Word Stemming in R

Duncan Temple Lang
Department of Statistics,
UC Davis

August 4, 2004

Stemming is the process of removing suffixes from words to get the common
origin. In statistical analysis, it greatly helps when comparing texts to be able
to identify words with a common meaning and form as being identical. For
example, we would like to count the words stopped and stopping as being the
same and derived from stop. Stemming identifies these common forms.

This Rstem package provides an interface to C code that performs stemming
on words. The basic interface is simple. You pass a collection of words as a
character vector in S to the function wordStem() and it returns the correspond-
ing stem for each word in a parallel character vector. The documentation for
wordStem () provides examples.

The architecture of the stemming system created by Martin Porter allows
others to specify the rules for stemming as inputs to a processor that generates
C (or Java) code that implements that stemming procedure. There are already
rules for languages including English, French, Danish, German, etc. One can
query the available languages with built-in support within the package using
the function getStemLanguages().

> getStemLanguages ()

[1] "french" "english" "spanish" "portuguese" "german"
[6] "dutch" "swedish" "norwegian" "danish" "russian"
[11] "finnish"

To use the stemming algorithm for a particular language in wordStem(), one
can specify the name of the language via the language argument.

wordStem(words, language = "norwegian")

The package is extensible in two ways. Firstly, it contains a script that
can be used to download new C code from the Snowball Web site. As up-
dated code for current languages or code for new languages becomes available,
this package can be used to update itself and then re-installed. Indeed, this
could be made a configuration option so that the up-to-the-minute versions of
the Snowball-generated code would be downloaded and used, and only for the
desired languages.

The second way in which this package is extensible is at run-time. The basic
architecture of the Snowball-generated C code is that we first create a “context”
or environment which is created and used each time we stem a collection of
words. Typically, we just create a new SN_env object in the default manner.
This allocates a new instance of the struct using the Snowball internals. There
is a different way to do this for each language and so the creation/initialization
routine is language-specific.

There are times when we might want to override the creation/initialization of
these routines are self. For example, we might want add debugging information,
or we might want to profile the stemming behaviour. Alternatively, we might
want to cache stemmed words, or cache these structures so that new ones are
recycled from a pool of existing ones. Or, more interestingly, we might want to
“extended” the structure in some way and create it simply in a different way.

The Rstem package allows the caller to specify constructor and destructor
routines to use to create and remove a SN_env object to use for this one stemming
operation. We typically would specify the names of these routines. R then looks
these up with all of the dynamically loaded code to which it has access and
resolves these into the addresses of the corresponding C routines. In this case,
we just give the names of the two routines. For example, if we wanted to use
our own routines named testDynCreate() and testDynClose(), we could merely
call wordStem() s

wordStem(words, language = c("testDynCreate", "testDynClose"))

One of the drawbacks about simply identifying the routines by name is that
they may be found in the wrong dynamically loaded library. For example, we
might have a routine testDynCreate() in a different library as well as in the one
we expect to find the one of interest. If we find the wrong one simply because
it is earlier in the search path, then, calamitous things will occur. At best, we
will crash R. At worst, we will get wrong answers and not necessarily know.

To avoid this, it is better to explicitly resolve the routines of interest using
the R function getNativeSymbol(). This allows us to specify the name of a
routine and the name of the library (often the same as the package) in which to
find it.

wordStem(stems,
language = list(getNativeSymbolInfo("testDynCreate", "Rstem")$address,
getNativeSymbolInfo("testDynClose", "Rstem")$address,
getNativeSymbolInfo("testDynStem", "Rstem")$address)
)

One of the reasons for adding this facility to the package is to illustrate how
it might be used in other packages. We have an example of how to do this to
extend the distance function in the mva package, and essentially how to avoid
fixed sets of options in C code implemented by a switch statement.

