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1 Overview:

RJaCGH is an R package designed for the analysis of CGH data. Basically, it �ts
a Non Homogeneous Hidden Markov Model through Reversible Jump Markov
Chain Montecarlo. The package estimates the probability for every gene to have
a normal copy number, gained or lost. The technical report gives full details
about the statistical model and the parameterization it uses, plus algorithm
details.

Please note that our methods are computer intensive, so they may take a
long time on a slow machine.

2 Data:

We use for the examples the public data set of Snijders et al. (10001) with 15
human cells with known karyotypes. We use here the objects in package GLAD
1.6.0. (Hupp�e and Barillot).
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3 Examples:

3.1 Same model for the whole genome

We'll analyze data cell gm13330 from Snijders. First, we take out the missing
values, because RJaCGH does not handle NA's:

> set.seed(1)

> library(RJaCGH)

> data(snijders)

> y <- gm13330$LogRatio[!is.na(gm13330$LogRatio)]

> Pos <- gm13330$PosBase[!is.na(gm13330$LogRatio)]

> Chrom <- gm13330$Chromosome[!is.na(gm13330$LogRatio)]

We can �t the same Non Homogeneous Hidden Markov Model to the whole
genome with the function RJaCGH, setting the model argument to 'genome'. We
will �t HMM's with a maximum of four hidden states, so we'll set the parameter
k.max=4.
We can also set, if we wish to, the jumping parameters of the MCMC. There
are two types:

� The standard deviation of the candidates of the jumps of the chain within
a given model: sigma.tau.mu, sigma.tau.sigma.2 and sigma.tau.beta.
They are vectors of length k.max. They are related to the dispersion within
models.

� The standard deviation of the jumps between models in split/combine
moves: tau.split.mu and tau.split.beta. They are scalars and are
related to the dispersion between models.

We must remember that these are not parameters of the model, in the sense that
di�erent values produce di�erent models. They are parameters of the algorithm
that speed up or assure convergence.

We have to enclose them in a list. By some inspection of the data and/or
trial/error we set them to the following values:

> jump.parameters <- list(sigma.tau.mu = rep(0.01, 4), sigma.tau.sigma.2 = rep(0.05,

+ 4), sigma.tau.beta = rep(0.1, 4), tau.split.mu = 0.1, tau.split.beta = 0.1)

> fit <- RJaCGH(y = y, Pos = Pos, Chrom = Chrom, model = "genome",

+ k.max = 4, burnin = 50000, TOT = 10000, jump.parameters = jump.parameters,

+ auto.label = 0.75)

Starting Reversible Jump

The parameter auto.label is optional and represents the expected minimum
proportion of normal genes in the sample. It can be set to NULL if it is unknown,
but here we will set it to 0.75.

After the �t (it may take a little while), we can inspect the posterior prob-
ability of the number of hidden states (di�erent number of copy numbers):

> round(prop.table(table(fit$k)), 3)

1 2 3 4
0 0 0 1
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The �t object is a list with several lists nested; one for each model �tted.
For example,

> fit[[4]]

is a list with the results of the �t of a model with 4 hidden states. There are
several elements inside; for example, we can access to the means and variances
of the hidden states �tted:

> fit[[4]]$mu

> fit[[4]]$sigma.2

They are matrices with as many rows as samples have been drawn to a model
with 4 hidden states and as many columns as hidden states (that is, four).

> apply(fit[[4]]$mu, 2, mean)

[1] -0.83781894 -0.07789532 0.03590638 0.51815899

would be the mean of the posterior distribution of the means of the 4 hidden
states.

In the case of the function of transition probabilities:

> fit[[4]]$beta

is an array with the �rst and second dimensions the number of hidden states
and the third the number of MCMC iterations in that model. So

> apply(fit[[4]]$beta, c(1, 2), mean)

[,1] [,2] [,3] [,4]
[1,] 0.000000 2.397859 2.437199 2.314110
[2,] 6.461568 0.000000 2.536138 7.089820
[3,] 7.965401 3.048981 0.000000 5.894768
[4,] 4.096827 4.118661 2.870794 0.000000

would give the mean of the posterior distribution of beta (the transition
matrix depends on the distance between genes; see tech. report for details on
the model). We can also summarize the �t and inspect these results. By default,
summary returns the median of the posterior distributions:

> summary.HMM <- summary(fit)

> summary.HMM$mu

Loss-1 Normal Normal Gain-1
-0.83797069 -0.07798217 0.03584619 0.51811133

> summary.HMM$sigma.2

Loss-1 Normal Normal Gain-1
0.008970285 0.007439757 0.007049290 0.015476109

We can also plot the model and the classi�cation of genes to the hidden
states:
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> plot(fit, cex = 1.1)
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The color 'green' correspond to states of loss, the 'black' to normal states and the
'red' to gains. Note that two states have been labeled as 'Normal'. As statistical
states do not always correspond to biological states, RJaCGH does an automatic
labeling based on the posterior means and variances of the hidden states and the
argument auto.label (see the help �le for RJaCGH for details). If the user wants
to make his own relabelling of states, he has to de�ne fit[[k]]$state.labels,
for the model k of interest. It must be a vector of length k with elements 'Loss',
'Normal' or 'Gain'. For example, in our case:

> fit[[4]]$state.labels <- c("Loss", rep("Normal", 2), "Gain")
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There are other methods to extract more information, as states or model.averaging.
They will be introduced in the next section.

We can also inspect the convergence of the most visited model:

> trace.plot(fit)

0 5000 15000

2.
5

3.
5

4.
5

5.
5

Trace plot of number of states

iteration

N
um

be
r 

of
 s

ta
te

s

0 2000 6000 10000

−
0.

5
0.

0
0.

5

Trace plot of means

iteration

M
ea

n 
of

 s
ta

te
s

0 2000 6000 10000

0.
00

5
0.

01
5

Trace plot of variance

iteration

V
ar

ia
nc

e 
of

 th
e 

st
at

es

0 2000 6000 10000

0
2

4
6

8

Trace plot of beta

iteration

B
et

a

If we don't see good mixing we can re-adjust the jumping parameters:

� If the lines are too straight for some parameters, we must reduce its cor-
responding jumping parameters and re�t.

� If the lines oscilate too much, we should re�t with greater jumping pa-
rameters.

� The parameters that rule the number of states mixing are tau.split.mu
and tau.split.beta, and the parameters that rule the means, the vari-
ances and beta are sigma.tau.mu,sigma.tau.sigma.2 and sigma.tau.beta.

We can also check the proportion of di�erent values in the chain: it should be
around 0.23. We'll do it for the model with highest posterior probability:

> maxK <- as.numeric(names(which.max(table(fit$k))))

> fit[[maxK]]$prob.mu

[1] 0.1651165

> fit[[maxK]]$prob.sigma.2

[1] 0.2836284
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> fit[[maxK]]$prob.beta

[1] 0.2268227

And �nally, We can check that the algorithm has made some jumps between
models (birth, death, split and combine movements):

> fit$prob.b

[1] 3

> fit$prob.d

[1] 3

> fit$prob.s

[1] 3

> fit$prob.c

[1] 2

These numbers include the the burn-in iterations.

3.2 A di�erent model for every chromosome

We can also �t a di�erent model for every chromosome with the function RJaCGH
changing the parameter model to 'Chrom'. We recommend �tting by chromo-
some only when the data are normalized in every chromosome, because other-
wise we couldn't detect a whole chromosome gained/lost. We'll �t a model to
other cell line: 01524. Every chromosome should have its own set of jumping
parameters, so we won't specify them and let RJaCGH do a simple search to
�nd 'good' ones:

> y2 <- gm01524$LogRatio[!is.na(gm01524$LogRatio)]

> Pos2 <- gm01524$PosBase[!is.na(gm01524$LogRatio)]

> Chrom2 <- gm01524$Chromosome[!is.na(gm01524$LogRatio)]

> fit.chrom <- RJaCGH(y = y2, Pos = Pos2, Chrom = Chrom2, model = "Chrom",

+ k.max = 4, burnin = 50000, TOT = 10000)

We can access the results for every chromosome in a simple way, because the
objects now contains every list for every chromosome, and every chromosome
inlcudes a list of the same kind as explained in the former secton. For example,
to inspect the chromosome 6:

> summary.chrom.6 <- summary(fit.chrom[[6]])

> summary.chrom.6$mu

Normal Gain-1
0.006334982 0.539898058

> summary.chrom.6$sigma.2
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Normal Gain-1
0.007904324 0.010125107

We can also see the sequence of hidden states, that is the copy number status
for every gene. We can compute it conditionally to the most visited model,
(with the method states) or averaging through every model �t weighted by
the posterior probability of that model (method model.averaging):

> sequence <- states(fit.chrom)

> sequence.averaged <- model.averaging(fit.chrom)

We can see the copy number of chromosome 6:

> head(sequence[[6]]$states)

[1] Normal Normal Normal Normal Normal Normal
Levels: Normal Gain-1

> head(sequence.averaged[[6]]$states)

[1] Normal Normal Normal Normal Normal Normal
Levels: Loss < Normal < Gain

And the probability of every state in that chromosome:

> head(sequence[[6]]$prob.states)

Normal Gain-1
[1,] 1 0
[2,] 1 0
[3,] 1 0
[4,] 1 0
[5,] 1 0
[6,] 1 0

> head(sequence.averaged[[6]]$prob.states)

Loss Normal Gain
[1,] 0 1 0.000000e+00
[2,] 0 1 0.000000e+00
[3,] 0 1 -5.107537e-18
[4,] 0 1 -5.107537e-18
[5,] 0 1 -5.107537e-18
[6,] 0 1 -5.107537e-18

These methods can be also used on a �t with the same model on the whole
genome, as the one in the last section.

We can also plot the whole genome or just a chromosome:

> plot(fit.chrom)
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> plot(fit.chrom[[6]])
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Finally, we can also see the probabilities of alteration in a graph chromosome
by chromosome:

> genome.plot(fit.chrom)
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P.Loss >= 0.9
0.7 > P.Loss >= 0.9
0.5 > P.Loss >= 0.7
P.Loss < 0.5 or P.Gain >= 0.5
0.7 > P.Gain >= 0.5
0.9 > P.Gain >= 0.7
P.Gain >= 0.9

3.3 Fitting several arrays

We can also �t at the same time several arrays (if they have the same genes
spotted in the same positions), but RJaCGH �ts a di�erent model to each of
them:

> gm07081LR <- gm07081$LogRatio

> gm10315LR <- gm10315$LogRatio

> not.NA <- !is.na(gm07081LR) & !is.na(gm10315LR)

> gm07081LR <- gm07081LR[not.NA]

> gm10315LR <- gm10315LR[not.NA]

> Pos3 <- gm07081$PosBase[not.NA]

> Chrom3 <- gm07081$Chromosome[not.NA]

> fit.arrays <- RJaCGH(y = cbind(gm07081LR, gm10315LR), Pos = Pos3,

+ Chrom = Chrom3, model = "genome", k.max = 4, burnin = 50000,

+ TOT = 10000, auto.label = 0.75)

array gm07081LR
Searching jump parameters...
$sigma.tau.mu
[1] 0.01970249 0.01970249 0.01687985 0.00985027

$sigma.tau.sigma.2
[1] 0.04346067 0.04346067 0.03623181 0.02808137

$sigma.tau.beta
[1] 0.1123349 0.1123349 0.1123349 0.1123349

Starting Reversible Jump
array gm10315LR
Searching jump parameters...
$sigma.tau.mu
[1] 0.02306237 0.02306237 0.01625209 0.01218712
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$sigma.tau.sigma.2
[1] 0.05937149 0.05937149 0.03886832 0.03180660

$sigma.tau.beta
[1] 0.13149 0.13149 0.13149 0.13149

Starting Reversible Jump

We can examine every one of them the same way, but now the object is a
list whose elements are every array �tted:

> summary(fit.arrays[["gm07081LR"]])$mu

Normal Normal Normal Gain-1
-0.074073834 -0.004180011 0.029816624 0.464577417

> summary(fit.arrays[["gm10315LR"]])$mu

Normal Normal Gain-1
-0.03949410 0.03750817 0.59004385

And we can plot the copy number of every gene in several ways:

� Averaging the probability of every gene for every array (by default with
the same weight, but there is a weights argument to include reliability or
importance of each array).

� Plotting the percentage of arrays in which every gene is (marginally)
gained or lost.

> plot(fit.arrays, method = "averaging")

0 500000 1000000 1500000 2000000 2500000 3000000

−1
.5

−1
.0

−0
.5

0.0
0.5

Prediction of copy gain/loss. Bayesian Model Averaging

Pos.Base

Me
an

 Lo
g R

ati
o o

f th
e a

rra
ys

●●

●●
●
●

●
●●
●
●
●●

●

●
●

●
●●●
●

●●●

●

●
●

●

●

●●●
●
●

●●

●

●

●
●●
●

●

●
●

●
●

●
●
●●
●

●
●

●

●●

●

●

●●

●●

●●●●

●

●●●●
●●

●●●

●

●

●●
●●
●

●
●

●

●●
●
●●
●●
●

●

●

●

●●
●
●●
●

●
●●
●
●
●
●

●

●

●

●
●
●
●●●●

●

●

●
●●

●

●
●●

●

●
●
●

●

●
●●●
●●●

●

●
●
●
●
●

●

●
●

●
●

●
●

●
●

●
●

●●
●

●

●

●

●

●
●
●●

●
●

●

●
●
●●
●
●

●
●
●●●●●

●

●
●

●●●

●

●
●●●

●

●●
●

●
●

●

●●
●●

●

●

●
●

●
●

●

●●

●
●
●●●

●
●
●●
●

●
●

●

●

●

●
●
●●

●
●
●

●

●●
●●

●

●●

●
●
●●●

●●
●
●

●
●●
●
●●●

●
●
●●
●
●
●

●
●
●
●

●
●●●●
●
●●●
●●
●

●●
●

●●

●
●●●

●
●

●●
●

●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●

●
●

●

●
●●●●
●●
●●●
●●
●
●

●
●
●●

●●

●
●●

●

●
●●
●
●●

●●

●

●
●
●●●●●
●
●●●
●

●

●

●

●
●
●●
●●
●

●

●

●

●●

●

●●

●
●
●

●

●●
●

●●

●

●●●
●

●
●
●

●

●●

●●
●●
●

●
●

●

●
●●●
●
●

●

●
●●

●

●

●
●

●
●

●

●
●
●

●
●
●●
●●●●●●
●

●●●
●
●

●●
●
●

●●●●●

●

●
●

●●●

●
●

●
●

●
●

●

●●
●
●
●

●

●
●●
●●●

●

●
●
●
●
●●

●

●

●
●●●●●●

●
●

●

●

●●●
●

●

●●●
●

●

●

●●
●●●●●
●
●
●
●

●●

●●●
●●
●●
●
●
●

●●
●
●●
●
●

●
●
●
●
●

●
●

●

●●

●

●

●●●●●
●
●●●●
●
●

●

●

●
●

●

●

●

●●

●
●
●

●
●

●
●

●

●●

●

●●
●
●

●
●
●

●
●
●
●

●

●●

●
●
●

●

●

●

●●

●●

●

●
●

●●

●●
●
●●
●

●

●●
●

●

●
●
●

●

●

●

●
●
●●●

●

●
●●

●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●●
●

●
●
●

●
●

●

●
●●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●
●

●

●
●

●
●
●●
●●
●

●

●●
●
●
●

●●

●
●
●●
●
●

●
●
●

●

●●
●●●●
●
●

●

●
●
●●

●

●

●
●
●
●●●●●

●

●●●
●
●
●●
●
●

●

●●
●

●

●

●●

●●●

●

●

●
●●
●●
●●●
●
●

●

●
●
●
●

●

●
●●
●

●●

●
●
●●●
●●●●●
●●

●●

●

●

●
●●
●●
●
●
●●
●●

●

●

●●●●●●
●
●
●●●●
●●●
●●●
●
●

●
●●●
●

●
●●●●●
●

●

●
●
●●

●
●●●

●

●●●●

●●

●
●
●●●●●

●

●

●●

●
●●
●●●●

●
●
●
●
●

●●
●

●

●

●
●

●

●●●●

●

●●●

●

●
●
●
●

●●●●●

●

●●
●
●
●

●

●
●
●●
●
●
●
●
●●

●
●

●
●
●

●
●
●●

●
●

●●

●●

●●
●
●
●
●●
●
●

●

●

●●●

●●●

●●●

●

●
●●●
●
●●
●●●

●
●
●

●●
●●
●
●●
●
●

●●●
●
●

●●●
●

●

●

●●●●●●●●●
●
●

●

●●
●●●

●

●

●

●
●

●

●
●
●●
●
●●●

●
●
●
●

●

●
●

●

●

●
●

●
●●

●

●

●
●

●

●

●●

●

●
●●
●
●
●
●
●
●

●

●●●

●
●

●
●●
●

●●●

●

●
●

●
●●●●
●
●●●
●

●

●
●●●●●●

●●●●●●

●

●●

●●
●

●

●
●●
●
●
●
●●
●

●

●

●●
●
●

●

●●
●●
●
●
●

●
●

●

●
●
●

●

●●
●

●
●
●

●

●
●

●
●

●

●

●

●
●
●

●
●

●
●
●
●
●●●●
●

●●
●●●●

●

●
●
●
●
●

●
●●

●●●
●

●

●
●

●●●

●
●
●●●●●●

●●●
●

●

●

●

●
●
●●●●●
●

●

●
●
●

●
●
●
●

●

●●
●●

●

●
●
●●●

●

●
●
●●

●

●●
●
●
●
●●●

●

●●●
●
●●
●

●●●

●

●
●
●

●

●

●

●

●
●
●
●
●●

●●

●

●

●
●
●●
●
●

●
●
●
●

●

●
●●●

●

●
●

●
●
●●
●●
●●
●
●
●
●

●

●
●●
●●●

●

●

●
●

●●
●

●●
●

●●
●

●
●●
●
●●

●

●
●

●
●●●
●

●

●
●

●
●
●●●

●

●

●

●
●●
●
●

●
●
●
●●

●●
●

●

●●
●
●●

●

●●
●
●●●

●

●●
●

●
●
●
●●●

●

●●

●

●●●●
●●
●●●

●

●

●

●

●●●
●
●●●
●●
●●

●●

●
●●●●●●

●

●●
●●
●
●
●
●●●
●●
●●
●●●
●●
●●●

●

●●
●●
●
●

●

●●

●

●
●●

●

●
●

●

●

●●

●
●●●●
●
●

●

●●●●

●

●●●

●

●●
●

●
●
●
●

●
●●

●

●

●

●
●
●
●●●●●
●
●●
●

●

●

●

●

●

●

●
●

●

●●
●●
●●
●

●●●●

●

●●●

●

●
●
●●●
●
●

●

●

●
●●

●
●
●

●

●●
●●

●
●

●

●

●

●

●●
●●●

●
●
●
●●

●

●

●●

●

●
●

●

●●●●●

●
●
●●●
●●

●

●●●
●

●●
●

●

●

●●

●

●
●●

●

●
●
●●

●

●

●●

●
●
●●

●
●

●

●

●
●●●
●●

●

●

●●

●
●
●
●

●●
●

●●
●
●●

●
●

●

●

●

●

●
●

●●●

●●●
●
●

●

●

●

●
●
●

●

●

●

●●
●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●
●
●
●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●
●
●

●

●

●

●
●●
●

●

●

●

●●●●
●
●
●

●●

●●
●
●

●
●

●

●
●
●●
●●●

●

●●
●
●

●●

●

●●●●
●

●

●

●

●
●●●
●

●●

●

●

●●
●●
●

●●

●

●
●

●●
●●
●
●●●●●●
●

●
●

●
●●●
●

●
●

●
●
●

●
●

●●

●

●

●

●
●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●●●

●
●●
●●●●

●

●
●

●

●
●●●
●●
●
●●

●●●

●

●

●
●●
●●●

●

●●
●

●

●
●

●

●

●
●
●
●
●●●
●
●

●

●

●

●●●
●
●
●
●

●

●●

●

●

●

●●

●
●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●●●

●●

●

●
●●

●

●

●●

●
●

●●
●●●

●

●

●

●

●

●●●

●

●

●

●●
●●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●●●

●

●
●

●

1 2 3 4 5 6 7 8 9 10 11 12 13141516171819202122231

0 500000 1000000 1500000 2000000 2500000 3000000

0
0.5

1
Pr

ob
ab

ilit
y

11



> plot(fit.arrays, method = "region")
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We can also compare the classi�cation of genes with the true states of Sni-
jders:

> seq.states <- model.averaging(fit.arrays[["gm07081LR"]])$states

> table(seq.states, gm07081$Statut[not.NA])

seq.states Normal Trisomy
Loss 0 0
Normal 1930 1
Gain 5 68

3.4 Probabilistic Minimal Common Regions

RJaCGH can also compute probabilistic minimal common regions. Note that
these regions are di�erent to other MCR approaches, because they don't take
into account the precision or variability inherent to the estimation of the true
copy number for every gene on every array considered. pMCR computes all the
region of genes with a probability of alteration as high as a given threshold.
For a single array, they are interesting because the genes are not independent, so
the probability for any sequence is not the product of its marginal probabilities.
For several arrays, pMCR averages the joint probability of every array as if they
were independent and identically distributed sequences. For example,

> pMCR(fit, p = 0.9, alteration = "Gain")

Chromosome Start End #Genes Prob. Gain
[1,] 1 156678 237341 45 1
[2,] 1 240000 240000 1 1
[3,] 2 245000 245000 1 1
[4,] 22 23911 23911 1 1

12



> pMCR(fit, p = 0.9, alteration = "Loss")

Chromosome Start End #Genes Prob. Loss
[1,] 4 177282 184000 17 1

would give us regions for gains and losses of at least 0.9 probability. Note also
that the threshold is for each region, not for all of them; this means that the
probability of all regions doesn't have to be over 0.9.

For the two arrays analyzed:

> pMCR(fit.arrays, p = 0.5, alteration = "Gain")

Chromosome Start End #Genes Prob. Gain
[1,] 7 5765 6868 2 0.5
[2,] 7 9696 17181 3 0.5
[3,] 7 18019 38319 25 0.5
[4,] 7 57472 57971 4 0.5
[5,] 11 76848 76848 1 0.5
[6,] 22 5966 33000 14 0.5
[7,] 23 22055 149342 40 0.5

> pMCR(fit.arrays, p = 0.5, alteration = "Loss")

[1] "No common minimal regions found\n"

3.5 Checking convergence

We have seen the function trace.plot to check convergence in a given model.
But the best way to be sure that RJaCGH has converged is to run several
parallel chains and draw Gelman-Brooks convergence plot. In this example, We
use data from cell line gm01524, but only from chromosome 1 to save time:

> fit <- list()

> for (i in 1:4) {

+ fit[[i]] <- RJaCGH(y = y2[Chrom2 == 1], Pos = Pos2[Chrom2 ==

+ 1], k.max = 4, burnin = 30000, TOT = 10000, jump.parameters = jump.parameters,

+ auto.label = 0.75)

+ }

> gelman.brooks.plot(fit)
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Gelman−Rubin diagnostic plots

We should check that the lines converge to zero, or at least that remain under
1.1. The values that return the function should be under 1.1, too. The results
are satisfactory, so we can join the four chains into one:

> fit <- collapseChain(fit)

And use the former methods to the object fit.
Other useful function is selectChains, which deletes 'outliers' chains. See

help �le for details.
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