial and a spline is not possible

8

penalty coefficient (also known as the smoothing parameter) equals to 0.5.
Let start with a simple polynomial surface. For this purpose, we need to simulate a max-stable process
and then transform the observations to the desired GEV scale. This could be done by the following lines:

> n.site <- 20

> locations <- matrix(runif(2 * n.site, 0, 10), ncol = 2)

> colnames(locations) <- c("lon", "lat")

> sigma = matrix(c(100, 25, 25, 220), ncol = 2)

> sigma.inv = solve(sigma)

> sqrtCinv = t(chol(sigma.inv))

> model = list(list(model = "gauss", var = 1, aniso = sqrtCinv/2))

> ms0 <- MaxStableRF(locations[, 1], locations[, 2], grid = FALSE,

+ model = model, maxstable = "Bool", n = 50)

> ms1 <- t(ms0)

> param.loc <- -10 + 2 * locations[, 2]

> param.scale <- 5 + 2 * locations[, 1] + locations[, 2]^2

> param.shape <- rep(0.2, n.site)

> for (i in 1:n.site) ms1[, i] <- param.scale[i] * (ms1[, i]^param.shape[i] -

+ 1)/param.shape[i] + param.loc[i]

Once the data are appropriately generated, we need to define the response surface for the fitted max-
stable model. This is done invoking:

> loc.form <- y ~ lat

> scale.form <- y ~ lon + I(lat^2)

> shape.form <- y ~ 1

Lastly, one can easily fit the model to data using:

> fitmaxstab(ms1, locations, "gauss", loc.form = loc.form, scale.form = scale.form,

+ shape.form = shape.form)

If we want to fit a spline for the location GEV parameter while preserving the polynomials for the scale
and shape parameters, this will require a little more steps as the knots and the penalty coefficient must
be defined4.

> n.knots <- 5

> knots <- quantile(locations[, 2], 1:n.knots/(n.knots + 1))

> loc.form <- y ~ rb(lat, knots = knots, degree = 3, penalty = 0.5)

> fitmaxstab(ms1, locations, "gauss", loc.form = loc.form, scale.form = scale.form,

+ shape.form = shape.form)

Obviously, all these steps still remain valid when fitting the Schlather’s model. Note that you can fix any
parameter as before for example, if one want to suppose that scaleCoeff3 = 1, this is done by invoking
the following line:

> fitmaxstab(ms1, locations, "powexp", loc.form = loc.form, scale.form = scale.form,

+ shape.form = shape.form, scaleCoeff3 = 1)

Please note that when using 3 smoothing splines for the GEV parameters, you might have to tweak the
ndeps option in the optim function if you use the BFGS optimization procedure:

> fitmaxstab(ms1, locations, "powexp", loc.form = loc.form, scale.form = scale.form,

+ shape.form = shape.form, control = list(ndeps = rep(10^-6,

+ n.par)), method = "BFGS")

where n.par is the number of parameters to be estimated.
4Currently, an automatic criteria for defining the “best” penalty coefficient does not exist.

9

2.3 Assessing Uncertainties

As stated in section 2, because the model is fitted by maximizing the pairwise likelihood instead of the
“full” likelihood, the model is misspecified. Consequently, the maximum pairwise likelihood estimator is
still asymptotically normally distributed but with a different asymptotic covariance matrix. Namely, the
maximum pairwise likelihood estimator ψ̂p satisfies the following relation:

ψ̂p ∼ N
(
ψ,H(ψ)−1J(ψ)H(ψ)−1

)
, n→ +∞ (2.2)

where H(ψ) = E[∇2`p(ψ; Y)] (the Hessian matrix) and J(ψ) = Var[∇`p(ψ; Y)], where the expectations
are with respect to the “full” density.
In practice, to get the standard errors we need to get efficient estimates of H(ψ) and J(ψ). The estimation
of the former is straightforward and is given by Ĥ(ψ̂p) = ∇2`p(ψ̂p; y); that is the Hessian matrix evaluated
at ψ̂p.
The estimation of J(ψ) can be done in two different ways. First, it can be estimated using the “naive”

estimator Ĵ(ψ̂p) = ∇`p(ψ̂p; y)`p(ψ̂p; y)
T

. In the SpatialExtremes package, this estimator is tagged
grad as it uses the gradient of the log pairwise likelihood. Another estimator is given by noticing
that J(ψ) corresponds to the variance of the pairwise score equations `p(ψ; Y) = 0. Consequently, a
second estimator, tagged score, is given by the sample variance of each contribution to the pairwise
score function. Note that the second estimator is only accessible if independent replications of Y are
available5.
These two types of standard errors are available by invoking the following two lines:

> fitmaxstab(ms0, locations, cov.mod = "gauss", fit.marge = FALSE,

+ std.err.type = "score")

> fitmaxstab(ms0, locations, cov.mod = "gauss", fit.marge = FALSE,

+ std.err.type = "grad")

2.4 Model Selection

It is sometimes useful to fit several models to data and then compare the models together. To this
aim, the well-known Akaike information criterion (AIC) is often used. Because we work under miss-
specification, AIC is not appropriate anymore. Instead, we will use a generalization of the Takeuchi’s
information criterion. ? show that, under miss-specification, an appropriate selection statistic is given
by:

TIC = −`p(ψp)− tr
{
JH−1

}
(2.3)

In accordance with the AIC, the best model will corresponds to the one that minimizes equation (2.3).
In practice, one can have a look at the output of the fitmaxstab function or use the TIC function.

> n.site <- 40

> locations <- matrix(runif(2 * n.site, 0, 10), ncol = 2)

> colnames(locations) <- c("lon", "lat")

> ms0 <- MaxStableRF(locations[, 1], locations[, 2], grid = FALSE,

+ model = "stable", param = c(0, 1, 0, 3, 1.2), maxstable = "extr",

+ n = 80)

> ms0 <- t(ms0)

> model1 <- fitmaxstab(ms0, locations, cov.mod = "powexp", fit.marge = FALSE,

+ sill = 1)

> model2 <- fitmaxstab(ms0, locations, cov.mod = "cauchy", fit.marge = FALSE,

+ sill = 1)

> TIC(model1, model2)

5which will mostly be the case for spatial extremes.

10

TIC is useful when comparing different models. However, it may lack of power if the two models are
nested. When dealing with nested models, one may prefer using the so called likelihood ratio statistics.
Because we are working with a misspecified model, the usual asymptotic χ2

p distribution, where p is the
number of parameter to be estimated, doesn’t hold anymore. There’s two way to solve this issue: (a)
adjusting the χ2 distribution or (b) adjusting the composite likelihood so that the usual χ2

p holds - see ?.

> require(RandomFields)

> n.site <- 30

> locations <- matrix(rnorm(2 * n.site, sd = sqrt(0.2)), ncol = 2)

> colnames(locations) <- c("lon", "lat")

> sigma <- matrix(c(100, 25, 25, 220), ncol = 2)

> sigma.inv <- solve(sigma)

> sqrtCinv <- t(chol(sigma.inv))

> model <- list(list(model = "gauss", var = 1, aniso = sqrtCinv/2))

> ms0 <- MaxStableRF(locations[, 1], locations[, 2], grid = FALSE,

+ model = model, maxstable = "Bool", n = 50)

> ms0 <- t(ms0)

> M0 <- fitmaxstab(ms0, locations, "gauss", fit.marge = FALSE)

> M1 <- fitmaxstab(ms0, locations, "gauss", fit.marge = FALSE,

+ cov11 = 100)

> anova(M0, M1)

11

Chapter 3

Manipulating and Visualising Fitted
Models

3.1 Prediction of the GEV parameters

Once the model is fitted, one may want to get the estimates of the GEV parameters at any locations.
This is achieved using the predict function:

> fitted <- fitmaxstab(ms1, locations, "gauss", loc.form = loc.form,

+ scale.form = scale.form, shape.form = shape.form)

> predict(fitted)

If one want to get estimates of the GEV parameters at an ungauged locations, this is done by adding a
matrix giving the new coordinates. Be careful, if new coordinates are supplied, the column names of the
new coordinates should match with the ones of the original coordinates. For our application, this could
be done as follows:

> new.coord <- cbind(3:6, 7:10)

> colnames(new.coord) <- c("lon", "lat")

> predict(fitted, new.coord)

3.2 Visualising the Extremal Coefficient

The extremal coefficient is a useful quantity to assess the dependence between two locations x1 and
x2 ∈ Rd. Assuming that the data could be modeled by a max-stable process with unit Fréchet margin,
the extremal coefficient θ(x1 − x2) satisfies:

Pr [Z(x1) ≤ z, Z(x2) ≤ z] = exp
(
−θ(x1 − x2)

z

)
(3.1)

where 1 ≤ θ(x1 − x2) ≤ 2 with the lower and upper bounds corresponding to complete dependence and
independence between locations x1 and x2.
Consequently, the extremal coefficient function θ(·) is a natural way to know how evolves the dependence
between extremes in space.
The SpatialExtremes package proposes two way to plot the evolution of the extremal coefficient as the
distance increases. The first one is to use an empirical estimation of the extremal coefficient; while the
second uses a parametric estimation using the Smith’s and Schlather’s models.
? introduced a methodology to estimate non parametrically the extremal coefficient. The fitextcoeff
function uses this methodology to get estimates for each pair of stations within the region and plots the

12

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 2 4 6 8 10

1.
1

1.
2

1.
3

1.
4

1.
5

h

θθ((
h))

Figure 3.1: Evolution of the (non-parametric) estimates of the extremal coefficient as the distance in-
creases.

evolution of these estimates as the distance increases. In addition, by default, a lowess curve can also be
plotted to help detecting trends. This is done using the following lines and Figure 3.1 plots the resulting
output.

> n.site <- 30

> locations <- matrix(runif(2 * n.site, 0, 10), ncol = 2)

> colnames(locations) <- c("lon", "lat")

> ms0 <- MaxStableRF(locations[, 1], locations[, 2], grid = FALSE,

+ model = "wh", param = c(0, 1, 0, 30, 0.5), maxstable = "extr",

+ n = 40)

> ms0 <- t(ms0)

> exco <- fitextcoeff(ms0, locations, estim = "Smith")

The closed form of the extremal coefficient function is known for both Smith’s and Schlather’s models.
Namely, the function is given by:

Smith θ(x1 − x2) = 2Φ
(√

(x1−x2)TΣ−1(x1−x2)

2

)
Schlather θ(||x1 − x2||) = 1 +

√
1−ρ(||x1−x2||)

2

The SpatialExtremes package allows to plot the evolution of the extremal coefficient function using the
extcoeff function - see Fig. 3.2.

13

lon

la
t 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

−600 −400 −200 0 200 400 600

−
60

0
−

40
0

−
20

0
0

20
0

40
0

60
0

Figure 3.2: Evolution of the extremal coefficient function in R2.

> fitted <- fitmaxstab(ms0, locations, "whitmat", fit.marge = FALSE)

> extcoeff(fitted)

3.3 Visualising the Covariance Function

Another way to assess how evolves the dependence between extremes as the distance increases is to
plot the covariance function. This is done using the covariance function. Note that this function is
(currently) only available for the Schlather’s model.
Basically, there are two ways to call the covariance function. We can call it once we have fitted a
max-stable process or by specifying directly the covariance parameters.
For illustration purpose, Fig. 3.3 compares the fitted covariance function to the theoretical one.

> covariance(fitted, ylim = c(0, 1))

> covariance(sill = 1, range = 30, smooth = 0.5, cov.mod = "whitmat",

+ col = 3, add = TRUE)

> legend("topright", c("Fitted", "Theo"), lty = 1, col = c(1, 3),

+ inset = 0.05)

Note that one can also compute the covariance at a given distance by invoking:

14

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

ρρ((
h))

Fitted
Theo

Figure 3.3: Comparison between the fitted covariance function and the theoretical one.

> rbind(fitted = covariance(fitted, dist = seq(0, 10, 3))$cov.val,

+ theo = covariance(sill = 1, range = 30, smooth = 0.5, cov.mod = "whitmat",

+ dist = seq(0, 10, 3))$cov.val)

[,1] [,2] [,3] [,4]
fitted 1 0.9072376 0.8563427 0.8148617
theo 1 0.9048374 0.8187308 0.7408182

3.4 Producing a map of the GEV parameters and return levels

Most often, practitioners will like to have a map of the GEV parameters or a map of return levels with
a given return period. This is done using the map function.
To illustrate this feature, let use the previous fitted model. One can have a contour plot the evolution
of the GEV parameters in Rd by invoking the following code:

> par(mfrow = c(1, 3))

> map(fitted, "loc", col = rainbow(80))

> title("Location")

> map(fitted, "scale", col = heat.colors(80))

> title("Scale")

15

> map(fitted, "shape", col = topo.colors(100))

> title("Shape")

Note that tuning the option col will allow users to choose an appropriate color palette.
In addition, it is possible to plot a map of the 50-year return level while focusing on a specific part of
the region under study:

> new.ranges <- cbind(c(3, 9), c(2, 10))

> colnames(new.ranges) <- c("lon", "lat")

> map(fitted, "quant", ret.per = 50, ranges = new.ranges)

16

Appendix A

Density and Gradient Computations

A.1 The Smith’s Model

Let us recall that the Smith’s model is given by:

Pr[Z1 ≤ z1, Z2 ≤ z2] = exp
[
− 1
z1

Φ
(
a

2
+

1
a

log
z2

z1

)
− 1
z2

Φ
(
a

2
+

1
a

log
z1

z2

)]
(A.1)

where Φ is the standard normal cumulative distribution function and, for two locations #1 and #2

a2 = ∆xTΣ−1∆x and Σ =
[
cov11 cov12

cov12 cov22

]
or Σ =

cov11 cov12 cov13

cov12 cov22 cov23

cov13 cov23 cov33


where ∆x is the distance vector between location #1 and location #2.

A.1.1 Useful quantities

Computation of the density as well as the gradient of the density is not difficult but “heavy” though. For
computation facilities and to help readers, we define:

c1 =
a

2
+

1
a

log
z2

z1
and c2 =

a

2
+

1
a

log
z1

z2
(A.2)

From these definitions, we note that c1 + c2 = a.

A.1.2 Density computation

From (A.1), we note the standard normal distribution appears. Consequently, we need to compute its
derivatives at c1 and c2 with respect to z1 and z2.

∂c1
∂z1

=
1
a

(
− z2

z2
1

z1

z2

)
= − 1

az1

∂c1
∂z2

=
1
a

1
z1

z1

z2
=

1
az2

(A.3)

∂c2
∂z1

= −∂c1
∂z1

=
1
az1

∂c2
∂z2

= −∂c1
∂z2

= − 1
az2

(A.4)

17

As the normal distribution appears in the Smith’s characterisation, the following quantities will be useful:

∂Φ(c1)
∂z1

=
∂Φ(c1)
∂c1

∂c1
∂z1

= −ϕ(c1)
az1

∂Φ(c1)
∂z2

=
∂Φ(c1)
∂c1

∂c1
∂z2

=
ϕ(c1)
az2

(A.5)

∂Φ(c2)
∂z1

=
∂Φ(c2)
∂c2

∂c2
∂z1

=
ϕ(c2)
az1

∂Φ(c2)
∂z2

=
∂Φ(c2)
∂c2

∂c2
∂z2

= −ϕ(c2)
az2

(A.6)

∂ϕ(c1)
∂z1

=
∂ϕ(c1)
∂c1

∂c1
∂z1

=
c1ϕ(c1)
az1

∂ϕ(c1)
z2

=
∂ϕ(c1)
∂c1

∂c1
∂z2

= −c1ϕ(c1)
az2

(A.7)

∂ϕ(c2)
∂z1

=
∂ϕ(c2)
∂c2

∂c2
∂z1

= −c2ϕ(c2)
az1

∂ϕ(c2)
∂z2

=
∂ϕ(c2)
∂c2

∂c2
∂z2

=
c2ϕ(c2)
az2

(A.8)

Define
A =

1
z1

Φ(c1) and B =
1
z2

Φ(c2) (A.9)

Consequently, F (z1, z2) = exp(−A−B) and

∂F

∂z1
(z1, z2) = −

(
∂A

∂z1
+
∂B

∂z1

)
F (z1, z2)

∂F

∂z2
(z1, z2) = −

(
∂A

∂z2
+
∂B

∂z2

)
F (z1, z2) (A.10)

By noting that

∂A

∂z1
= −Φ(c1)

z2
1

+
1
z1

(
−ϕ(c1)

az1

)
= −Φ(c1)

z2
1

− ϕ(c1)
az2

1

(A.11)

∂B

∂z1
=

1
z2

ϕ(c2)
az1

=
ϕ(c2)
az1z2

(A.12)

∂A

∂z2
=

1
z1

ϕ(c1)
az2

=
ϕ(c1)
az1z2

(A.13)

∂B

∂z2
= −Φ(c2)

z2
2

+
1
z2

(
−ϕ(c2)

az2

)
= −Φ(c2)

z2
2

− ϕ(c2)
az2

2

(A.14)

and

∂2A

∂z2∂z1
=

∂

∂z2

(
−Φ(c1)

z2
1

− ϕ(c1)
az2

1

)
= −ϕ(c1)

az2
1z2

+
c1ϕ(c1)
a2z2

1z2
= −c2ϕ(c1)

a2z2
1z2

(A.15)

∂2B

∂z2∂z1
=

∂

∂z2

ϕ(c2)
az1z2

= −c1ϕ(c2)
a2z1z2

2

(A.16)

So that,

∂F

∂z1
(z1, z2) =

(
Φ(c1)
z2

1

+
ϕ(c1)
az2

1

− ϕ(c2)
az1z2

)
F (z1, z2) (A.17)

∂F

∂z2
(z1, z2) =

(
Φ(c2)
z2

2

+
ϕ(c2)
az2

2

− ϕ(c1)
az1z2

)
F (z1, z2) (A.18)

Finally,

∂2F

∂z2∂z1
(z1, z2) = −

(
∂2A

∂z2∂z1
+

∂2B

∂z2∂z1

)
F (z1, z2)−

(
∂A

∂z1
+
∂B

∂z1

)
∂F

∂z2
(z1, z2) (A.19)

Thus, it leads to the following relation:

f(z1, z2) =
[
c2ϕ(c1)
a2z2

1z2
+
c1ϕ(c2)
a2z1z2

2

+
(

Φ(c1)
z2

1

+
ϕ(c1)
az2

1

− ϕ(c2)
az1z2

)(
Φ(c2)
z2

2

+
ϕ(c2)
az2

2

− ϕ(c1)
az1z2

)]
F (z1, z2)

(A.20)

18

A.1.3 Gradient computation

As said in section 2.3, the maximum pairwise likelihood estimator ψp satisfies:

ψp ∼ N
(
ψ,H−1JH−1

)
where H is the Fisher information matrix and J as defined in Section 2.3. This section aims to derive
analytical form for J .
Let us recall that the log pairwise likelihood is defined by:

`p(z,Ψ) =
nobs∑
k=1

nsite−1∑
i=1

nsite∑
j=i+1

log f(z(i)
k , z

(j)
k)

where nobs is the number of observations, zk = (z(1)
k , . . . , z

(nsite)
k) is the k-th observation vector, nsite is

the number of site within the region and f is the bivariate density.
Consequently, the gradient of the log pairwise density is given by:

∇`p(Ψ) =
nsite−1∑
i=1

nsite∑
j=i+1

∇ log f(z(i)
k , z

(j)
k)

Define:

A = −Φ(c1)
z1

− Φ(c2)
z2

B =
Φ(c2)
z2

2

+
ϕ(c2)
az2

2

− ϕ(c1)
az1z2

C =
Φ(c1)
z2

1

+
ϕ(c1)
az2

1

− ϕ(c2)
az1z2

D =
c2ϕ(c1)
a2z2

1z2
+
c1ϕ(c2)
a2z1z2

2

so that,
log f(z(i)

k , z
(j)
k) = A+ log(BC +D)

With Unit Fréchet Margins

For clarity purposes, let start our computations assuming that the observations have unit Fréchet margins.
For this special case, the logarithm of the bivariate density f is only a function of the Mahalanobis
distance a, the gradient w.r.t. the covariance matrix elements cov11, cov12 and cov22 is given through
the following relation1:

∇Σ log f(z(i)
k , z

(j)
k) =

∂

∂a
log f(z(i)

k , z
(j)
k)∇Σa

T

where ∇Σa is the gradient of the Mahalanobis distance w.r.t. the covariance matrix element i.e.
(∂a
∂cov11

, ∂a
∂cov12

, ∂a
∂cov22

).
For clarity purposes, we first compute the following quantities:

∂c1
∂a

=
1
2
− 1
a2

log
z2

z1
=
c2
a

∂c2
∂a

=
c1
a

∂Φ(c1)
∂a

=
∂Φ(c1)
∂c1

∂c1
∂a

=
c2ϕ(c1)

a

∂Φ(c2)
∂a

=
c1ϕ(c2)

a

∂ϕ(c1)
∂a

=
∂ϕ(c1)
∂c1

∂c1
∂a

= −c1c2ϕ(c1)
a

∂ϕ(c2)
∂a

= −c1c2ϕ(c2)
a

∂c2ϕ(c1)
∂a

=
c1(1− c22)ϕ(c1)

a

∂c1ϕ(c2)
∂a

=
(1− c21)c2ϕ(c2)

a
1algebra operators are defined component-wise.

19

Consequently, we have:

dAa =
∂A

∂a
= − 1

z1

c2ϕ(c1)
a

− 1
z2

c1ϕ(c2)
a

= −c2ϕ(c1)
az1

− c1ϕ(c2)
az2

dCa =
∂C

∂a
=

1
z2

1

c2ϕ(c1)
a

+
1
z2

1

− c1c2ϕ(c1)
a a− ϕ(c1)

a2
− 1
z1z2

− c1c2ϕ(c2)
a a− ϕ(c2)

a2

=
c2ϕ(c1)
az2

1

− (1 + c1c2)ϕ(c1)
a2z2

1

+
(1 + c1c2)ϕ(c2)

a2z1z2

=
[c2(a− c1)− 1]ϕ(c1)

a2z2
1

+
(1 + c1c2)ϕ(c2)

a2z1z2

=
(c22 − 1)ϕ(c1)

a2z2
1

+
(1 + c1c2)ϕ(c2)

a2z1z2

dBa =
∂B

∂a
=

(c21 − 1)ϕ(c2)
a2z2

2

+
(1 + c1c2)ϕ(c1)

a2z1z2

dDa =
∂D

∂a
=

1
z2

1z2

c1(1−c22)ϕ(c1)
a a2 − 2ac2ϕ(c1)

a4
+

1
z1z2

2

(1−c12)c2ϕ(c2)
a a2 − 2ac1ϕ(c2)

a4

=
(c1 − 2c2 − c1c22)ϕ(c1)

a3z2
1z2

+
(c2 − 2c1 − c21c2)ϕ(c2)

a3z1z2
2

Finally,

∇Σ log f(x(i)
k , x

(j)
k) =

[
dAa +

(CdBa +BdCa + dDa)
BC +D

]
· ∇Σa

T

With Ordinary GEV Margins

In the previous section, we derived the gradient assuming unit Fréchet margins. Now, we consider the
more general case where margins are supposed to be ordinary GEV.
We have to be aware that the bivariate density changes when we do not suppose unit Fréchet margins
anymore. For instance, the bivariate density evaluated at two observations y1 and y2 with ordinary GEV
margins is now given by:

f(y1, y2) = f(z1, z2)|J(y1, y2)| (A.21)

where z1 (resp. z2) is the transformation of y1 (resp. y2) to the unit Fréchet scale and |J(y1, y2)| is the
determinant of the Jacobian related to the transformation (y1, y2) 7→ (z1, z2).
For clarity purpose, we can write the logarithm of the bivariate density as follows:

log f(y1, y2) = A+ log (BC +D) + E

where E = log |J(y1, y2)| and the quantities A, B, C and D are the same as in the previous section.
The transformation from yi to zi is given by:

zi =
(

1 + ξi
yi − µi
σi

) 1
ξi

+

(A.22)

where µi, σi and ξi are the GEV location, scale and shape parameters and x+ = min(0, x).
Consequently, we need a response surface (see section 2.2) to model the evolution of the GEV parameters
in space. Let suppose that we have a polynomial response surface for each GEV parameter, one can
write:

µ = Xµβµ (A.23)
σ = Xσβσ (A.24)
ξ = Xξβξ (A.25)

20

where µ = (µ1, . . . , µnsite), σ = (σ1, . . . , σnsite) and ξ = (ξ1, . . . , ξnsite) are the vector for the location,
scale and shape GEV parameters for all the sites within the region study, Xµ, Xσ and Xξ are the design
matrices for each GEV parameters and βµ, βσ and βξ are the regression coefficients to be estimated.
Consequently, from one ordinary GEV observation y, one can transform it to unit Fréchet margins using
the following transformation:

zi =

{
1 +

X
(i)
ξ βξ(yi −X(i)

µ βµ)

X
(i)
σ βσ

}1/(X
(i)
ξ βξ)

, i = 1, . . . , nsite (A.26)

where X(i) stands for the i-th row of the design matrix X and zi denotes the i-th element of the vector
z.
Consequently, |J(y1, y2)| is given by:

|J(y1, y2)| = 1

X
(i)
σ βσX

(j)
σ βσ

(
1 +X

(i)
ξ βξ

yi −X(i)
µ βµ

X
(i)
σ βσ

) 1

X
(i)
ξ
βξ

−1

+

(
1 +X

(j)
ξ βξ

y2 −X(j)
µ βµ

X
(j)
σ βσ

) 1

X
(j)
ξ

βξ

−1

+

(A.27)
It is easy to see that:

∂zi
∂βµ

= −z
1−X(i)

ξ βξ
i X

(i)
µ

X
(i)
σ βσ

= −z1−ξi
i

σi
·X(i)

µ

∂zi
∂βσ

= −
z

1−X(i)
ξ βξ

i

(
yi −X(i)

µ βµ

)
X

(i)
σ β2

σ

= −z1−ξi
i (yi − µi)

σi
· 1
βσ

∂zi
∂βξ

= −zi log zi
βξ

+
z(i)

(
yi −X(i)

µ βµ

)
βξX

(i)
σ βσz

X
(i)
ξ βξ

i

=
[
z1−ξi
i

(yi − µi)
σi

− zi log zi

]
· 1
βξ

where the operator · performs operations component-wise.
To obtain the gradient of the logarithm of the bivariate density, we need to compute the partial derivatives
of A, B, C, D and E w.r.t. βµ, βσ and βξ.
For shortness, we do it in “one step” with the convention β = (βµ, βσ, βξ).

∂A

∂β
=

∂A

∂z1
· ∇βz1 +

∂A

∂z2
· ∇βz2

∂B

∂β
=

∂B

∂z1
· ∇βz1 +

∂B

∂z2
· ∇βz2

∂C

∂β
=

∂C

∂z1
· ∇βz1 +

∂C

∂z2
· ∇βz2

∂D

∂β
=

∂D

∂z1
· ∇βz1 +

∂D

∂z2
· ∇βz2

where ∇βz1 (resp. ∇βz2) is the gradient of z1 (reps. z2) w.r.t. β and the partial derivatives of A, B, C

21

and D w.r.t. z1 are given by the following equations:

dAz1 =
∂A

∂z1
=
ϕ(c1) + aΦ(c1)

az2
1

− ϕ(c2)
az1z2

dBz1 =
∂B

∂z1
=
c1ϕ(c2)
a2z1z2

2

+
c2ϕ(c1)
a2z2

1z2

dCz1 =
∂C

∂z1
=

(a+ c2)ϕ(c2)
a2z2

1z2
− 2Φ(c1)

z3
1

− (2a+ c2)ϕ(c1)
a2z3

1

dDz1 =
∂D

∂z1
=

[1− c2(a+ c2)]ϕ(c1)
a2z3

1z2
− [1 + c1(a+ c2)]ϕ(c2)

a3z2
1z

2
2

while the partial derivatives of A, B, C and D w.r.t. z2 are given by:

dAz2 =
∂A

∂z2
=
ϕ(c2) + aΦ(c2)

az2
2

− ϕ(c1)
az1z2

dBz2 =
∂B

∂z2
=

(a+ c1)ϕ(c1)
a2z1z2

2

− 2Φ(c2)
z3

2

− (2a+ c1)ϕ(c2)
a2z3

2

dCz2 =
∂C

∂z2
=
c1ϕ(c2)
a2z1z2

2

+
c2ϕ(c1)
a2z2

1z2

dDz2 =
∂D

∂z2
=

[1− c1(a+ c1)]ϕ(c2)
a2z1z3

2

− [1 + c2(a+ c1)]ϕ(c1)
a3z2

1z
2
2

For the Jacobian part E, we have:

dEµ =
∂E

∂βµ
=
ξ1 − 1

σ1z
ξ1
1

·X(1)
µ +

ξ2 − 1

σ2z
ξ2
2

·X(2)
µ

dEσ =
∂E

∂βσ
=

(
(y1 − µ1)(ξ1 − 1)

σ1z
ξ1
1

+
(y2 − µ2)(ξ2 − 1)

σ2z
ξ2
2

− 2

)
· 1
βσ

dEξ =
∂E

∂βξ
=

(1− ξ1)(y1 − µ1)

σ1ξ1z
ξ1
1

·X(1)
ξ +

(1− ξ2)(y2 − µ2)

σ2ξ2z
ξ2
2

·X(2)
ξ − log z1 ·

1
βξ
− log z2

1
βξ

Finally, we have:

∇β log f(y1, y2) =
∂A

∂β
+
C ∂B
∂β +B ∂C

∂β

BC +D
+
∂E

∂β
(A.28)

where
∂E

∂β
= (dEµ, dEσ, dEξ)T

A.2 The Schlather’s Model

The Schlather’s model is given by:

Pr[Z1 ≤ z1, Z2 ≤ z2] = exp
[
−1

2

(
1
z1

+
1
z2

)(
1 +

√
1− 2(ρ(h) + 1)

z1z2

(z1 + z2)2

)]
(A.29)

where h is the distance between location #1 and location #2 and ρ(h) is a valid correlation function
such as −1 ≤ ρ(h) ≤ 1.

A.2.1 Density computation

Computation of the density as well as the gradient of the density is not difficult but “heavy” though.

22

By noting that,

∂2

∂z1∂z2
exp(V (z1, z2)) =

[
∂2

∂z1∂z2
V (z1, z2) +

(
∂

∂z1
V (z1, z2)

)(
∂

∂z2
V (z1, z2)

)]
exp(V (z1, z2))

where V (z1, z2) is any function in C2.
Consequently, to compute the (bivariate) density, we only need to compute the partial derivatives and
the mixed partial derivatives. For our case, it turns out to be:

V (z1, z2) = −1
2

(
1
z1

+
1
z2

)(
1 +

√
1− 2(ρ(h) + 1)

z1z2

(z1 + z2)2

)

∂

∂z1
V (z1, z2) = −ρ(h)z1 − c1− z2

2c1z2
1

∂

∂z2
V (z1, z2) = −ρ(h)z2 − c1− z1

2c1z2
2

∂2

∂z1∂z2
V (z1, z2) =

1− ρ(h)2

2c31
where

c1 =
√
z2

1 + z2
2 − 2z1z2ρ(h)

Lastly,

f(z1, z2) =
[

1− ρ(h)2

2c31
+
(
−ρ(h)z1 − c1− z2

2c1z2
1

)(
−ρ(h)z2 − c1− z1

2c1z2
2

)]
exp(V (z1, z2)) (A.30)

A.2.2 Gradient computation

With Unit Fréchet Margins

From equation (A.30), we have:

log f(z1, z2) = A+ log(B + CD)

where

A = V (z1, z2) B =
1− ρ(h)2

2c31
C = −ρ(h)z1 − c1− z2

2c1z2
1

D = −ρ(h)z2 − c1− z1

2c1z2
2

As the bivariate density is only a function of the covariance function ρ(h), we have:

∇ log f(z1, z2) =
∂

∂ρ(h)
log f(z1, z2) (∇ρ(h))T

where ∇ρ(h) is the vector of the partial derivatives of the covariance function ρ(h) with respect to its
parameters.

dAρ =
∂A

∂ρ(h)
=

1
2c1

dBρ =
∂B

∂ρ(h)
= −ρ(h)

c31
+

3(1− ρ(h))z1z2

c51

dCρ =
∂C

∂ρ(h)
= −z1 − z2ρ(h)

2c31

dDρ =
∂D

∂ρ(h)
= −z2 − z1ρ(h)

2c31

So that,

∇ log f(z1, z2) =
[
dAρ +

(CdBρ +BdCρ + dDρ)
BC +D

]
(∇ρ(h))T

Note that when using the Whittle-Matérn covariance function, the standard errors are not available if
the smooth parameter is hand fixed because the Bessel function is not derivable w.r.t. this parameter.

23

With Ordinary GEV Margins

For the derivation of the gradient with ordinary GEV margins, most of the computations have already
been done in Section A.1.3. Especially, we only need to compute the partial derivatives of A, B, C and
D w.r.t. z1 and z2.

dAz1 =
∂A

∂z1
= −ρ(h)z1 − c1− z2

2c1z2
1

dBz1 =
∂B

∂z1
=

3(ρ(h)2 − 1)(z1 − ρ(h)z2)
2c51

dCz1 =
∂C

∂z1
=

2z3
1ρ(h) + 6z1z

2
2ρ(h)2 − 3z2

1z2(1 + ρ(h)2)− 2c31 − 2z3
2

2c31z
3
1

dDz1 =
∂C

∂z2
= − (z2ρ(h)− c1 − z1)(z2ρ(h) + c1− z1)

2c31z
2
2

and

dAz2 =
∂A

∂z2
= −ρ(h)z2 − c1− z1

2c1z2
2

dBz2 =
∂B

∂z2
=

3(ρ(h)2 − 1)(z2 − ρ(h)z1)
2c51

dCz2 =
∂C

∂z2
= − (z1ρ(h)− c1 − z2)(z1ρ(h) + c1− z2)

2c31z
2
1

dDz2 =
∂D

∂z2
=

2z3
2ρ(h) + 6z2

1z2ρ(h)2 − 3z1z
2
2(1 + ρ(h)2)− 2c31 − 2z3

1

2c31z
3
2

Finally, we have:

∇β log f(y1, y2) =
∂A

∂β
+
C ∂B
∂β +B ∂C

∂β

BC +D
+
∂E

∂β
(A.31)

where ∂A
∂β , ∂B∂β , ∂C∂β , ∂D∂β and ∂E

∂β have been already defined in Section A.1.3.

24

	Introduction
	An Introduction to Max-Stable Processes
	The Smith's Model
	The Schlather's Model

	Fitting a Max-Stable Process to Data
	Assuming Unit Fréchet Margins
	With Unknown GEV Margins
	Assessing Uncertainties
	Model Selection

	Manipulating and Visualising Fitted Models
	Prediction of the GEV parameters
	Visualising the Extremal Coefficient
	Visualising the Covariance Function
	Producing a map of the GEV parameters and return levels

	Density and Gradient Computations
	The Smith's Model
	Useful quantities
	Density computation
	Gradient computation

	The Schlather's Model
	Density computation
	Gradient computation

