
1 Hypothesis Testing

When conducting a hypothesis test, there are two adjustable values that effect the sample size, n. They are
α and β, and are responsible for controlling Type I and Type II error.

P (Type I Error: false positive) = α

P (Type II Error: false negative) = β

α and β should be as small as possible, which is done by increasing the sample size, n.

1.1 Means

1.1.1 One group

With one group, the hypotheses are quite simple. Given the statistic X being tested (mean, for example)

H0 : X = µ0

H1 : X = µ1

Where X ∼ N(µ0, σ
2
0) if H0 is correct, and X ∼ N(µ1, σ

2
1) if H1 is correct. Lachin in [4] gives a detailed

description of how to manipulate the above probabilities to get the following equation for n.

n ≥
[
zασ0 + zβσ1

µ1 − µ0

]2
(1)

1.1.2 Two independant groups

Two groups, i.e, experimental and control, not necessarily with equal distribution. Let ne = Qen and
nc = Qcn define the sample sizes of each group, where Qe +Qc = 1. Note that now there are two statistics:
Xe ∼ N(µe, σ

2
e) and Xc ∼ N(µc, σ

2
c ). Let σ2 be the pooled estimation of σ2

e and σ2
c .

H0 : µe − µc = 0

H1 : |µe − µc| = δ

n ≥ σ2(Q−1
e +Q−1

c )(Zα + Zβ)2

δ2
(2)

For practical purposes, note that Qc is not a real random variable, but defined as Qc = 1 − Qe. Also, for
simplicity, the function takes as input the pooled estimate of σ.

1.1.3 Paired Observations

Instead of comparing two independant observations, two observations at different times from the same
subject are taken. Let d̄ = Xe −Xc, and redefine the variance as σ2

d = 2σ2(1− ρ), where ρ is the correlation
coefficient.

H0 : d̄ = 0

H1 : d̄ = δ

n ≥ σ2
d(Zα + Zβ)2

δ2
(3)

1.2 Proportions

Proportions are a special case of the means, using the following relationship.

X ∼ Bin(n, π) ∼ N

(
π,
π(1− π)

n

)
Using this, the sample size necessary for one and two samples can be calculated.
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1.2.1 One sample

Testing the hypotheses H0 : X = π0 against H1 : X = π1, then N is defined as

n ≥

[
Zα

√
π0(1− π0) + Zβ

√
π1(1− π1)

π1 − π0

]2

(4)

1.2.2 Two independant observations

This function is developed the same way that it was for the independent observations of a mean calculation.
Define π̄ = Qeπe +Qcπc.

H0 : πe − πc = 0

H1 : πe − πc = δ

n ≥ (Zα + Zβ)24π̄(1− π̄)
(πe − πc)2

(5)

Note that this equation uses a slight estimation, and that the function bsamsize in R does not, so it’s
results, used in the interactive function, will differ slightly from the above equation.

1.2.3 Paired Observations

Now the two observations are not independent, but are taken at times t and s on the same subject. Consider
the following table. Where a, b, c and d could be converted into probabilities πa, πb, πc and πd by dividing

Time t
+ -

Time s + a b ns

- c d
nt N

by the sample size N. Also, define πt and πs as the marginal probabilities. Then the hypotheses are defined
as

H0 : πs − πt = 0

H1 : |πs − πt| = δ

And note that the calculation of πs − πt = πb − πc, therefore the problem ends up being defined in terms of
the number of discordant pairs. Using this fact, and the standard variance calculations, the sample size can
be defined as

n ≥

Zα
√
πb + πc + Zβ

√
4πbπc

πb+πc

πb − πc

2

(6)

Though this function does not seem to depend on pis and pit, they are used to determine the probabilities
pib and pic, so are still taken as input.

1.3 Survival Analysis

Assume k groups being analyzed, each with an exponential distribution with mean µj . Let ρj = ln(µj) and
dj be the number of failures per group. These equations are taken from [4] and [6], and depend heavily on
their calculations.
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k τ(k-1,0.05,0.05) τ(k-1,0.05,0.10) τ(k-1,0.05,0.20)
2 12.995 10.507 7.849
3 15.443 12.654 9.635
4 17.170 14.171 10.903
5 18.572 15.405 11.935
6 19.780 16.469 12.828

Table 1: τ(k − 1, α, β) value from the non central chi-squared distribution required to achieve power (1-β)
in testing H0 at level α

1.3.1 comparing means

The most basic hypothesis is that all the groups have the same mean, with the alternative being that there
are at least two groups with different means.

H0 : µj = µ,∀j

H1 : ∃k, l s.t µk 6= µl

Using this hypothesis, it can be shown that, under the alternative hypothesis, the data follows a non-central
chi-squared distriubtion on k-1 degrees of freedom, with non-central parameter

τ =
∑

dj(ρj − ρ̄)2 (7)

Where ρ̄ is the mean of the ρj weighted by the number of failures per group, dj . The following table is a
sample of the necessary τ values need to satisfy α and β. Given a set of ρj values, a family of dj values can
be found that will satisfy the Type I and II errors.

Note that, if all the dj values are taken as the same, then the equation for τ can be solved for explicitly.
Note that the equation for τ would not change if the group means, µj were scaled, so it turns out that the
sample size is dependant on the ratio of ρ values, and not there differences. If the alternative hypothesis is
defined by aj = µj

µ1
,∀j > 1, µ1 = 1, and the number of failures per group are taken to all be the same, d,

then the equation can be solved explicitly.

d ≥ τ(k − 1, α, β)∑
(ln(aj)− ¯lna)2

(8)

Finally, if the alternative hypothesis is not concerned with the individual means, but with the ratio
between the largest and the smallest means, then d can be calculated even easier. Define ak as the largest
difference between two means, ak = max

(
µj

µk
,∀j, k

)
. Then d is defined by

d ≥ 2 ∗ τ(k − 1, α, β)
(lnak)2

(9)

1.3.2 An approach for two groups

Because of the complexity of the above method, and the fact that the τ ’s seem only defined for a select
group, it is worth looking at another approach. Consider a two-treatment trial that is going to be run up to
time T, with patients entering any time up to time point T. Thinking of the two groups as an experimental
and a control group with means µe and µc respectively, the hypotheses are

H0 : |µe − µc| = 0

HA : |µe − µc| 6= 0

Without going into the complex details of the problem, define the equation

ψ(µ) =
µ3T

µT − 1 + e−µT
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Exposed Not Exposed
Disease a b

No Disease c d

And the variable µ̄ = Qeµe +Qcµc, then the sample size is defined as

n ≥
(Zα/2

√
ψ(µ̄)(Q−1

e +Q−1
c ) + Zβ

√
ψ(µe)Q−1

e + ψ(µc)Q−1
c )2

(µe − µc)2
(10)

1.4 Miscellaneous Statistics

1.4.1 Kappa

The paper by Donner and Eliasziw, [3], describes several methods of computing kappa, finding confindence
intervals for kappa, and on performing hypotheses tests, on top of the sample size calculations. Their
calculations use the chance corrected calculation of κ outlined in the agreement section of the course. The
sample size calculation is based on the hypothesis test:

H0 : κ = κ0

HA : κ = κ1

And, as in the survival analysis section, the assumption is that, under the alternative hypothesis, the
distribution falls under the non-central chi-sqaured distribution with parameter τ(1, α, β). π is the chance
of a subject as being rated as positive. Given the above assumptions, the sample size is calculated using the
equation:

n ≥ τ(1, α, β)
[
π2(1− π)2(κ1 − κ0)2

π2 + π(1− π)κ0
+

2π2(1− π)2(κ1 − κ0)2

π(1− π)(1− κ0)
+

π2(1− π)2(κ1 − κ0)2

(1− π)2 + π(1− π)κ0

]−1

(11)

1.4.2 Odds Ratio

The equations here are taken from [5]. The design of an experiment to calculate odds ratio is similar to that
for paired observations. Consider the following table. The hypotheses for this test are

H0 : OR = 1

HA : OR 6= 1

Given the oabove hypotheses, and confidence and power defined by α and β, then the sample size is definde
as

n ≥

(
z2
α/2

√
2p2(1− p2) + zβ

√
p1(1− p1) + p2(1− p2)

p1 − p2

)2

(12)

Note that the 2p2(1− p2) is being used instead of the more logical 2p̄(1− p̄). According to Lwanga, [5], this
is done because “the study population is likely to be made up of many more controls than cases, and the
exposurte rate among the controls os often known with a high degree of precision; under the null hypothesis
this is the exposure rate for the cases as well. If the investgator is in doubt about the exposure rate among
the controls, however, the formula should be modified”, ie, p̄ should be used, where p̄ = (p1 + p2)/2.

1.4.3 Relative Risk

The equations here are also taken from [5], and are very similar to those in the odds ratio equations. The
hypotheses for this test are

H0 : RR = 1

HA : RR 6= 1
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The relative risk is defined by two probabilities: the probability of contracting a disease given exposure, p1

and the probability of contracting a disease given no exposure, p2. The relative risk is defined as p1/p2, and
the sample size required for an accurate calculation, ie, within the range of ε, is

n ≥

(
z2
α/2

√
2p̄(1− p̄) + zβ

√
p1(1− p1) + p2(1− p2)

p1 − p2

)2

(13)

2 Point Estimation

2.1 SRS

2.1.1 Means

Assuming we’re calculating the sample mean, we want it to be correct within a certain value, a certain
percentage of them time.

P (|ȳs − µy| < ε) = 1− α

Unfortunately, ε is often dificult to calculate, so we’ll use a relative precision.

P (| ȳs − µy

µy
| < ε) = 1− α

Now, using the CLT for a simple random sample, and re-arranging [2], page 14, we get

n ≥
z2
α/2σ

2

ε2µ2 +
z2

α/2σ2

N

Now because the population mean and variance are often difficult to estimate, the coefficient of vari-
ation of the population is often used, because it tends to be simpler to guess at.

CVU =
σ2

µ

Which redefines the equation for n as

n ≥
z2
α/2CV

2
U

ε2 +
z2

α/2CV 2
U

N

(14)

In this equation, ε is the only unknown, so it’s the variable that should be manipulated in the Tk widget.

2.1.2 Proportions

Remember that proportions are the same as means, except that yk = 1/0, so the sample size calculation can
be approached the same way, ie, The desired precision of the estimation can be expressed as

P (|ȳs − µy| < ε) = P (|p̂− p| < ε) = 1− α

Where the term p̂ is the estimate of the proportion from the sample, and p is the true sample proportion.
Note that there is no need to use relative precision in this case as there was in the regular case: the range of
p is already restricted to [0,1], so the computation can proceed as follows, producing the following equation
for n

n ≥
z2
α/2p(1− p)

ε2
(15)

Note that the above equation is dependent on knowing the true proportion. This is often unknown, but since
the range of p is restricted to [0,1], taking a value of p = 0.5 ensures that the sample will cover all possible
values of p.
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Exposed Not Exposed
Disease a b

No Disease c d

2.2 Miscellaneous Statistics

2.2.1 Intraclass correlation

The paper by Bonett, [1], gives an excellent summary of the following equation, which will not be explained
in any detail here. Since the intra-class correlation is calculated for an ANOVA situation, two sample sizes
are needed: the number of subjects: n, and the number of treatments per subject, k. Also, define ρI as the
intra-class correlation, then treating the number of treatments, k, as fixed, the number of subjects required
to estimate ρI within a certain range ε is defined as

n ≥ 8zα/2

[
(1− ρI)2(1 + (k − 1)ρI)2

(k(k − 1)ε2

]
+ 1 (16)

Like most sample size estimations, this requires an initial guess at the value of ρI .

2.2.2 Odds Ratio

The equations here are taken from [5]. The design of an experiment to calculate odds ratio is similar to that
for paired observations. Consider the following table.

From a design such as this, the odds ratio is defined as ad/bc. To estimate the odds ratio with relative
precision, ε, the following equation is used. p1 is the probability of exposure given the subject has the disease:
a/(a+ b) and p2 is the probability of exposure given that the subject does not have the disease: c/(c+ d).

n ≥
z2
α/2

ln(1− ε)2

(
1

p1(1− p1)
+

1
p2(1− p2)

)
(17)

Note that either p1 or p2 can be extrapolated from the equation for the odds ratio if the odds ratio and the
other probability are known.

OR =
p1

1−p1
p2

1−p2

2.2.3 Relative Risk

The equations here are taken from [5]. This time, the relative risk is being estimated within ε of its true
value. The equation for n is

n ≥
z2
α/2

ln(1− ε)2

(
(1− p1)
p1

+
(1− p2)
p2

)
(18)

3 Power Calculation

Though hypothesis tests are of ten designed with the goal of obtaining a certain power level, by obtaining a
certain sample size, the value of n used is not always the same as what was outlined. The following equations
are versions of equation previously defined in the paper, solved for the power variable. Given an alpha value
and a sample size n, along with the equation specific random variables, a power rating can be calculated.

3.1 Means

Equation (1)

Zβ =
√
n|µ1 − µ0| − Zασ0

σ1
(19)
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Equation (2)

Zβ =
δ

σ

√
n

Q−1
e +Q−1

c

− Zα (20)

Equation (3)

Zβ =
δ

σd

√
n− Zα (21)

3.2 Proportions

Equation (4)

Zβ =
√
n|π1 − π0| − Zα

√
π0(1− π0√

π1(1− π1)
(22)

Equation (5)

Zβ =
√

n

4π̄(1− π̄)
|πe − πc| − Zα (23)

Equation (6)

Zβ =
(√
n|πb − πc| − Zα

√
πb + πc

)√πb + πc

4πbπc
(24)

3.3 Survival Analysis

Note that, for the following equations, the left side τ(k − 1, α, β) set to a known value is solvable for β.
Equation (8)

τ(k − 1, α, β) = d
∑

(ln(aj)− ¯lna)2 (25)

Equation (9)

τ(k − 1, α, β) =
d(lnak)2

2
(26)

Equation (10)

Zβ =

√
n|µe − µc| − zα/2

√
ψ(µ̄)(Q−1

e +Q−1
c )√

ψ(µe)Q−1
e + ψ(µc)Q−1

c

(27)

3.4 Miscellaneous Statistics

Equation (11). Note that τ(1, α, β) = (zα/2 + zβ)2.

zβ ≥
√
n

√
π2(1− π)2(κ1 − κ0)2

π2 + π(1− π)κ0
+

2π2(1− π)2(κ1 − κ0)2

π(1− π)(1− κ0)
+

π2(1− π)2(κ1 − κ0)2

(1− π)2 + π(1− π)κ0
− zα/2 (28)

Equation (12)

zβ =
√
n|p1 − p2| − zα/2

√
2p2(1− p2)√

p1(1− p1) + p2(1− p2)
(29)

Equation(13)

zβ =
√
n|p1 − p2| − zα/2

√
2p̄(1− p̄)√

p1(1− p1) + p2(1− p2)
(30)
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