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Abstract

The Sim.DiffProc package provides a simulation of diffusion processes and the differ-
ences methods of simulation of solutions for stochastic differential equations (SDEs) of the
Itô’s type, in financial and actuarial modeling and other areas of applications, for exam-
ple the stochastic modeling and simulation of pollutant dispersion in shallow water using
the attractive center, and the model of two diffusions in attraction, which can modeling
the behavior of two insects, one attracts the other. The simulation of the processes of
diffusion, through stochastic differential equations to allow simulated a random variable
τc ”first passage time” of the particle through a sphere of radius c, two methods are used
in the estimation problem of the probability density function of a random variable τc the
histograms and the kernel methods. The R package Sim.DiffProc is introduced, providing
a simulation and estimation for the stationary distribution of the stochastic process that
describes the equilibrium of some dynamics.

Keywords: attractive model, diffusion process, simulations, stochastic differential equation,
stochastic modeling, R language.

1. Introduction

Stochastic differential equations (SDEs) are a natural choice to model the time evolution of
dynamic systems. These equations have a variety of applications in many disciplines and can
be a powerful tool for the modeling and the description of many phenomena. Examples of
these applications are physics, astronomy, economics, financial mathematics, geology, genetic
analysis, ecology, neurology, biology, biomedical sciences, epidemiology, political analysis and
social processes, and many other fields of science and engineering. The stochastic differential
equations, with slight notational variations, are standard in many books with applications in
different fields see Rolski, Schmidli, Schmidt, and Teugels (1998); Franck (2009); Allen (2007);
Stefano (2008); Douglas and Peter (2006) to name only a few.
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The first is to recall the theory and implement methods for the simulation of paths of diffusion
processes {Xt, t ≥ 0} solutions to stochastic differential equations (SDEs), the sense that only
SDEs with Gaussian noise Bt are considered i.e., processes for which the writing

dXt

dt
= µ(θ, t,Xt) + σ(ϑ, t,Xt)Bt

With the gaussian noise Bt is the formal derivative of the standard Wiener process Wt (i.e.,
Bt = dWt

dt ), the write formally for the process {Xt, t ≥ 0} is

dXt = µ(θ, t,Xt)dt+ σ(ϑ, t,Xt)dWt,

with some initial condition X0.

We seek to motivate further interest in this specific field by introducing the Sim.DiffProc
package (Boukhetala and Guidoum 2011a) (Simulation of Diffusion Processes) for use with
the statistical programming environment R (R Development Core Team 2011); freely avail-
able on the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/

package=Sim.DiffProc. There exist a graphical user interface (GUI) for some functions for
Sim.DiffProc package, the R package Sim.DiffProcGUI (Boukhetala and Guidoum 2011b) a
freely available at http://CRAN.R-project.org/package=Sim.DiffProcGUI.

This work is organized as follows. Section 2 gives a simulation for some very popular stochas-
tic differential equations models (trajectory of the Brownian motion, Ornstein-Uhlenbeck
process), and present the different numerical methods (schemes) of simulation of SDEs (See
Peter and Eckhard 1995), simulation the random variable Xt at time t by a simulated diffu-
sion processes used the numerical methods and estimate the stationary distribution for Xt by
histograms and kernel methods. Section 3 the diffusion processes are used to modeling the
behavior of the dispersal phenomenon and dynamic models for insects orientation, two impor-
tant models can be indicated. The graphical user interface (GUI) for Sim.DiffProc package
are provided in Section 4.

2. Diffusion processes

We consider the model as the parametric Itô stochastic differential equation

dXt = µ(θ, t,Xt)dt+ σ(ϑ, t,Xt)dWt, t ≥ 0 , X0 = ζ (1)

Where {Wt, t ≥ 0} is a standard Wiener process, µ : Θ× [0, T ]×R→ R, called the drift coeffi-
cient, and σ : Ξ× [0, T ]×R→ R+, called the diffusion coefficient, are known functions except
the unknown parameters θ and ϑ, Θ ⊂ R, Ξ ⊂ R and E(ζ2) <∞, the estimation problems for
the parameters θ and ϑ can be seen in some papers (Boukhetala 1984, 1995), (Brodeau and
Breton 1979). The drift coefficient is also called the trend coefficient or damping coefficient
or translation coefficient. The diffusion coefficient is also called volatility coefficient. Under
global Lipschitz and the linear growth conditions on the coefficients µ and σ, there exists a
unique strong solution of the above Itô SDEs, called the diffusion process or simply a diffusion,
which is a continuous strong Markov semimartingale. The drift and the diffusion coefficients
are respectively the instantaneous mean and instantaneous standard deviation of the process.
All over the text, the stochastic differential equation (1), they are supposed to be measurable.

http://CRAN.R-project.org/package=Sim.DiffProc
http://CRAN.R-project.org/package=Sim.DiffProc
http://CRAN.R-project.org/package=Sim.DiffProcGUI
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Assumption 1: (Global Lipschitz) For all x, y ∈ R and t ∈ [0, T ], there exists a constant
K <∞ such that

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| < K|x− y|.

Assumption 2: (Linear growth) For all x, y ∈ R and t ∈ [0, T ], there exists a constant
C <∞ such that

|µ(t, x)|+ |σ(t, x)| < C(1 + |x|),
The linear growth condition controls the behaviour of the solution so that Xt does not explode
in a finite time.

2.1. Simulation of Stochastic Differential Equations SDEs

In this section, we present some of the well-known and widely used diffusion process solu-
tions to the stochastic differential equation. There are two main objectives in the simulation
of the trajectory of a process solution of a stochastic differential equation, either interest is
in the whole trajectory or in the expected value of some functional of the diffusion process
(moments, distributions, etc) which usually are not available in explicit analytical form. Nu-
merical Methods are usually based on discrete approximations of the continuous solution to
a stochastic differential equation. The following examples use the Sim.DiffProc package for
simulation some diffusion process.
To install the Sim.DiffProc package on your version of R, type the following line in the R
console.

R> install.packages("Sim.DiffProc")

If you don’t have enough privileges to install software on your machine or account, you will
need the help of your system administrator. Once the package has been installed, you can
actually use it by loading the code with

R> library(Sim.DiffProc)

A short list of help topics, corresponding to most of the commands in the package, is available
by typing

R> library(help = "Sim.DiffProc")

Simulation of the trajectory of the Brownian motion

Simulation of the trajectory of the Brownian motion: The very basic ingredient of a model
describing stochastic evolution is the so-called Brownian motion or Wiener process. There
are several alternative ways to characterize and define the Wiener process W = {Wt, t ≥ 0},
and one is the following: it is a Gaussian process with continuous paths and with independent
increments such that W (0) = 0 with probability 1, E(Wt) = 0, and VAR(Wt−Ws) = t− s for
all 0 ≤ s < t. In practice, what is relevant for our purposes is that W (t)−W (s) ∼ N(0, t−s).
Given a fixed time increment ∆t > 0, one can easily simulate a trajectory of the Wiener
process in the time interval [t0, T ]. Indeed, for W∆t it holds true that

W (∆t) = W (∆t)−W (0) ∼ N(0,∆t) ∼
√

∆t ·N(0, 1)
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and the same is also true for any other increment W (t+ ∆t)−W (t); i.e.,

W (t+ ∆t)−W (t) ∼ N(0,∆t) ∼
√

∆t ·N(0, 1)

For i = 0, 1, . . . , N − 1, with initial deterministic value x0. Usually the time increment
∆t = ti+1 − ti is taken to be constant (i.e.,∆t = (T − t0)/N)

R> BMN(N = 10000, t0 = 0, T = 1, C = 1)

R> BMN2D(N = 10000, t0 = 0, T = 1, x0 = 0, y0 = 0, Sigma = 1)

Figure 1: Simulation examples to illustrate the trajectory of the Brownian motion used the
function BMN, and 2-dimensional Brownian motion used BMN2D.

Simulation a Ornstein-Uhlenbeck or Vasicek process

The Ornstein-Uhlenbeck or Vasicek process is the unique solution to the following stochastic
differential equation

dXt = r(θ −Xt)dt+ σdWt, X0 = x0, (2)

where σ is interpreted as the volatility, θ is the long-run equilibrium value of the process,
and r is the speed of reversion. As an application of the Itô lemma, we can show the explicit
solution of (2) by choosing f(t, x) = xert, we obtain

Xt = θ + (x0 − θ)e−rt + σ

∫ t

t0

e−r(t−s)dWs

It can be seen that for θ = 0 the trajectory of Xt is essentially a negative exponential
perturbed by the stochastic integral. One way of simulating trajectories of the Ornstein-
Uhlenbeck process is indeed via the simulation of the stochastic integral.
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R> HWV(N = 1000, t0 = 0, T = 10, x0 = -5, theta = 0, r = 1, sigma = 0.5)

R> HWVF(N = 1000, M = 100, t0 = 0, T = 10, x0 = -5, theta = 0, r = 1,

sigma = 0.5)

Figure 2: Simulated path of the Ornstein-Uhlenbeck process dXt = −Xtdt+ 0.5dWt used the
function HWV, and 100 trajectories of the dXt = −Xtdt+ 0.5dWt used HWVF.

We sketch some very popular SDEs models and example of simulations :

Models Expressions R code

Arithmetic Brownian Motion dXt = θdt+ σdWt ABM

Geometric Brownian Motion dXt = θXtdt+ σXtdWt GBM

Cox-Ingersoll-Ross dXt = (r − θXt)dt+ σ
√
XtdWt CIR

Constant Elasticity of Variance dXt = µXtdt+ σXγ
t dWt CEV

Radial Ornstein-Uhlenbeck dXt = (θX−1
t −Xt)dt+ σdWt ROU

Chan-Karloyi-Logstaff-Sanders dXt = (r + θXt)dt+ σXγ
t dWt CKLS

Hyperbolic Diffusion dXt = −θXt(1 +X2
t )−0.5dt+ σdWt Hyproc

Jacobi diffusion dXt = −θ(Xt − 0.5)dt+
√
θXt(1−Xt)dWt JDP

Table 1: Some parametric families of SDEs models.

Example of use

In particular, it is possible to generate M independent trajectories of the same process with
one single call of the function by just specifying a value for M

R> ABM(N = 1000, t0 = 0, T = 1, x0 = 0, theta = 3, sigma = 2)

R> GBM(N = 1000, T = 1, t0 = 0, x0 = 1, theta = 2, sigma = 0.5)

R> CIR(N = 1000, M = 1, t0 = 0, T = 1, x0 = 1, theta = 0.2, r = 1,
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sigma = 0.5)

R> CEV(N = 1000, M = 1, t0 = 0, T = 1, x0 = 1, mu = 0.3, sigma = 2,

gamma = 1.2)

R> ROU(N = 1000, M = 1, T = 1, t0 = 0, x0 = 1, theta = 0.05)

R> CKLS(N = 1000, M = 1, T = 1, t0 = 0, x0 = 1, r = 0.3, theta = 0.01,

sigma = 0.1, gamma = 0.2)

R> Hyproc(N = 1000, M = 1, T = 100, t0 = 0, x0 = 3, theta = 2)

R> JDP(N = 1000, M = 1, T = 100, t0 = 0, x0 = 0, theta = 0.05)

2.2. Numerical Methods for SDEs

The idea is the following given an Itô process {Xt, 0 ≤ t < T} solution of the stochastic
differential equation

dXt = f(Xt)dt+ g(Xt)dWt, X0 = x0, (3)

where Wt represents the standard Wiener process and initial value x0 is a fixed value. In many
literatures, whose partial list can be seen in the references of the present paper, numerical
schemes for SDE (3) were proposed, which recursively compute sample paths (trajectories)
of solution Xt at step-points. Numerical experiments for these schemes can be seen in some
papers (Greiner, Strittmatter, and Honerkamp 1988), (Kloeden and Platen 1989), (Saito and
Mitsui 1993).

In the following, we present numerical schemes. They adopt an equidistant discretization of
the time interval [t0, T ] with stepsize

∆t =
(T − t0)

N
, for fixed natural number N.

Furthermore,
tn = n∆t, n ∈ {1, 2, . . . , N}.

denotes the n-th step-point. We abbreviate Xn = Xtn .

The following three random variables will be used in the (n + 1) time step of the schemes:

∆Wn = Wtn+1 −Wtn ,

∆Zn =

∫ tn+1

tn

∫ s

tn

dWrds,

∆Zn =

∫ tn+1

tn

∫ s

tn

drdWs.

They are obtained as sample values of normal random variables using the transformation (Saito
and Mitsui 1993)

∆Wn = ξn,1(∆t)1/2,

∆Zn =
1

2

(
ξn,1 +

ξn,2√
3

)
(∆t)3/2,

∆Zn =
1

2

(
ξn,1 −

ξn,2√
3

)
(∆t)3/2.
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and, together with them, we further use ∆W̃n = ξn,2(∆t)1/2, where ξn,1, ξn,2 are mutually
independent N(0, 1) random variables.

Numerical schemes

Euler-Maruyama scheme (Maruyama 1955):

Xn+1 = Xn + fn∆t+ gn∆Wn (4)

Milstein scheme (Milstein 1974):

Xn+1 = Xn + fn∆t+ gn∆Wn +
1

2
g′ngn((∆Wn)2 −∆t) (5)

Milstein Second scheme (Milstein 1974):

Xn+1 = Xn + fn∆t+ gn∆Wn +
1

2
g′ngn((∆Wn)2 −∆t) + f ′ngn∆Zn

+

(
g′nfn +

1

2
g′′ng

2
n

)
∆Zn +

1

6
(g′2n gn + g′′ng

2
n)((∆Wn)3 − 3∆t∆Wn)

(6)

Taylor scheme (Kloeden and Platen 1989):

Xn+1 = Xn + fn∆t+ gn∆Wn +
1

2
g′ngn((∆Wn)2 −∆t) + f ′ngn∆Zn

+

(
g′nfn +

1

2
g′′ng

2
n

)
∆Zn +

1

6
(g′2n gn + g′′ng

2
n)((∆Wn)3 − 3∆t∆Wn)

+
1

2

(
f ′nfn +

1

2
f ′′ng

2
n

)
(∆t)2

(7)

Heun scheme (McShane 1974):

Xn+1 = Xn +
1

2
[F1 + F2]∆t+

1

2
[G1 +G2]∆Wn, (8)

where

F1 = F (Xn), G1 = g(Xn),

F2 = F (Xn + F1∆t+G1∆Wn), G2 = g(Xn + F1∆t+G1∆Wn),

Fx =

[
f − 1

2
g′g

]
(x).

Improved 3-stage Runge-Kutta scheme (Saito and Mitsui 1993):

Xn+1 = Xn +
1

4
[F1 + 3F3]∆t+

1

4
[G1 + 3G3]∆Wn

+
1

2
√

3

[
f ′ngn − g′nfn −

1

2
g′′ng

2
n

]
∆t∆W̃n,

(9)
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where

F1 = F (Xn), G1 = g(Xn),

F2 = F

(
Xn +

1

3
F1∆t+

1

3
G1∆Wn

)
, G2 = g

(
Xn +

1

3
F1∆t+

1

3
G1∆Wn

)
,

F3 = F

(
Xn +

2

3
F2∆t+

2

3
G2∆Wn

)
, G3 = g

(
Xn +

2

3
F2∆t+

2

3
G2∆Wn

)
,

Fx =

[
f − 1

2
g′g

]
(x).

Example of use

The following examples for different methods of simulation of SDEs use the snssde function

snssde(N, M, T = 1, t0, x0, Dt, drift, diffusion, Output = FALSE,

Methods = c("SchEuler", "SchMilstein", "SchMilsteinS",

"SchTaylor", "SchHeun", "SchRK3"))

with SchEuler (4), SchMilstein (5), SchMilsteinS (6), SchTaylor (7), SchHeun (8), SchRK3 (9).

Consider for example the stochastic process {Xt, t ≥ 0} solution of

dXt = (µtXt −X3
t )dt+ σdWt, X0 = x0,

For this process, f(Xt) = (µtXt − X3
t ) and g(Xt) = σ. Suppose we fix an initial value

X0 = 0 and the set of parameters µ = 0.03 and σ = 0.1. The following algorithm can be
used to simulate one trajectory of the process Xt using the Euler algorithm (figure 3), and
100 trajectories used Milstein scheme (figure 4)

R> f_x <- expression( 0.03 * t * x - x^3 )

R> g_x <- expression( 0.1 )

R> snssde(N = 1000, M = 1, t0 = 0, x0 = 0, Dt = 0.1, drift = f_x,

diffusion = g_x, Methods = "SchEuler")

R> output <- data.frame(time,X)

R> output

1 0.0 0.000000e+00

2 0.1 3.162278e-02

3 0.2 6.324555e-06

. . .

. . .

. . .

1000 99.9 -1.716814e+00

1001 100.0 -1.756944e+00

R> snssde(N = 1000, M = 100, t0 = 0, x0 = 0, Dt = 0.1, drift = f_x,

diffusion = g_x, Methods = "SchMilstein")
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Figure 3: Simulated one trajectory of the pro-
cess dXt = (0.03tXt−X3

t )dt+0.1dWt used Euler
algorithm.

Figure 4: Simulated 100 trajectories of the pro-
cess dXt = (0.03tXt−X3

t )dt+ 0.1dWt used Mil-
stein scheme.

2.3. Stationary distribution in the SDEs models

The stationary distribution of the stochastic process that describes the equilibrium of some
dynamics. For these disciplines, the interest is in the shape of the stationary distributions
and the statistical indexes related to them (mean, mode, etc.). The stochastic differential
equations usually have a linear drift of the form f(x) = r(θ − x) with r > 0. For this reason,
the models are called linear feedback models. The diffusion coefficient g(x) may be constant,
linearly depending on x, or of polynomial type, leading, respectively, to Gaussian, Gamma,
or Beta stationary distributions. 1

Type N model (Normal Distribution)

For this model, we have:

Drift coefficient: f(Xt) = r(θ −Xt), r > 0.

Diffusion coefficient: g(Xt) =
√

2σ, σ > 0.

Sde: dXt = r(θ −Xt)dt+
√
σdWt.

Stationary density: π(x) =
1√
2πδ

exp

(
−(x− θ)2

2δ

)
, δ =

σ

r
.

Statistics: mean, mode = θ, variance = δ.

1These correspond to the following Pearson family of distributions: Gamma = type III, Beta = type I,
and Gaussian = limit of type I, III, IV , V , or V I.
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Type G model (Gamma Distribution)

For this model, we have:

Drift coefficient: f(Xt) = r(θ −Xt), r > 0.

Diffusion coefficient: g(Xt) =
√
σXt, σ > 0.

Sde: dXt = r(θ −Xt)dt+
√
σXtdWt.

Stationary density: π(x) =
(x
δ

)−1+ θ
δ e−

x
δ

Γ
(
θ
δ

) , δ =
σ

2r
.

Statistics: mean = θ,mode = θ − δ, variance = δθ.

Type B model (Beta Distribution)

For this model, we have:

Drift coefficient: f(Xt) = r(θ −Xt), r > 0.

Diffusion coefficient: g(Xt) =
√
σXt(1−Xt), σ > 0.

Sde: dXt = r(θ −Xt)dt+
√
σXt(1−Xt)dWt.

Stationary density: π(x) =
Γ
(

1
δ

)
Γ
(
θ
δ

)
Γ
(

1−θ
δ

)x−1+ θ
δ (1− x)−1+ 1−θ

δ , δ =
σ

2r
.

Statistics: mean = θ,mode =
θ − δ
1− 2δ

, variance =
θ(1− θ)

1 + δ
.

Example of use

simulation M -sample (M = 100) for the random variable Xt at time t by a simulated diffusion
processes, using the function AnaSimX.

AnaSimX(N, M, t0, Dt, T = 1, X0, v, drift, diff, Output = FALSE,

Methods = c("Euler", "Milstein", "MilsteinS", "Ito-Taylor",

"Heun", "RK3"))

Consider for example the stochastic process the type N : dXt = 2(1−Xt)dt+ dWt.

R> r = 2

R> theta = 1

R> sigma = 1

R> f_x <- expression(r * (theta - x))

R> g_x <- expression(sqrt(sigma))

R> AnaSimX(N = 1000, M = 100, t0 = 0, Dt = 0.01, T = 10, X0 = -6, v = 7,

drift = f_x, diff = g_x, Methods = "Euler")
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Figure 5: Simulation 100-samples of the random variable Xt at time vt = 7 by a simulated
100 trajectories of dXt = 2(1−Xt)dt+ dWt, used Euler algorithm, with X0 = −6.

R> X

[1] 0.42457787 0.89022987 0.53798985 0.85601970 0.87574259

[6] 0.13023321 0.78466182 1.67646649 1.86814912 0.91651605

[11] 0.40458587 1.25308171 0.50399329 1.02546173 1.02647338

[16] 0.26630316 1.15195695 0.66666422 0.85174517 0.76239199

[21] 0.44828044 0.27588758 1.01659444 0.99617363 1.00829577

[26] 0.86676310 0.64266320 0.26960628 0.98420215 0.67478779

[31] 0.87145246 1.27619465 0.77522554 0.94704303 1.42153343

[36] 0.98755623 0.77789867 0.08774791 1.16267498 0.84184574

[41] 1.03631156 0.57812454 0.88114625 1.11535893 1.40388370

[46] 1.16252625 0.87735322 1.55669661 1.30152170 1.02433169

[51] 1.23616081 1.51367164 1.61080710 0.99608594 0.59199640

[56] 1.35987961 1.81565309 0.93158510 1.24933297 0.94759695

[61] 0.90637034 0.28367297 1.06232243 0.39463121 0.95167687

[66] 0.68991567 0.52513906 0.82081028 1.11318080 1.25055621

[71] 0.76350645 1.29918398 0.32224426 0.75747775 1.05616919

[76] 1.13505537 1.37253188 0.84595736 1.23985729 1.06338587

[81] 1.20910711 1.54841177 0.94479993 1.52138324 0.93499736

[86] 1.50113064 0.43927942 -0.09752953 0.99846875 1.69256126

[91] -0.24466704 1.31776649 0.77478081 0.65812555 0.98086811

[96] 1.34704883 1.24507068 -0.27647792 0.92965613 0.67631369
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R> summary(X)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.2765 0.6865 0.9459 0.9235 1.2160 1.8680

Estimate parameters of the normal distribution by the method of maximum likelihood. The
function Ajdnorm needs as input the random variable X, and Initial values for optimizer
(mean, sd) with the confidence level required. two methods are used of estimation for the sta-
tionary distribution, the histograms used the function hist_general, and the kernel methods
by used Kern_general.

hist_general(Data, Breaks, Law = c("exp", "GAmma", "chisq", "Beta",

"fisher", "student", "weibull", "Normlog", "Norm"))

Kern_general(Data, bw, k, Law = c("exp", "GAmma", "chisq", "Beta",

"fisher", "student", "weibull", "Normlog", "Norm"))

R> Ajdnorm(X, starts = list(mean = 1, sd = 1), leve = 0.95)

Profiling...

$summary

Maximum likelihood estimation

Call:

mle(minuslogl = lik, start = starts)

Coefficients:

Estimate Std. Error

mean 0.9285440 0.04218993

sd 0.4197845 0.02983209

-2 log L: 109.0828

$coef

mean sd

0.9285440 0.4197845

$AIC

[1] 113.0828

$vcov

mean sd

mean 1.779990e-03 -1.799151e-10

sd -1.799151e-10 8.899539e-04

$confint

2.5 % 97.5 %
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mean 0.8450425 1.0120456

sd 0.3674690 0.4858145

R> hist_general(Data = X, Breaks = 'Sturges', Law = "Norm")

R> Kern_general(Data = X, bw = "Bcv", k="gaussian", Law = "Norm")

Figure 6: Estimation stationary distribution used histograms and kernel methods.

3. Attractive models

The problem of dispersion is a very complex phenomenon is many problems dealing with envi-
ronment, biology, physics, chemistry, etc . . . , the dynamical behavior of such phenomenon is a
random process, often hard to modeling mathematically. This problem, have been proposed
by many authors (Hadeler, de Mottoni, and Schumacher 1980), (Helland 1983), (Heemink
1990), (Boukhetala 1994, 1996). For many dispersal problems, the diffusion processes are
used to modeling the behavior of the dispersal phenomenon. For example, two important
models can be indicated, the first is proposed by Boukhetala (1996), and describes the disper-
sion of a pollutant on an area of shallow water (attractive model for one diffusion process),
the second model is the two diffusions processes in attraction proposed by Boukhetala (1998a)
(attractive model for two diffusions processes), which describes the dynamical behavior of a
two insects, one attracts the other.

3.1. Attractive model for one diffusion process

Consider a shallow water area with depth L(x, y, z, t), horizontal Uw(x, y, z, t) and Vw(x, y, z, t),
Sw(x, y, z, t) the velocities of the water in respectively the x−, y− and z− directions, and
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Ua(x, y, z), Va(x, y, z), Sa(x, y, z) the velocities of a particle caused by an attractive mecha-
nism. Let (Xt, Yt, Zt) be the position of a particle injected in the water at time t = t0 at the
point (x0, y0, z0).
For a single particle, we propose the following dispersion models family (Boukhetala 1996):

dXt =

(
−Ua + Uw +

∂L
∂x
L D + ∂D

∂x

)
dt+

√
2DdW 1

t

dYt =

(
−Va + Vw +

∂L
∂y

L D + ∂D
∂y

)
dt+

√
2DdW 2

t , t ∈ [0, T ]

dZt =

(
−Sa + Sw +

∂L
∂z
L D + ∂D

∂z

)
dt+

√
2DdW 3

t

(10)

with:

Ua =
Kx(√

x2 + y2 + z2
)s+1 , Va =

Ky(√
x2 + y2 + z2

)s+1 , Sa =
Kz(√

x2 + y2 + z2
)s+1 .

and s ≥ 1, K > 0, W 1
t and W 2

t ,W 3
t are Brownian motions.

Uw(x, y, z, t) and Vw(x, y, z, t), Sw(x, y, z, t) are neglected and the dispersion coefficientD(x, y, z)
is supposed constant and equal to 1

2σ
2, (σ > 0).

Using Itô’s transform for (10), it is shown that the radial process Rt = ‖(Xt, Yt, Zt)‖ is a
Markovian diffusion, solution of the stochastic differential equation, given by:

dRt =

 σ2Rs−1
t

2 −K
Rst

 dt+ σdW̃t, t ∈ [0, T ] (11)

where 2K > σ2 and ‖.‖ is the Euclidean norm and W̃t is a determined Brownian motion.

We take interest in the random variable τ
(s)
c first passage time (See Boukhetala 1998b,c) of

the particle through a sphere of radius c, centered at the origin of R3-space. The random

variable τ
(s)
c is defined by :

τ (s)
c = inf(t ≥ 0|Rt ≤ c and R0 = r) (12)

This variable plays an important role in the prediction of the rate of particles reaching the
attractive center. We denote by Ms,σ the family of models defined by (10) or (11).

Code example

For example the simulation of the model M(s=1,σ) can be made by discretization of equa-
tions (10) or (11) with s = 1, a simulate and estimate the density function of the random

variable τ̃
(1)
c = 1/τ

(1)
c (12).

Simulation the models (10) by used the function RadialP3D_1 with s = 1.

R> RadialP3D_1(N = 5000, t0 = 0, Dt = 0.001, X0 = 1, Y0 = 0.5, Z0 = 0.5, v = 0.2,

K = 2, Sigma = 0.2)
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Figure 7: Simulation 3-dimensional attractive model M(s=1,σ=0.2) for one diffusion process.

Simulation 100-sample for the first passage time ”FPT”of the modelM(s=1,σ) used the function

tho_M1, and estimate the density function of the τ̃
(1)
c by the Gamma law.

R> tho_M1(N = 1000, M = 100, t0 = 0, T = 1, R0 = 1, v = 0.2, K = 4, sigma =0.9,

Methods = "Euler")

R> FPT

[1] 0.071 0.124 0.046 0.117 0.165 0.126 0.178 0.059 0.218 0.118

[11] 0.305 0.064 0.135 0.188 0.271 0.161 0.099 0.123 0.086 0.137

[21] 0.135 0.101 0.135 0.265 0.204 0.084 0.139 0.186 0.133 0.099

[31] 0.340 0.099 0.133 0.073 0.160 0.217 0.091 0.181 0.139 0.097

[41] 0.118 0.235 0.133 0.371 0.096 0.301 0.106 0.206 0.137 0.233

[51] 0.082 0.156 0.135 0.154 0.060 0.113 0.077 0.132 0.230 0.135

[61] 0.212 0.169 0.238 0.236 0.211 0.098 0.176 0.117 0.205 0.176

[71] 0.220 0.116 0.167 0.073 0.220 0.160 0.099 0.169 0.102 0.197

[81] 0.128 0.172 0.080 0.196 0.120 0.219 0.161 0.283 0.254 0.113

[91] 0.392 0.050 0.138 0.111 0.074 0.216 0.202 0.098 0.091 0.056

R> Ajdgamma(X = 1/FPT, starts = list(shape = 1, rate = 1), leve = 0.95)

Profiling...

$summary

Maximum likelihood estimation

Call:

mle(minuslogl = lik, start = starts)

Coefficients:

Estimate Std. Error
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shape 5.0320084 0.69279984

rate 0.6426731 0.09304918

-2 log L: 514.6746

$coef

shape rate

5.0320084 0.6426731

$AIC

[1] 518.6746

$vcov

shape rate

shape 0.4799716 0.06130030

rate 0.0613003 0.00865815

$confint

2.5 % 97.5 %

shape 3.7969651 6.5185981

rate 0.4768285 0.8423622

R> hist_general(Data = 1/FPT, Breaks = 'Sturges', Law = "GAmma")

R> Kern_general(Data = 1/FPT , bw ='Ucv', k ="gaussian", Law = "GAmma")

Figure 8: Estimation the density function of τ̃
(1)
c=0.2 by the Gamma law, used histograms and

kernel methods.
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3.2. Attractive model for two diffusions processes

In the following paragraph, we will propose a model of two diffusions in attraction Mσ
µ(.)(V

(1)
t )

and Mσ
0 (V

(2)
t ), can modeling the behavior of two insects, one attracts the other.

Considers V
(1)
t = (Xt,1, Xt,2, Xt,3) and V

(2)
t = (Yt,1, Yt,2, Yt,3) two random processes of diffu-

sion, which one supposes respectively representing the positions of a male insect and an insect
female, and the male is attracted by the female. The behavior of the female is supposed to
be a process of Brownian motion, defined by the following equation

dV
(2)
t = σI3×3dWt (13)

Whereas the behavior of the male is supposed to be a process of diffusion, whose drift is di-
rected, at every moment t, towards the position of the female, and who is given by Boukhetala
(1998a)

dV
(1)
t = dV

(2)
t + µm+1(‖Dt‖)Dtdt+ σI3×3dW̃t, (14)

where Wt and W̃t are two Brownian motion independent, and

{
Dt = V

(1)
t − V (2)

t

µm(‖d‖) = − K
‖d‖m

(15)

K and m are positive constants.

The model suggested is following form

dV
(1)
t ⇔



dXt,1 = dYt,1 − K(Xt,1−Yt,1)(√
(Xt,1−Yt,1)2+(Xt,2−Yt,2)2+(Xt,3−Yt,3)2

)m+1dt+ σdW̃ 1
t

dXt,2 = dYt,2 − K(Xt,2−Yt,2)(√
(Xt,1−Yt,1)2+(Xt,2−Yt,2)2+(Xt,3−Yt,3)2

)m+1dt+ σdW̃ 2
t

dXt,3 = dYt,3 − K(Xt,3−Yt,3)(√
(Xt,1−Yt,1)2+(Xt,2−Yt,2)2+(Xt,3−Yt,3)2

)m+1dt+ σdW̃ 3
t

(16)

dV
(2)
t ⇔


dYt,1 = σdW 1

t

dYt,2 = σdW 2
t

dYt,3 = σdW 3
t

(17)

Using Itô’s transform for (16) and (17), it is shown that the process Xt = ‖(V (1)
t , V

(2)
t )‖ is a

Markovian diffusion, solution of the stochastic differential equation, given by:

dXt =
σ2Xm−1

t −K
Xm
t

dt+ σdW t, t ∈ [0, T ] (18)

where K > σ2 and ‖.‖ is the Euclidean norm and W t is a determined Brownian motion.
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This model makes it possible to carry out a dynamic simulation of the real phenomenon.
Using these simulations, one can also estimate the density of probability of the moment of

the first meeting τ(V
(1)
t , V

(2)
t ) between the two insects, defined by

τ(V
(1)
t , V

(2)
t ) = lim

c→0
inf{t ≥ 0|‖Dt‖ ≤ c}

Code example

For example the simulation two dimensional of the phenomenon Mσ
µ(.)(V

(1)
t ) ↪→ Mσ

0 (V
(2)
t ),

can be made by discretization of equations (16) and (17), by used the function TowDiffAtra2D

R> TwoDiffAtra2D(N = 5000, t0 = 0, Dt = 0.001, T = 1, X1_0 = 2, X2_0 = 2,

Y1_0 = -0.5 , Y2_0 = -1, v = 0.05, K = 3, m = 0.1, Sigma = 0.3)

Figure 9: Illustration of simulation two dimensional of a trajectory of the interaction between
two insects.

Simulation three dimensional of the phenomenon by used the function TowDiffAtra3D, and

simulation 100-sample for the moment of the first meeting τ(V
(1)
t , V

(2)
t ) between the two

insects used the function tho_02diff

R> TwoDiffAtra3D(N = 5000, t0 = 0, Dt = 0.001, T = 1, X1_0 = 1, X2_0 = 0.5,

X3_0 = 0, Y1_0 = -0.5, Y2_0 = 0.5, Y3_0 = -1, v = 0.05,

K = 3, m = 0.1, Sigma = 0.15)
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Figure 10: Illustration of simulation three dimensional of a trajectory of the interaction
between two insects.

R> tho_02diff(N = 1000, M = 100, t0 = 0, Dt = 0.001, T = 1, X1_0 = 1, X2_0 = 1,

Y1_0 = 0.5, Y2_0 = 0.5, v = 0.05, K = 4, m = 0.2, Sigma = 0.2)

R> FPT

[1] 0.143 0.109 0.123 0.106 0.133 0.123 0.189 0.120 0.270 0.140 0.198 0.131

[13] 0.144 0.107 0.092 0.165 0.178 0.124 0.146 0.113 0.136 0.158 0.169 0.203

[25] 0.108 0.160 0.143 0.201 0.122 0.091 0.154 0.096 0.189 0.198 0.147 0.123

[37] 0.147 0.128 0.105 0.192 0.106 0.139 0.174 0.134 0.105 0.090 0.165 0.128

[49] 0.284 0.098 0.136 0.092 0.093 0.077 0.149 0.171 0.125 0.151 0.122 0.132

[61] 0.221 0.199 0.154 0.140 0.145 0.217 0.106 0.097 0.121 0.131 0.153 0.158

[73] 0.152 0.168 0.127 0.100 0.120 0.130 0.181 0.175 0.166 0.102 0.136 0.126

[85] 0.127 0.136 0.137 0.081 0.112 0.204 0.113 0.109 0.185 0.130 0.186 0.126

[97] 0.193 0.140 0.106 0.191

R> Ajdgamma(X = 1/FPT, starts = list(shape = 1, rate = 1), leve = 0.95)

Profiling...

$summary

Maximum likelihood estimation

Call:

mle(minuslogl = lik, start = starts)

Coefficients:

Estimate Std. Error
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shape 15.525968 2.1834585

rate 2.077233 0.2968927

-2 log L: 403.2067

$coef

shape rate

15.525968 2.077233

$AIC

[1] 407.2067

$vcov

shape rate

shape 4.7674910 0.63784671

rate 0.6378467 0.08814528

$confint

2.5 % 97.5 %

shape 11.657589 20.252660

rate 1.551179 2.719831

R> hist_general(Data = 1/FPT, Breaks = 'Sturges', Law = "GAmma")

R> Kern_general(Data = 1/FPT , bw ='Ucv', k ="gaussian", Law = "GAmma")

Figure 11: Estimation the density of probability of the moment of the first meeting between
the two insects, used histograms and kernel methods.
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4. Graphical User Interface for Sim.DiffProc

Unlike S-PLUS, R 2 does not incorporate a statistical graphical user interface (GUI), but it
does include tools for building GUIs. 3 Based on the tcltk package (which furnishes an interface
to the Tcl/Tk GUI toolkit), the Sim.DiffProcGUI package (Boukhetala and Guidoum 2011b)
provides a graphical user interface for some functions in the Sim.DiffProc package, the design
objectives of the Sim.DiffProcGUI were as follows: to support Sim.DiffProc, through an easy-
to-use, extensible, crossplatform GUI, keep things relatively simple, and to render visible, in
a reusable form. The Sim.DiffProcGUI package uses a simple and familiar menu/dialog-box
interface. Top-level menus include File, Edit, Brownian Motion, Stochastic Integral, Stochastic
Models, Parametric Estimation, Numerical Solution of SDE, Statistical Analysis, and Help.

Each dialog box includes a Help button, which leads to a relevant help page, the R-Sim.DiffProc
console also provides the ability to edit, enter, and re-execute commands. Data sets in this
GUI are simply R data frames, and can be read from attached packages or imported from
files, although several data frames may reside in memory.

Once R is running, simply loading the Sim.DiffProcGUI package by typing the command
library(”Sim.DiffProcGUI”) into the R Console starts the GUI. After loading the package, the
GUI window should appear more or less as in the following figure 12

R> library(Sim.DiffProcGUI)

Figure 12: Graphical User Interface for Sim.DiffProc package at start-up.

2R is a programming language and software environment for statistical computing and graphics, are available
for download from CRAN at URL: http://www.r-project.org/.

3The Sim.DiffProcGUI package, described in this paper, is based on the tcltk package (Dalgaard 2001,
2002), which provides an interface to Tcl/Tk (Welch 2000).

http://www.r-project.org/
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This and other screen images were created under Windows seven, if you use another version
of Windows (or, of course, another computing platform), then the appearance of the screen
may differ. 4

The Sim.DiffProcGUI package and R Console windows float freely on the desktop. You will
normally use the menus and dialog boxes of the Sim.DiffProcGUI to read, manipulate, and
simulated or analyze data.

5. Conclusion

This paper introduces new package Sim.DiffProc for a simulation of diffusion processes in
R language, and graphical user interface (GUI) for this package, the actual development of
computing tools (software and hardware) has motivated us to analyze by simulation. Many
theoretical problems on the stochastic differential equations have become the object of prac-
tical research, as statistical analysis and the simulation the solution of SDE, enabled many
searchers in different domains to use these equations to modeling and to analyse practical
problems. The dispersion problem that we have treated in this paper is a good example
which shows the important use of the SDE in the practice, this problem is very hard, hence
the SDE approach seems to be a good approximation to treat such problem, the difficulty to
obtain the exact solution of the SDE, the simulation gives information on the density function
of the random variable first passage time τc and enables to estimate a density function, this
estimation is based, on either, the histograms and the kernel methods. These results can be
applied, as a first approximation, of the dispersal phenomenon, in presence of an attractive
source. The density function of τc can be used to determine the rate of the pollutant particles
in a neighborhood of the attractive centre, it has been shown by graphical and numerical
simulations. The simulation studies implemented in R language seems very preferment and
efficient, because it is a statistical environment, which permits to realize and to validate the
simulations.
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