
A Tutorial for the R Package SNPRelate

Xiuwen Zheng
GENEVA Coordinating Center

Department of Biostatistics
University of Washington

Aug 11, 2012

Contents

1 Overview 1

2 Preparing Data 3
2.1 Data formats used in SNPRelate . 3
2.2 Create a GDS File of Your Own . 5
2.3 Format conversion from PLINK binary files 6
2.4 Format conversion from Sequence VCF files 6

3 Data Analysis 7
3.1 LD-based SNP pruning . 7
3.2 Principal Component Analysis . 8
3.3 Relatedness Analysis . 12

3.3.1 PLINK method of moments (MoM) 13
3.3.2 IBD Using Maximum Likelihood Estimation (MLE) 14

3.4 Identity-By-State Analysis . 15

4 Resources 18

5 Acknowledgements 18

1 Overview

Genome-wide association studies (GWAS) are widely used to help determine the genetic
basis of diseases and traits, but they pose many computational challenges. We developed
gdsfmt and SNPRelate (high-performance computing R packages for multi-core symmetric

1

Figure 1: Flowchart of parallel computing for principal component analysis and identity-by-
descent analysis.

multiprocessing computer architectures) to accelerate two key computations in GWAS: prin-
cipal component analysis (PCA) and relatedness analysis using identity-by-descent (IBD)
measures. The kernels of our algorithms are written in C/C++ and have been highly op-
timized. The calculations of the genetic covariance matrix in PCA and pairwise IBD coef-
ficients are split into non-overlapping parts and assigned to multiple cores for performance
acceleration, as shown in Figure 1. Benchmarks show the uniprocessor implementations of
PCA and IBD are ∼10 to 45 times faster than the implementations provided in the popu-
lar EIGENSTRAT (v3.0) and PLINK (v1.07) programs respectively, and can be sped up to
70∼250 folds by utilizing multiple cores.

R is the most popular statistical programming environment, but one not typically opti-
mized for high performance or parallel computing which would ease the burden of large-scale
GWAS calculations. To overcome these limitations we have developed a project named
CoreArray (http://corearray.sourceforge.net/) that includes two R packages: gdsfmt
to provide efficient, platform independent memory and file management for genome-wide nu-
merical data, and SNPRelate to solve large-scale, numerically intensive GWAS calculations
(i.e., PCA and IBD) on multi-core symmetric multiprocessing (SMP) computer architectures.

This vignette takes the user through the relatedness and principal component analysis
used for genome wide association data. The methods in these vignettes have been introduced
in the paper of Zheng et al. (2012).1 For replication purposes the data used here are taken
from the HapMap Phase II project. These data were kindly provided by the Center for
Inherited Disease Research (CIDR) at Johns Hopkins University and the Broad Institute of
MIT and Harvard University (Broad). The data supplied here should not be used for any
purpose other than this tutorial.

1Zheng, Xiuwen., et al. A High-performance Computing Toolset for Relatedness and Principal Component
Analysis in GWAS. Submitted.

2

http://corearray.sourceforge.net/

2 Preparing Data

2.1 Data formats used in SNPRelate

To support efficient memory management for genome-wide numerical data, the gdsfmt
package provides the genomic data structure (GDS) file format for array-oriented bioinfor-
matic data, which is a container for storing annotation data and SNP genotypes. In this
format each byte encodes up to four SNP genotypes thereby reducing file size and access
time. The GDS format supports data blocking so that only the subset of data that is be-
ing processed needs to reside in memory. GDS formatted data is also designed for efficient
random access to large data sets.

> # load the R packages: gdsfmt and SNPRelate

> library(gdsfmt)

> library(SNPRelate)

Here is a typical GDS file:

> snpgdsSummary(snpgdsExampleFileName())

The total number of samples: 279

The total number of SNPs: 9088

SNP genotypes are stored in individual-major mode.

snpgdsExampleFileName() returns the file name of a GDS file used as an example in
SNPRelate, and it is a subset of data from the HapMap project and the samples were geno-
typed by the Center for Inherited Disease Research (CIDR) at Johns Hopkins University
and the Broad Institute of MIT and Harvard University (Broad). snpgdsSummary() sum-
marizes the genotypes stored in the GDS file. “Individual-major mode” indicates listing all
SNPs for an individual before listing the SNPs for the next individual, etc. Conversely,
“SNP-major mode” indicates listing all individuals for the first SNP before listing all indi-
viduals for the second SNP, etc. Sometimes “SNP-major mode” is more computationally
efficient than “individual-major model”. For example, the calculation of genetic covariance
matrix deals with genotypic data SNP by SNP, and then “SNP-major mode” should be more
efficient.

> # open a GDS file

> (genofile <- openfn.gds(snpgdsExampleFileName()))

file name: /private/var/folders/m3/hrfnm36n27x3ppdl3hk4czfr0000gn/T/Rtmpp3aaiV/Rinst5ffd4142453a/SNPRelate/extdata/hapmap.geno.gds

+ []

|--+ sample.id [FStr8 279 ZIP(23.10%)]

|--+ snp.id [Int32 9088 ZIP(34.76%)]

|--+ snp.rs.id [FStr8 9088 ZIP(42.66%)]

3

|--+ snp.position [Float64 9088 ZIP(51.77%)]

|--+ snp.chromosome [Int32 9088 ZIP(0.33%)]

|--+ snp.allele [FStr8 9088 ZIP(14.45%)]

|--+ genotype [Bit2 9088x279]

|--+ sample.annot [] *

| |--+ sample.id [FStr8 279 ZIP(23.10%)]

| |--+ family.id [FStr8 279 ZIP(28.37%)]

| |--+ geneva.id [Int32 279 ZIP(80.29%)]

| |--+ father.id [FStr8 279 ZIP(12.98%)]

| |--+ mother.id [FStr8 279 ZIP(12.86%)]

| |--+ plate.id [FStr8 279 ZIP(1.29%)]

| |--+ sex [FStr8 279 ZIP(28.32%)]

| |--+ pop.group [FStr8 279 ZIP(7.89%)]

The output lists all variables stored in the GDS file. At the first level, it saves variables
sample.id, snp.id, etc. The second-level variables sex and pop.group are both stored in
the directory of sample.annot. All of the functions in SNPRelate require a minimum set of
variables in the SNP annotation data. The minimum required variables are

• snp.id, a unique identifier for each SNP;

• snp.chromosome, an integer mapping for each chromosome, with values 1-26, mapped
in order from 1-22, 23=X,24=XY (the pseudoautosomal region), 25=Y, 26=M (the mi-
tochondrial probes), and 0 for probes with unknown positions; it does not allow NA.

• snp.position, the base position of each SNP on the chromosome, and 0 for unknown
position; it does not allow NA.

> # Take out snp.id

> head(read.gdsn(index.gdsn(genofile, "snp.id")))

[1] 1 2 3 4 5 6

> # Take out snp.rs.id

> head(read.gdsn(index.gdsn(genofile, "snp.rs.id")))

[1] "rs1695824" "rs13328662" "rs4654497" "rs10915489" "rs12132314"

[6] "rs12042555"

There are two additional variables:

• snp.rs.id, a character string identifier for the SNP that may not be unique.

• snp.allele, it is not necessary for the analysis, but it is necessary when merging geno-
types from different platforms. The format of snp.allele is “A allele/B allele”, like
“T/G” where T is A allele and G is B allele.

4

There are four possible values stored in the variable genotype: 0, 1, 2 and 3. “0” indicates
two B alleles, “1” indicates one A allele and one B allele, “2” indicates two A alleles, and “3”
is a missing genotype. “Bit2” indicates that each byte encodes up to four SNP genotypes
since one byte consists of eight bits.

> # Take out genotype data for the first 3 samples and the first 5 SNPs

> (g <- read.gdsn(index.gdsn(genofile, "genotype"), start=c(1,1), count=c(5,3)))

[,1] [,2] [,3]

[1,] 2 1 2

[2,] 1 1 1

[3,] 0 0 1

[4,] 1 1 2

[5,] 2 2 2

> # read population information

> pop <- read.gdsn(index.gdsn(genofile, c("sample.annot", "pop.group")))

> table(pop)

pop

CEU HCB JPT YRI

92 47 47 93

> # close the GDS file

> closefn.gds(genofile)

2.2 Create a GDS File of Your Own

The function snpgdsCreateGeno helps to create a GDS file of you own. There are
possible values stored in the input genotype matrix: 0, 1, 2 and other values. “0” indicates
two B alleles, “1” indicates one A allele and one B allele, “2” indicates two A alleles, and
other values indicate a missing genotype. For example,

> # load data

> data(hapmap.geno)

> # create a gds file

> with(hapmap.geno, snpgdsCreateGeno("test.gds", genmat=genotype,

+ sample.id=sample.id, snp.id=snp.id, snp.chromosome=snp.chromosome,

+ snp.position=snp.position, snp.allele=snp.allele, snpfirstorder=TRUE))

> # open the gds file

> (genofile <- openfn.gds("test.gds"))

file name: test.gds

5

+ []

|--+ sample.id [FStr8 279 ZIP(23.10%)]

|--+ snp.id [FStr8 1000 ZIP(45.02%)]

|--+ snp.position [Float64 1000 ZIP(55.97%)]

|--+ snp.chromosome [Int32 1000 ZIP(2.00%)]

|--+ snp.allele [FStr8 1000 ZIP(17.37%)]

|--+ genotype [Bit2 1000x279] *

> # close the genotype file

> closefn.gds(genofile)

2.3 Format conversion from PLINK binary files

The SNPRelate package provides a function snpgdsBED2GDS for converting a PLINK
binary file to a GDS file:

> # the PLINK BED file

> bed.fn <- system.file("extdata", "plinkhapmap.bed", package="SNPRelate")

> bim.fn <- system.file("extdata", "plinkhapmap.bim", package="SNPRelate")

> fam.fn <- system.file("extdata", "plinkhapmap.fam", package="SNPRelate")

> # convert

> snpgdsBED2GDS(bed.fn, fam.fn, bim.fn, "test.gds")

Start snpgdsBED2GDS ...

open /private/var/folders/m3/hrfnm36n27x3ppdl3hk4czfr0000gn/T/Rtmpp3aaiV/Rinst5ffd4142453a/SNPRelate/extdata/plinkhapmap.bed in the individual-major mode

open /private/var/folders/m3/hrfnm36n27x3ppdl3hk4czfr0000gn/T/Rtmpp3aaiV/Rinst5ffd4142453a/SNPRelate/extdata/plinkhapmap.fam DONE.

open /private/var/folders/m3/hrfnm36n27x3ppdl3hk4czfr0000gn/T/Rtmpp3aaiV/Rinst5ffd4142453a/SNPRelate/extdata/plinkhapmap.bim DONE.

Thu Aug 30 01:49:16 2012 store sample id, snp id, position, and chromosome.

start writing: 279 samples, 5000 SNPs ...

Thu Aug 30 01:49:16 2012 0%

Thu Aug 30 01:49:16 2012 100%

Thu Aug 30 01:49:16 2012 Done.

> # summary

> snpgdsSummary("test.gds")

The total number of samples: 279

The total number of SNPs: 5000

SNP genotypes are stored in individual-major mode.

2.4 Format conversion from Sequence VCF files

The SNPRelate package provides a function snpgdsVCF2GDS for converting a VCF
file to a GDS file:

6

> # the VCF file

> vcf.fn <- system.file("extdata", "sequence.vcf", package="SNPRelate")

> # convert

> snpgdsVCF2GDS(vcf.fn, "test.gds")

Start snpgdsVCF2GDS ...

Open /private/var/folders/m3/hrfnm36n27x3ppdl3hk4czfr0000gn/T/Rtmpp3aaiV/Rinst5ffd4142453a/SNPRelate/extdata/sequence.vcf

Scanning ...

Thu Aug 30 01:49:16 2012 store sample id, snp id, position, and chromosome.

start writing: 3 samples, 2 SNPs ...

Thu Aug 30 01:49:16 2012 Done.

> # summary

> snpgdsSummary("test.gds")

The total number of samples: 3

The total number of SNPs: 2

SNP genotypes are stored in SNP-major mode.

3 Data Analysis

We developed gdsfmt and SNPRelate (high-performance computing R packages for multi-
core symmetric multiprocessing computer architectures) to accelerate two key computations
in GWAS: principal component analysis (PCA) and relatedness analysis using identity-by-
descent (IBD) measures.

> # open the GDS file

> genofile <- openfn.gds(snpgdsExampleFileName())

3.1 LD-based SNP pruning

It is important to use a pruned set of SNPs which are in approximate linkage equilibrium
with each other to avoid the strong influence of SNP clusters in principal component analysis
and relatedness analysis.

> set.seed(1000)

> # try different LD thresholds for sensitivity analysis

> snpset <- snpgdsLDpruning(genofile, ld.threshold=0.2)

SNP pruning based on LD:

Sliding window: 500000 basepairs, Inf SNPs

|LD| threshold: 0.2

Removing 365 non-autosomal SNPs

7

Removing 1 SNPs (monomorphic, < MAF, or > missing rate)

Working space: 279 samples, 8722 SNPs

Chromosome 1: 75.42%, 540/716

Chromosome 2: 72.24%, 536/742

Chromosome 3: 74.71%, 455/609

Chromosome 4: 73.31%, 412/562

Chromosome 5: 77.03%, 436/566

Chromosome 6: 75.58%, 427/565

Chromosome 7: 75.42%, 356/472

Chromosome 8: 71.31%, 348/488

Chromosome 9: 77.88%, 324/416

Chromosome 10: 74.33%, 359/483

Chromosome 11: 77.40%, 346/447

Chromosome 12: 76.81%, 328/427

Chromosome 13: 75.58%, 260/344

Chromosome 14: 76.95%, 217/282

Chromosome 15: 76.34%, 200/262

Chromosome 16: 72.66%, 202/278

Chromosome 17: 74.40%, 154/207

Chromosome 18: 73.68%, 196/266

Chromosome 19: 85.00%, 102/120

Chromosome 20: 71.62%, 164/229

Chromosome 21: 76.98%, 97/126

Chromosome 22: 75.86%, 88/116

6547 SNPs are selected in total.

> names(snpset)

[1] "chr1" "chr2" "chr3" "chr4" "chr5" "chr6" "chr7" "chr8" "chr9"

[10] "chr10" "chr11" "chr12" "chr13" "chr14" "chr15" "chr16" "chr17" "chr18"

[19] "chr19" "chr20" "chr21" "chr22"

> head(snpset$chr1) # snp.id

[1] 1 2 4 5 7 10

> # get all selected snp id

> snpset.id <- unlist(snpset)

3.2 Principal Component Analysis

The functions in SNPRelate for PCA include calculating the genetic covariance matrix
from genotypes, computing the correlation coefficients between sample loadings and geno-
types for each SNP, calculating SNP eigenvectors (loadings), and estimating the sample
loadings of a new dataset from specified SNP eigenvectors.

8

> pca <- snpgdsPCA(genofile, maf=0.05, missing.rate=0.05,

+ snp.id=snpset.id, num.thread=2)

Principal Component Analysis (PCA) on SNP genotypes:

Removing 1112 SNPs (monomorphic, < MAF, or > missing rate)

Working space: 279 samples, 5435 SNPs

Using 2 CPU cores.

PCA: the sum of all working genotypes = 1520750

PCA: Thu Aug 30 01:49:16 2012 0%

PCA: Thu Aug 30 01:49:16 2012 100%

PCA: Thu Aug 30 01:49:16 2012 Begin (eigenvalues and eigenvectors)

PCA: Thu Aug 30 01:49:17 2012 End (eigenvalues and eigenvectors)

> plot(pca$eigenvect[,2], pca$eigenvect[,1], xlab="Principal Component 2",

+ ylab="Principal Component 1", type="n")

> # uses different colors with respect to ethnicities

> race <- as.factor(read.gdsn(index.gdsn(genofile,

+ c("sample.annot", "pop.group"))))

> points(pca$eigenvect[,2], pca$eigenvect[,1], col=race)

> legend("topleft", legend=levels(race), text.col=1:nlevels(race))

9

The code below shows how to calculate the percent of variation is accounted for by the
principal component for the first 16 PCs. It is clear to see the first two eigenvectors hold the
largest percentage of variance among the population, although the total variance accounted
for is still less the one-quarter of the total.

> pc.percent <- 100 * pca$eigenval[1:16]/sum(pca$eigenval)

> pc.percent

[1] 10.9608123 6.1973872 0.9480086 0.8526434 0.7927158 0.7804631

[7] 0.7496657 0.7139979 0.6759434 0.6680874 0.6605878 0.6591129

[13] 0.6501947 0.6441370 0.6372978 0.6281596

Plot the principal component pairs for the first four PCs:

> lbls <- paste("PC", 1:4, "\n", format(pc.percent[1:4], digits=2), "%", sep="")

> pairs(pca$eigenvect[,1:4], col=race, labels=lbls)

10

To calculate the SNP correlations between eigenvactors and SNP genotypes:

> # get chromosome index

> chr <- read.gdsn(index.gdsn(genofile, "snp.chromosome"))

> CORR <- snpgdsPCACorr(pca, genofile, eig.which=1:4)

SNP correlations:

Working space: 279 samples, 9088 SNPs

Using 1 CPU core.

Using the top 32 eigenvectors.

SNP Correlations: the sum of all working genotypes = 2553065

SNP Correlations: Thu Aug 30 01:49:17 2012 0%

SNP Correlations: Thu Aug 30 01:49:17 2012 100%

> par(mfrow=c(3,1))

> for (i in 1:3)

+ {

11

+ plot(abs(CORR$snpcorr[i,]), ylim=c(0,1), xlab="SNP Index",

+ ylab=paste("PC", i), col=chr, pch="+")

+ }

3.3 Relatedness Analysis

For relatedness analysis, identity-by-descent (IBD) estimation in SNPRelate can be done
by either the method of moments (MoM) (Purcell et al., 2007) or maximum likelihood
estimation (MLE) (Milligan, 2003; Choi et al., 2009). Although MLE estimates are more
reliable than MoM, MLE is significantly more computationally intensive. For both of these
methods it is preffered to use a LD pruned SNP set.

> # YRI samples

> sample.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

> YRI.id <- sample.id[read.gdsn(index.gdsn(genofile,

+ c("sample.annot", "pop.group"))) == "YRI"]

12

3.3.1 PLINK method of moments (MoM)

> # estimate IBD coefficients

> ibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id, snp.id=snpset.id,

+ maf=0.05, missing.rate=0.05)

Identity-By-Descent analysis (PLINK method of moment) on SNP genotypes:

Removing 1285 SNPs (monomorphic, < MAF, or > missing rate)

Working space: 93 samples, 5262 SNPs

Using 1 CPU core.

PLINK IBD: the sum of all working genotypes = 484520

PLINK IBD: Thu Aug 30 01:49:49 2012 0%

PLINK IBD: Thu Aug 30 01:49:49 2012 100%

> ibd.coeff <- snpgdsIBDSelection(ibd)

> head(ibd.coeff)

sample1 sample2 k0 k1 kinshipcoeff

1 NA19152 NA19139 0.9548539 0.04514610 0.011286524

2 NA19152 NA18912 1.0000000 0.00000000 0.000000000

3 NA19152 NA19160 1.0000000 0.00000000 0.000000000

4 NA19152 NA18515 0.9234541 0.07654590 0.019136475

5 NA19152 NA19222 1.0000000 0.00000000 0.000000000

6 NA19152 NA18508 0.9833803 0.01661969 0.004154922

> plot(ibd.coeff$k0, ibd.coeff$k1, xlim=c(0,1), ylim=c(0,1),

+ xlab="k0", ylab="k1", main="YRI samples (MoM)")

> lines(c(0,1), c(1,0), col="red", lty=2)

13

3.3.2 IBD Using Maximum Likelihood Estimation (MLE)

> # estimate IBD coefficients

> set.seed(1000)

> snp.id <- sample(snpset.id, 5000) # random 5000 SNPs

> ibd <- snpgdsIBDMLE(genofile, sample.id=YRI.id, snp.id=snp.id,

+ maf=0.05, missing.rate=0.05)

> ibd.coeff <- snpgdsIBDSelection(ibd)

> plot(ibd.coeff$k0, ibd.coeff$k1, xlim=c(0,1), ylim=c(0,1),

+ xlab="k0", ylab="k1", main="YRI samples (MLE)")

> lines(c(0,1), c(1,0), col="red", lty=2)

14

3.4 Identity-By-State Analysis

For the n individuals in a sample, snpgdsIBS can be used to create a n × n matrix of
genome-wide average IBS pairwise identities:

> ibs <- snpgdsIBS(genofile, num.thread=2)

Identity-By-State (IBS) analysis on SNP genotypes:

Removing 365 non-autosomal SNPs

Removing 1 SNPs (monomorphic, < MAF, or > missing rate)

Working space: 279 samples, 8722 SNPs

Using 2 CPU cores.

IBS: the sum of all working genotypes = 2446510

IBS: Thu Aug 30 01:49:50 2012 0%

IBS: Thu Aug 30 01:49:50 2012 100%

> pop <- read.gdsn(index.gdsn(genofile, c("sample.annot", "pop.group")))

15

The heat map is shown:

> library(lattice)

> L <- order(pop)

> levelplot(ibs$ibs[L, L], col.regions = terrain.colors)

To perform multidimensional scaling analysis on the n × n matrix of genome-wide IBS
pairwise distances:

> loc <- cmdscale(1 - ibs$ibs, k = 2)

> x <- loc[, 1]; y <- loc[, 2]

> race <- as.factor(pop)

> plot(x, y, col=race, xlab = "", ylab = "",

+ main = "Multidimensional Scaling Analysis (IBS Distance)")

> legend("topleft", legend=levels(race), text.col=1:nlevels(race))

16

To perform cluster analysis on the n× n matrix of genome-wide IBS pairwise distances:

> d <- 1 - ibs$ibs

> colnames(d) <- rownames(d) <- pop

> hc <- hclust(as.dist(d))

> obj <- as.dendrogram(hc, hang=0.2)

> add.point <- function(n, group) {

+ if (is.leaf(n))

+ {

+ attr(n, "nodePar") <- list(pch=20, col=match(attr(n, "label"), group))

+ }

+ n

+ }

> obj <- dendrapply(obj, add.point, group=levels(race))

> plot(obj, leaflab="none", main="Hierarchical Clustering based on IBS")

> legend("topright", legend=levels(race), col=1:nlevels(race), pch=19, ncol=4)

17

> # close the GDS file

> closefn.gds(genofile)

4 Resources

1. CoreArray project: http://corearray.sourceforge.net/

2. gdsfmt R package: http://cran.r-project.org/web/packages/gdsfmt/index.html

3. SNPRelate R package: http://cran.r-project.org/web/packages/SNPRelate/index.
html

5 Acknowledgements

The author would like to thank members of the GENEVA consortium (http://www.
genevastudy.org) for access to the data used for testing the gdsfmt and SNPRelate packages.

18

http://corearray.sourceforge.net/
http://cran.r-project.org/web/packages/gdsfmt/index.html
http://cran.r-project.org/web/packages/SNPRelate/index.html
http://cran.r-project.org/web/packages/SNPRelate/index.html
http://www.genevastudy.org
http://www.genevastudy.org

Funding: National Institutes of Health (HG 004446).

19

	1 Overview
	2 Preparing Data
	2.1 Data formats used in SNPRelate
	2.2 Create a GDS File of Your Own
	2.3 Format conversion from PLINK binary files
	2.4 Format conversion from Sequence VCF files

	3 Data Analysis
	3.1 LD-based SNP pruning
	3.2 Principal Component Analysis
	3.3 Relatedness Analysis
	3.3.1 PLINK method of moments (MoM)
	3.3.2 IBD Using Maximum Likelihood Estimation (MLE)

	3.4 Identity-By-State Analysis

	4 Resources
	5 Acknowledgements

