
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/

The RAppArmor Package: Enforcing Security

Policies in R Using Dynamic Sandboxing on Linux

Jeroen Ooms
UCLA Dept. of Statistics

Abstract

With the increasing availability of public cloud computing facilities and scientific su-
per computers, there is a great potential for making R available through public or shared
resources. This allows researchers to efficiently run code requiring a lot of cycles and
memory, or embed R functionality into e.g. systems or web services. However some im-
portant security concerns need to be addressed before this can be put in production. The
prime use case in the design of R has always been single statistician running R on the local
machine through the interactive console. As a result there are practically no restrictions
on what the user is allowed to do with the operating system, which could potentially re-
sult in malicious behavior or excessive use of hardware resources in a shared environment.
Properly securing an R process turns out to be a complex problem. We describe several
approaches and illustrate potential issues using some of our personal experiences in host-
ing public web services. Finally we introduce the RAppArmor package which provides
a Linux based reference implementation for dynamic sandboxing in R on the level of the
operating system.

Keywords: R, Security, Linux, Sandbox, AppArmor.

1. Security in R: Introduction and motivation

The R project for statistical computing and graphics (R Development Core Team 2012) is
currently one of the primary tool-kits for scientific computing. The software is widely used
for research and data analysis in both academia and industry, and is the de-facto standard
among statisticians for the development of new computational methods. With support for all
major operating systems, a powerful and stable codebase, more than 3000 add-on packages
and a huge active community, it is fair to say that the project has matured to a production-
ready computation tool. However, one thing that is somewhat surprising is that the way in
which R is used, has hardly changed since its initial design. Even though internet access,

http://www.jstatsoft.org/

2 The RAppArmor Package

public cloud computing (Armbrust et al. 2010), live and open sources of data and scientific
super computers have transformed the landscape of data analysis, R is still almost exclusively
used as an end-user tool, running on the local machine of the researcher, operated through
the interactive console. This seems somewhat of a missed opportunity. The demand for data
analysis tools has never been higher, and many open source systems and software stacks could
benefit greatly from the high quality analytical capabilities that R has to offer.

One reason developers are reluctant to build on R are concerns regarding security and man-
agement of shared hardware resources. Reliable software systems require components which
behave predictably and cannot be abused. Because R was primarily designed with the local
user in mind, security issues and unpredictable behavior have not been considered a major
concern in the design of R itself. Hence, these problems will need to be addressed somehow
before software developers will feel comfortable making R part of their infrastructure, or con-
vince administrators to use their facilities to expose R based services to the public. It is our
personal experience that the complexity of these issues is easily underestimated when design-
ing stacks or systems that build on R. There are a number of issues that are very domain
specific to scientific computing, which makes building on R quite different from embedding
other software or languages. We suspect that this might explain the limited adoption of R as
a computational back-end engine so far.

1.1. Security when using contributed code

Building systems on R has been the main motivation for this research. However, security is
becoming a concern for R in other contexts as well. As the community is growing rapidly, it
becomes more unsafe to rely on the social aspect of contributed code. For example, on a daily
basis, dozens of packages and package updates submitted to the Comprehensive R Archive
Network (CRAN) (Ripley 2011). These packages contain code written in R, C, Fortran, C++,
Java, etc. It is practically impossible for the CRAN maintainers to do a thorough audit of
the full code that is submitted, every time. Some packages even contain pre-compiled Java
code for which the source is not included at all. Furthermore, R packages are not signed with
a private key as is the case for e.g. packages in most Linux distributions, which makes it hard
to verify the identity of the author. As CRAN packages are automatically build and installed
on hundreds, maybe thousands of machines around the world, they form an interesting target
for abuse. Hence there could be a real risk of packages containing malicious code making their
way unnoticed into CRAN. Risks are even greater for packages distributed through channels
without any form of code review, for example via email or through the increasingly popular
Github repositories (Torvalds and Hamano 2010; Dabbish, Stuart, Tsay, and Herbsleb 2012).

In summary, it is not overly paranoid of the R user to be a bit cautious when installing and
running contributed code downloaded from the internet. However, things don’t have to be as
serious as described above. Thinking about security is a good practice, even if there are no
immediate reasons for concern. Some users simply might want to protect against themselves,
making sure they don’t erase any files by accident and that R does not interfere with other
activities on the machine. Making an effort to ensure R is running safely with no unnecessary
privileges can be reassuring to both user and system administrator, and might one day prevent
a lot of trouble.

Journal of Statistical Software 3

1.2. Sandboxing the R environment

This paper explores some of the potential problems, along with approaches and methods of
securing R. Some of the different aspects and concerns of security in the context of R are
illustrated using personal experiences, or examples of bad or malicious code. We will explain
how untrusted code can be run inside a sandboxed process. Sandboxing in this context is
a somewhat informal term for creating an environment in which untrusted software runs
without capabilities of doing anything harmful to the system. As it turns out, R itself is
not very suitable for managing access control policies, and the only way to enforce security
properly is by leveraging features from the operating system. To exemplify this approach, an
implementation based on AppArmor is provided which can be used on Linux distributions as
the basis for a sandboxing toolkit. This package is used throughout the paper to show some
of the issues could be addressed.

However, we want to emphasize that we don’t claim to have solved the problem. This paper
mostly serves an introduction to security for the R community, and hopefully creates some
awareness that this is a real issue moving forward. The RAppArmor package is one approach
and a good starting point for experimenting with dynamic sandboxing in R. However it
mostly serves as a proof of concept of the general idea confining and controlling R in order
to extend the applicability. The paper describes some examples of use cases, issues, policies
and personal experiences which give the reader a sense of what is involved with this topic.
Without any doubt, there are other concerns beyond the ones mentioned in this paper, many
of which might be specific to certain applications or systems. We hope to invoke a discussion
in the community about potential security issues related to using R in different scenarios, and
encourage those comfortable with other platforms or who use R in different contexts to join
the discussion and share their concerns, experiences and solutions.

2. Use cases and concerns of sandboxing R

Let us start by taking a step back and put this research in perspective by describing some
concrete use cases where security in R could be a concern. Below are three simple examples
of situations in which it is useful to be able to run R code in a sandbox. The use cases are
ordered by complexity and require increasingly advanced sandboxing methods.

Running untrusted code

Suppose we found an R package in our email or on the internet that looks interesting, but we
are not quite sure who the author is, and if the package does not contain any malicious code.
The package is too large for us to inspect all of the code manually, and furthermore it contains a
library in a foreign language (e.g. C++, Fortran) for which we lack the knowledge and insight
to really understand the code. Moreover, the programming style (or lack thereof) of the
author can make it difficult to assess what exactly is going on (IOCCC 2012). Nevertheless
we would like to give the package a try, but without exposing ourselves to the risk of potentially
jeopardizing the machine.

One solution would be to run the code on a separate or virtual machine. However this is
somewhat cumbersome and we will not have our regular workflow available: in order to put
the package to the test on our own data, we first need to copy our data, scripts, files and
package library, etc. In practice creating new machines is a bit unpractical and not something

4 The RAppArmor Package

that we might want to do on a daily basis. It would be easier if we could just sandbox our
regular R environment for the duration of installing and using the new package. If the sandbox
is flexible and unobtrusive enough to not interrupt our daily workflow, we could even make a
habit out of using it every time we use contributed code (which for most users is every day).

Shared resources

Another use case could be a scenario where multiple users are sharing a single machine. For
example, a system administrator at a university is managing a big computing resource and
would like to make it available to faculty and students for using R. This way they could run R
code that requires more computing power than their local machine can handle. For example
a researcher might want to do a simulation study, and fit a complex model a million times
on generated datasets of varying properties. On her own machine this would take months to
complete, but the super computer can finish the job overnight. The administrator would like
to make the supercomputer accessible to this and other researchers for running their R code.
However he is concerned about users interfering with each others work, or breaking anything
on the machine. Furthermore he wants to make sure that system resources are allocated in a
fair way so that no single user can consume all memory or cpu on the system.

Embedded systems and services

There have been a number of efforts to facilitate integration of R functionality into various
3rd party systems. Some examples of interfaces from popular general purpose languages are
RInside (Eddelbuettel and Francois 2011), which embeds R into C++ environments, and
JRI/REngine JRI which embeds R in Java software (Urbanek 2011a, 2007). Similarly, rpy
(Moreira and Warnes 2006; Gautier 2008) provides a Python interface to R, and RinRuby is
a Ruby library that integrates the R interpreter in Ruby (Dahl and Crawford 2009). Littler
provides hash-bang (i.e. script starting with #!/some/path) capability for R (Horner and
Eddelbuettel 2011). The Apache2 module RApache (mod_R) (Horner 2011) makes it possible
to run R scripts from within the Apache2 web server. Heiberger and Neuwirth (2009) provide
a series of tools to call R from DCOM clients on Windows environments, mostly to support
calling R from Microsoft Excel. Finally, RServe is TCP/IP server which provides low level
access to an R session over a socket (Urbanek 2011b).

The third use case originates from these developments: it can be summarized as confining and
managing R processes inside of embedded systems and services. This use case is largely derived
from our personal experience: we are using R inside a number of systems and web services
that provide on-demand calculations and plotting over the internet. These services have to
respond quickly and with minimal overhead to incoming requests, and should scale to serve
many jobs per second. Furthermore the systems have to be stable, requiring that jobs should
always return within a given timeframe. Depending on user and the type of job, different
security restrictions might be appropriate. Also we need a way to dynamically enforce limits
on the use of memory, processors and disk space on a per process basis. These requirements
demands a more flexible and finer degree of control over the process privileges and restrictions
than the first two use cases. It encouraged us to explore more advanced methods than the
conventional tools and has been the most central motivation of this research.

Journal of Statistical Software 5

2.1. System privileges and hardware resources

The use cases described above provide motivations and requirements for an R sandbox. Two
inter-related problems can be distinguished. The first one is preventing system abuse, i.e. use
of the machine for malicious or undesired activities, or completely compromising the machine.
The second problem is managing sharing of hardware resources, i.e. preventing excessive use
of resources by limiting the amount of memory, cpu, etc that a single user or process is allowed
to consume.

System abuse

The R console gives the user direct access to the operating system and does not implement
any privileges restrictions or access control policies to prevent malicious use. In fact, some of
the basic functionality in R actually assumes quite profound access to the system, e.g. read
access to system files, or the privilege of running system shell commands. However, running
3rd party R code without any restrictions can get us in serious trouble. For example, the
code could call the system() function which provides an interface to the system shell. From
here any system commands can be executed, which can potentially be harmful. But also
innocent looking functions like read.table can be used to extract sensitive information from
the system, e.g. read.table("/etc/passwd") will gives us a list of users on the system or
readLines("/var/log/syslog") shows system log information.

Even an R process running as a non-privileged user can do a lot of harm. Some potential
issues are code that contains or downloads a virus or security exploit, or searches the sys-
tem for personal or sensitive information. Appendix B.2 shows a hypothetical example of a
simple function that scans the home directory for documents containing credit card numbers.
Another increasing global problem are viruses which make the machine part of a so called
“botnet”. Botnets are large networks of compromised machines (“bots”) which are remotely
controlled to used for illegal activities (Abu Rajab, Zarfoss, Monrose, and Terzis 2006). Once
infected, the botnet virus connects to a centralized server and waits for instructions from the
owner of the botnet. Botnets are mostly used to send spam or to participate in DDOS attacks:
centrally coordinated operations in which a large number of machines on the internet is used
to flood a target server or provider with network traffic with the goal of taking it down by
overloading it (Mirkovic and Reiher 2004). Botnet software is often invisible to the user of
an infected machine and can run with very little privileges: just network access is sufficient
to do most of the work.

When using R on the local machine and only running our own code, or from trusted sources,
these scenarios might sound a bit far fetched. However, when running code downloaded from
the internet or exposing systems to the public, this is becoming a real concern. Internet secu-
rity is a global problem, and there are a large number of individuals, organizations and even
governments actively employing increasingly advanced and creative ways of gaining access to
protected infrastructures. Especially servers running on beefy hardware or fast connections
are attractive targets for individuals that could use these resources for other purposes. But
also servers and users inside large companies, universities or government institutions are fre-
quently targeted with the goal of gathering confidential knowledge. This last aspect seems
especially relevant, as R is used frequently in these types of organizations.

6 The RAppArmor Package

Resource restrictions

The other category of problems is not so much related to deliberate abuse, and might even arise
completely unintentionally. It involves problems requiring proper management, allocation,
sharing and restricting of hardware.

It is fair to say that R can be quite greedy with system resources. One can easily run a
command which will consume all of the available memory and/or CPU, and does not finish
executing unless manually terminated. When running R on the local machine through the
interactive console, the user will quickly recognize a function call that is not returning timely
or is making the machine unresponsive. When this happens, we can easily interrupt the
process prematurely by sending a SIGINT, i.e. pressing CTRL+C in Linux or ESC in Windows.
If this doesn’t work we can open the task manager and tell the operating system to kill the
process, and if worst comes to worst we can decide to reboot our machine.

However, when R is embedded in a bigger system, things are more complicated, and we have to
think about these scenarios in advance. When an out-of-control R job is not properly detected
and terminated, the process might very well run forever and take down our service, or even
the entire server. This has actually been a major problem that we personally experienced in
an early implementation of a public web service for mixed modelling (Ooms 2010) which uses
the lme4 package (Bates, Maechler, and Bolker 2011). What happened was that users could
accidentally specify a variable with many levels as the grouping factor which would cause the
design matrix to blow up, even on a relatively small dataset, and decompositions would take
forever to complete. To make things worse, lme4 uses a lot of C code which does not respond
to time limits set by R’s setTimeLimit function. Appendix B.4 contains a code snippet that
simulates this scenario. When this would happen, the only way to get things up and running
again was to manually login to the server and reset the application.

This example is not an exception. The behavior of R can sometimes be unpredictable, which
is an aspect that is easily overlooked by (non-statistician) developers. When a system calls out
to e.g. an SQL or PHP script, the script usually runs without any problems and the time needed
to process is proportional to the size of the data, i.e. the number of returned records returned
by SQL. However, in an R script, many things can go wrong, even though the script itself is
perfectly fine. Algorithms might not converge, data might be rank-deficient, or missing values
throw a spanner in the works. Even when we only use tested code or predefined services, this
does not always entirely guarantee smooth and timely completion of R jobs, especially if the
data is dynamic. When using R in systems or shared facilities, it is important that we take
this aspect into account and have a way of dealing with this that does not require manual
intervention.

3. Different approaches of confining R

The current section introduces some approaches of securing and sandboxing R, with their
advantages and limitations. They are reviewed in the context of our use cases, and evaluated
on how they address the problems of system abuse and restricting resources. The approaches
are increasingly low-level : they represent security on the level of the application, R software
itself and operating system respectively. As will become clear, we are leaning towards the
opinion that R itself is not very well suited to address security issues, and the only way to do
proper sandboxing is on the level of the operating system. This will lead us to the introduction

Journal of Statistical Software 7

of the RAppArmor package, which is described in the section 4.

3.1. Application level security: Predefined services

The most common approach to preventing system abuse is simply to only allow a limited set
of predefined services, that have been deployed by a trusted developer and cannot be abused.
This is generally the case in websites containing dynamic content though e.g. CGI or PHP
scripts. Running arbitrary code is explicitly prevented and any possibility to do so anyway is
considered a security hole. For example, we might want to expose the following function as a
web service:

liveplot <- function (ticker) {

url <- paste("http://ichart.finance.yahoo.com/table.csv?s=",

ticker, "&a=07&b=19&c=2004&d=07&e=13&f=2020&g=d&ignore=.csv",

sep = "")

mydata <- read.csv(url)

mydata$Date <- as.Date(mydata$Date)

myplot <- ggplot2::qplot(Date, Close, data = mydata, geom = c("line",

"smooth"), main = ticker)

print(myplot)

}

The function above downloads live data from the public API at Yahoo Finance and creates
an on-demand plot of the historical prices using ggplot2 (Wickham 2009). The function
has only one parameter, ticker, which is a character string identifying a stock symbol. This
function can be exposed as a predefined web service, where the client only supplies the ticker
argument. Hence the system does not need to run any potentially harmful user-supplied R
code. The client sets the symbol to e.g. "GOOG" and the resulting plot can be returned in the
form of a PNG image or PDF document. This function is actually the basis of the “stockplot”
web application (Ooms 2009); an interactive graphical web application for financial analysis
which still runs today.

Limiting users or clients to execute only predefined services is often the easiest solution,
but rather limited in application and actually not 100% secure. A predefined service can
be nice to do some canned calculations or generate a plot as done in the example, but for
most R applications it quickly turns out to be overly restrictive. For example in case of
an application that allows the user to fit a statistical model, the user might need to be
able to include transformations of variables like I(cos(x^ 2)) or cs(x, 3). Not allowing a
user to call any custom functions makes this hard to implement. Furthermore, when using
only predefined services, all the work and responsibility is put in the hands of the developer
and administrator. Only they can expose new services and they have to make sure that all
services that are exposed cannot be abused in some way or another. Therefore this approach
is expensive, and not very social in terms of users contributing code. In practice, anyone that
wants to publish an R service will have to purchase and manage a personal server or know
someone that is willing to do so.

Also it might still be necessary to set hardware limitations, even when exposing relatively
simple, restricted services. We already mentioned the example of the lme4 web application,
where a single user could accidentally take down the entire system by specifying an overly

8 The RAppArmor Package

complex model. Hence, restricting to predefined services does not quite guarantee smooth
and timely completion of R jobs.

Code injection

Finally, there is still the risk of code injection. Because R is a very dynamic language, evalua-
tions sometimes happen at unexpected places. One example is during the parsing of formulas.
For example, we might want to publish a service that calls the lm() function in R on a fixed
dataset. Hence the only thing the user can supply is a formula in the form of a character
vector. Assume in the code snippet below that the userformula is a string that has been
supplied by a user through some graphical interface.

glm(userformula, data=cars)

For example the user might supply a string "speed ∼ dist" and the service will return the
coefficients. On first sight, this might seem like a safe service. However, formulas actually
allow for the inclusion of calls to other functions. So even though the userformula is a
character vector, we can actually use it to inject a function call:

userformula <- "speed ~ dist + system('whoami')"

lm(userformula, data=cars)

In the example above, lm will automatically convert userformula from type character to a
formula, and subsequently execute the system(’whoami’) command. So even when a client
can supply only very simple primitive data, there can still arise unexpected opportunities of
injecting arbitrary code. Therefore it is important when using this approach, to sanitize the
input before executing the service. One way to do so is to set up the service in such a way
that only alphanumeric values are needed for the parameters, and use a regular expression to
remove any other characters, before actually executing the script or service:

myarg <- gsub("[^a-zA-Z0-9]", "", myarg)

3.2. Sanitizing and blacklisting

A less restrictive approach is to allow users to push custom R code, but inspect the code
before evaluating it to make sure it does not contain malicious calls. This approach has been
adopted with some web sites that allow users to run R code, like Banfield (1999) and Chew
(2012). However, given the dynamic nature of R, this is actually very hard to do and is often
easy to circumvent. For example, one might want to prevent users from calling the system

function. One way is to define some smart regular expressions that look for the word “system”
in a block of code. This way it would be possible to detect a potentially malicious call like
this:

system("whoami")

However, it will be much harder to detect the equivalent call in the following block:

Journal of Statistical Software 9

foo <- get(paste("sy", "em", sep="st"))

bar <- paste("who", "i", sep="am")

foo(bar)

And indeed, it turns out that the services that use this approach are fairly easy to trick.
Because R is a dynamic scripting language, the exact function calls might not reveal themselves
until runtime, when it is often too late. We are actually quite convinced that it is nearly
impossible to really sanitize an R script just by inspecting the source code.

An alternative method to do sanitizing is to define an extensive whitelist of functions that a
user is allowed to call, and mask all other functions. The sandboxR (Daroczi 2012) package
uses this method to block access to all R functions that provide access to the file system.
It evaluates the user-supplied code in an environment in which all blacklisted functions are
masked from the calling namespace. This is fairly effective and can be useful for some appli-
cations. However, the method relies on exactly knowing and specifying which functions are
safe and which are not. The package author has done this for the thousands of R functions
in the base package and we assume he has done a good job. However, it makes it hard to
maintain and cumbersome to generalize the approach to other R packages (by default the
method does not allow loading other packages). Furthermore the entire method falls if there
is one function that has been overlooked, which does make the method somewhat vulnerable.

Moreover, even when sanitizing of the code is successful, this method does not limit the use
of hardware resources in any way. Hence, additional methods are still required to prevent
excessive use of resources in a public environment.

3.3. Sandboxing on the level of the operating system

One can argue that managing resources and privileges is something that is outside the domain
of the R software, and is better left to the operating system. The R software has been designed
for statistical computing and related functionality; the operating system deals with hardware
and security related matters. Hence, in order to really sandbox R properly without imposing
unnecessary limitations on its functionality, we need to sandbox the process on the level of
the operating system. When restrictions are enforced by the operating system instead of R
itself, we do not have to worry about all of the pitfalls and implementation details of R. The
user can interact freely with R, but won’t be able to do anything for which the system does
not grant permission.

Some operating systems offer more advanced capabilities for setting process restrictions than
others. The most advanced functionality is found in UNIX like systems, of which the most
popular ones are either BSD based (FreeBSD, OSX, etc) or Linux Based (Debian, Ubuntu,

Fedora, Suse, etc). Most UNIX like systems implement some sort of ULIMIT functionality to
facilitate restricting availability of hardware resources on a per-process basis. Furthermore,
on both BSD and Linux there are a number of Mandatory Access Control (MAC) systems
available. On Linux, these are implemented as Kernel modules. The most popular ones are
AppArmor (Bauer 2006), SELinux (Smalley, Vance, and Salamon 2001) and Tomoyo Linux

(Harada, Horie, and Tanaka 2004). MAC provides a much finer degree of control than stan-
dard user-based privileges, by applying advanced security policies on a per-process basis.

Using a combination of MAC and ULIMIT tools we can do a pretty decent job in sandboxing
a single R process to a point where it can do little harm to the system. Hence we can

10 The RAppArmor Package

run arbitrary R code without losing any sleep over potentially jeopardizing the machine.
Unfortunately, this approach comes at the cost of portability of the software. As different
operating systems implement very different methods for managing processes and privileges,
the solutions will be to a large extend OS-specific. In our implementation we have tried to
hide these system calls by exposing R functions to interact with the kernel. Going forward,
eventually these functions could behave somewhat OS specific, abstracting away technicalities
and providing similar functionality on different systems. But for now we limit ourselves to
systems based on the Linux kernel.

4. The RAppArmor package

The current section describes some security concepts and how an R process can be sandboxed
using a combination of ULIMIT and MAC tools. The methods are illustrated using the RAp-
pArmor package: an implementation based on Linux and AppArmor. AppArmor (“Application
Armor”) is a security module for the Linux kernel. It allows for associating programs and
processes with security profiles that restrict the capabilities and permissions of that process.
There are two ways of using AppArmor. One is to automatically associate a single, static secu-
rity profile with every R process. This can only be done by the system administrator and does
not require RAppArmor (see also section section 4.9). However, this approach is somewhat
limited in application and usually overly restrictive. We often need something more flexible
and dynamic, to set different policies, priorities and restrictions for different users or tasks.

The RAppArmor package on the other hand exposes R functions that interface directly to
Linux system calls related to setting privileges and restrictions of a running process. Besides
applying AppArmor profiles, RAppArmor also interfaces to the prlimit call in Linux, which
sets RLIMIT (resource limit) values on a process (RLIMIT are the Linux implementation of
ULIMIT). Linux defines a number of RLIMIT’s, which restrict things like memory use, number
of processes, and stack size. More on RLIMIT later in section 4.7. Using RAppArmor, the
sandboxing functionality is accessible directly from within the R session, without the need for
external tools or programs. Once RAppArmor is installed, any user can apply security profiles
and restrictions to the running process; no special permissions are needed. Furthermore, it
allowed us to create the eval.secure function: an abstraction which mimics R’s eval, but
has additional parameters to evaluate a call under a given uid, priority, security policy and
resource restrictions.

The RAppArmor package brings the low level system security methods all the way up to
level of the R language. Using eval.secure, different parts of our code can run with different
security restrictions with minimal overhead, something we call dynamic sandboxing. This is
incredibly powerful in the context of embedded services, and enables us to design applications
which explicitly allow for custom code execution; something that previously always had to
be avoided for security reasons. This new approach to scientific computing lies at the core of
the OpenCPU framework (Ooms 2011), which exposes a public HTTP API to run and share R
code on a central server.

4.1. AppArmor profiles

The security policies are defined in profiles are the core of the AppArmor software. A profile
is a set of rules in a text file using AppArmor syntax. The Linux kernel translates these rules

Journal of Statistical Software 11

to a security policy that it will enforce on the appropriate process. A brief introduction to
the AppArmor syntax is given in section 5.1. The appendix of this paper contains some ex-
ample profiles that ship with the RAppArmor package to get the user started. When the
package is installed through the Debian/Ubuntu installer (e.g. using apt-get) the profiles
are automatically copied to /etc/apparmor.d/rapparmor.d/. Because profiles define file
access permissions based the location of files and directories on the file system, they are to
some extent specific to a certain Linux distribution, as different distributions have somewhat
varying conventions on where files are located. The example profiles included with RAppAr-
mor are based on the file layout of the r-base package (and its dependencies) by Bates and
Eddelbuettel (2004) for Debian/Ubuntu, currently maintained by Dirk Eddelbuettel.

The RAppArmor package and the included profiles work “out of the box” on Ubuntu 12.04
(Precise) and up. Also it should be working on Debian 7.0 (Wheezy) and up, however as
of writing of this paper, this distribution is still in the “testing” phase. Furthermore the
package has been successfully build on OpenSuse 12.1. Note that Suse systems organize the
file system in a slightly different way than Ubuntu and Debian, so the profiles need to be
modified accordingly.

Again, we want to emphasize that the package and included profiles should mostly be seen
as a reference implementation. Using the package we demonstrate how to create a working
sandbox in R using AppArmor. However, depending on system and application, different
policies might be appropriate. The RAppArmor package provides the tools to set security
restrictions in R and ships with some example profiles to get the user started. However it is
still up to the administrator to determine which security policy is appropriate for a certain
system and context. The example profiles are a good starting point, but should be fine-tuned
for specific applications.

4.2. Automatic installation

The RAppArmor package consists of an R package and a number of security profiles. On
Ubuntu Linux the package is most easily installed using the binary packages provided through
launchpad:

sudo add-apt-repository ppa:opencpu/rapparmor

sudo apt-get update

sudo apt-get install r-cran-rapparmor

One can also create the Ubuntu packages from the source R package using something along
the lines of the following:

wget http://cran.r-project.org/src/contrib/RAppArmor_0.5.0.tar.gz

tar xzvf RAppArmor_0.5.0.tar.gz

cd RAppArmor/

debuild -uc -us

cd ..

sudo dpkg -i r-cran-rapparmor_0.5.0-precise1_amd64.deb

The r-cran-rapparmor Ubuntu package will automatically install required dependencies and
security profiles. The security profiles are installed in /etc/appamor.d/rapparmor.d/.

12 The RAppArmor Package

4.3. Manual installation

To install the package on a distribution for which no installation package is available, one
might need a manual installation. To build the package manually several steps are needed.
First of all, one needs to make sure the required dependencies are installed:

sudo apt-get install r-base-dev libapparmor-dev apparmor

Note that the package requires R version 2.14 or higher. Also the system needs to have an
AppArmor enabled Linux kernel. After these packages are installed, one can proceed installing
RAppArmor in R, using e.g:

wget http://cran.r-project.org/src/contrib/RAppArmor_0.5.0.tar.gz

sudo R CMD INSTALL RAppArmor_0.5.0.tar.gz

This will compile the C code and install the R package. After the package has been installed
successfully, the security profiles need to be copied to the apparmor.d directory:

cd /usr/local/lib/R/site-library/RAppArmor/

sudo cp -Rf profiles/debian/* /etc/apparmor.d/

Finally, the AppArmor service needs to be restarted to load the new profiles. Also we do not
want to enforce default the R profiles at this point yet:

sudo service apparmor restart

sudo aa-disable usr.bin.r

This should complete the installation. To verify if everything is working, start R and run the
following code:

library("RAppArmor")

aa_change_profile("r-base")

If the code runs without any errors, the package has successfully been installed.

4.4. Linux security methods

The RAppArmor package interfaces to a number of Linux system calls that are useful in the
context of security and sandboxing. The advantage of calling these directly from R is that
we can dynamically set the parameters from within the R process, as opposed to fixing them
for every R session. Hence it is actually possible to execute some parts of an application in a
different security context other parts, which can be useful in large applications.

The package defines a lot of low level functions that wrap around Linux C interfaces. However
it is not required to study all of these functions. For the end user, everything in the package
comes together in the powerful and convenient eval.secure() function. This function mimics
eval(), but it has additional parameters that define restrictions which will be enforced to
this specific evaluation. For example, one could use

Journal of Statistical Software 13

myresult <- eval.secure(myfun(), RLIMIT_AS = 10*1024*1024, profile="r-base")

Which will call myfun() with a memory limit of 10MB and the “r-base” security profile (which
is introduced in section 5.2). The eval.secure function works by creating a fork of the current
process, and then sets hard limits, uid and AppArmor profile on the forked process, before
evaluating the call. After the function returns, or when the timeout is reached, the forked
process is killed and cleaned up. This way, all of the one-way security restrictions can be
applied, and evaluations that happen inside eval.secure won’t have any side effects on the
main process.

4.5. Setting user and group ID

One of the most basic security methods is running a process as a specific user. Especially
within a system where the main process has superuser privileges (which could be the case in for
example a webserver), switching to a user with limited privileges before evaluating any code
is a wise thing to do. We could even consider a design where every user of the application has
a dedicated user account on the Linux machine. The RAppArmor package implements the
functions getuid, setuid, getgid, setgid, which call out to the respective Linux system
calls. Users and groups can either be specified by their name, or as integer values as defined
in the /etc/passwd file.

R> library("RAppArmor")

R> system('whoami')

root

R> getuid()

[1] 0

R> getgid()

[1] 0

R> setgid(1000)

Setting gid...

R> setuid(1000)

Setting uid...

R> getgid()

[1] 1000

R> getuid()

[1] 1000

R> system('whoami')

jeroen

The user/group ID can also be set inside the eval.secure function. In this case it will not
affect the main process; the UID is only set for the time of the secure evaluation.

R> eval(system('whoami', intern=TRUE))

[1] "root"

R> eval.secure(system('whoami', intern=TRUE), uid=1000)

[1] "jeroen"

R> eval(system('whoami', intern=TRUE))

[1] "root"

14 The RAppArmor Package

Note that in order for setgid and setuid to work, the user must have the appropriate
capabilities in Linux, which are usually restricted to users with superuser privileges. The
getuid and getgid functions can be called by anyone.

4.6. Setting Task Priority

The RAppArmor package implements interfaces for setting the scheduling priority of a pro-
cess, also called its nice value or niceness. Linux systems use a priority system with 40
priorities, ranging from -20 (highest priority) to 19 (lowest priority). By default most pro-
cesses run with nice value 0. Users without superuser privileges can only increase this value,
i.e. lower the priority of the process. In RAppArmor the getpriority and setpriority

functions change the priority of the current session:

R> getpriority()

[1] 0

R> setpriority(10)

Setting priority...

[1] 10

R> setpriority(5)

Setting priority...

Error in setpriority(5) : Failed to set priority to: 5.

Error: 13

Again, the eval.secure function is used to run a function or code block with a certain priority
without affecting the priority of the main R session:

R> eval.secure(system('nice', intern=T), priority=10)

Setting priority...

[1] "10"

R> getpriority()

[1] 0

4.7. Linux Resource Limits (RLIMIT)

Linux defines a number of RLIMIT values that can be used to set resource limits on a process
(Free Software Foundation 2012). The RAppArmor package has functions to get/set to the
following RLIMITs:

� RLIMIT_AS – The maximum size of the process’s virtual memory (address space).

� RLIMIT_CORE – Maximum size of core file.

� RLIMIT_CPU – CPU time limit.

� RLIMIT_DATA – The maximum size of the process’s data segment.

� RLIMIT_FSIZE – The maximum size of files that the process may create.

Journal of Statistical Software 15

� RLIMIT_MEMLOCK – Number of memory that may be locked into RAM.

� RLIMIT_MSGQUEUE – Max number of bytes that can be allocated for POSIX message
queues

� RLIMIT_NICE – Specifies a ceiling to which the process’s nice value (priority).

� RLIMIT_NOFILE – Limit maximum file descriptor number that can be opened.

� RLIMIT_NPROC – Maximum number of processes (or, more precisely on Linux, threads)
that can be created by the user of the calling process.

� RLIMIT_RTPRIO – Ceiling on the real-time priority that may be set for this process.

� RLIMIT_RTTIME – Limit on the amount of CPU time that a process scheduled under a
real-time scheduling policy may consume without making a blocking system call.

� RLIMIT_SIGPENDING – Limit on the number of signals that may be queued by the user
of the calling process.

� RLIMIT_STACK – The maximum size of the process stack.

For all of the above RLIMITs, the RAppArmor package implements a function which name is
equivalent to the non-capitalized name of the RLIMIT. For example to get/set RLIMIT_AS, one
can call rlimit_as(). Every rlimit_ function has exactly 3 parameters: hardlim, softlim,
and pid. Each argument is specified as an integer value. The pid arguments points to the
target process. When this argument is omitted, the calling process is targeted. When the
softlim is omitted, it is set equal to the hardlim.

The soft limit is the value that the kernel enforces for the corresponding resource. The hard
limit acts as a ceiling for the soft limit: an unprivileged process may only set its soft limit
to a value in the range from 0 up to the hard limit, and (irreversibly) lower its hard limit.
A privileged process (under Linux: one with the CAP_SYS_RESOURCE capability) may make
arbitrary changes to either limit value. When the function is called without any arguments,
it prints the current limits to STDOUT. (Free Software Foundation 2012)

R> library("RAppArmor")

R> rlimit_as()

RLIMIT_AS:

Current limits: soft=-1; hard=-1

R> A <- rnorm(1e7)

R> rm(A)

R> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 185467 5.0 407500 10.9 350000 9.4

Vcells 176590 1.4 8743611 66.8 10182143 77.7

>

R> rlimit_as(10*1024*1024)

RLIMIT_AS:

Previous limits: soft=-1; hard=-1

16 The RAppArmor Package

Current limits: soft=10485760; hard=10485760

R> A <- rnorm(1e7)

Error: cannot allocate vector of size 76.3 Mb

Note that a process owned by a user without superuser privileges can only modify RLIMIT

to more restrictive values. However, using eval.secure, a more restrictive RLIMIT can be
applied to a single evaluation without any side effects on the main process:

R> library("RAppArmor")

R> A <- eval.secure(rnorm(1e7), RLIMIT_AS = 10*1024*1024);

Error: cannot allocate vector of size 76.3 Mb

R> A <- rnorm(1e7)

The exact meaning of the different limits can be found in the RAppArmor package documen-
tation (e.g. ?rlimit_as) or in the documentation of the distribution (Canonical, Inc 2012).

4.8. Activating AppArmor profiles

The RAppArmor package implements three calls to the Linux kernel related to applying
AppArmor profiles: aa_change_profile, aa_change_hat and aa_revert_hat. Both the
aa_change_profile and aa_change_hat functions take a parameter named profile: a char-
acter string identifying the name of the profile. This profile has to be preloaded by the kernel,
before it can be applied to a process. The easiest way to load profiles is to copy them to the
directory /etc/apparmor.d and then run sudo service apparmor restart.

The main difference between a profile and a hat is that switching profiles is an irreversible
action. Once the profile has been associated with the current process, the process cannot call
aa_change_profile again to escape from the profile (that would defeat the purpose). The
only exception to this rule are profiles that contain an explicit change_profile directive.
The aa_change_hat function on the other hand is designed to associate a process with a
security profile in a way that does allows escaping out of the security profile. In order to
realize this, the aa_change_hat takes a second argument called magic_token, which defines
a secret key that can be used to revert the hat. When aa_revert_hat is called with the same
magic_token that was used in aa_change_hat, the security restrictions are relieved.

Using aa_change_hat to switch in and out of profiles is an easy way to get started with
RAppArmor and test some security policies. However it should be emphasized that using
hats instead of profiles is also a security risk and should be avoided in production settings. It
is important to realize that if the code running in the sandbox can find a way of discovering
the value of the magic_token (e.g. from memory, command history or log files), it will be able
to escape from the sandbox. Hence aa_change_hat should only be used to prevent general
purpose malicious activity, e.g. when testing a new R package. When hosting services or
otherwise exposing an environment that might be specifically targeted, hackers could write
code that attempts to find the magic token and revert the hat. Therefore it is recommended
to only use aa_change_profile or eval.secure in production settings. When a profile is
applied to a process using aa_change_profile or eval.secure, the kernel will keep enforcing
the security policy on the respective process and all of its children until they die, no matter
what.

Journal of Statistical Software 17

The RAppArmor package ships with a profile called testprofile which contains a hat called
testhat. We use this profile to demonstrate the functionality. The profiles have been defined
such that testprofile allows access to /etc/group but denies access to /etc/passwd. The
testhat denies access to both /etc/passwd and /etc/group.

R> library("RAppArmor");

R> result <- read.table("/etc/passwd")

R> aa_change_profile("testprofile")

Switching profiles...

R> passwd <- read.table("/etc/passwd")

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") : cannot open file '/etc/passwd': Permission denied

R> group <- read.table("/etc/group")

R> mytoken <- 13337;

R> aa_change_hat("testhat", mytoken);

Setting Apparmor Hat...

R> passwd <- read.table("/etc/passwd")

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") : cannot open file '/etc/passwd': Permission denied

R> group <- read.table("/etc/group")

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") : cannot open file '/etc/group': Permission denied

R> aa_revert_hat(mytoken);

Reverting AppArmor Hat...

R> passwd <- read.table("/etc/passwd")

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") : cannot open file '/etc/passwd': Permission denied

R> group <- read.table("/etc/group")

Just like for setuid and rlimit functions, eval.secure can be used to enforce an AppArmor

security profile on a single call, witout any side effects. The eval.secure function uses
aa_change_profile and is therefore most secure.

R> out <- eval(read.table("/etc/passwd"))

R> nrow(out)

[1] 68

R> out <- eval.secure(read.table("/etc/passwd"), profile="testprofile")

Error in file(file, "rt") : cannot open the connection

18 The RAppArmor Package

4.9. AppArmor without RAppArmor

The RAppArmor package allows us to dynamically load an AppArmor profile from within an
R session. This gives a great deal of flexibility. However, it is also possible to use AppArmor

without the RAppArmor package, by setting a single profile to be loaded with any running
R process.

To do so, the RAppArmor package ships with a profile named usr.bin.r. At the installation
of the package, this file is copied to /etc/apparmor.d/. This file is basically a copy of the
r-user profile in appendix A.3, however with a small change: where r-user defines a named
profile with

profile r-user {

...

}

the usr.bin.r file defines a profile specific to a filepath:

/usr/bin/R {

...

}

When using the latter syntax, the profile is automatically associated every time the file
/usr/bin/R is executed (which is the file that runs when R is entered in the shell). This
way we can set some default security restrictions for our daily work. Profiles tied to a specific
program can be activated by the administrator using:

sudo aa-enforce usr.bin.r

This will enforce the security restrictions on every new R process that is started. To disable
the profile, the administrator can run:

sudo aa-disable usr.bin.r

After stop enforcing the profile, the R program can be started without any restrictions.

Note that the usr.bin.r profile does not grant permission to change profiles. Hence, once the
usr.bin.r profile is in enforce mode, we cannot use the eval.secure or aa_change_profile
functions from the RAppArmor package to change into a different profile, as this would be a
security hole.

4.10. Learning using complain mode

Finally AppArmor allows the administrator to set profiles in complain mode, which is also
called learning mode.

sudo aa-complain usr.bin.r

This is useful for developing new profiles. When a profile is set in complain mode, security
restrictions are not actually enforced; instead all violations of the security policy are logged

Journal of Statistical Software 19

to the syslog and kern.log files. This is a powerful way of creating new profiles: one can
set a program in complain mode during regular use, and afterwards the log files can be used
to study violations of the current policy. From these violations we can determine which
permissions will have to be added to the profile to make the program work under normal
behavior. AppArmor even ships with a powerful utility named aa-logprof which helps the
administrator by parsing log files and suggesting new rules to be added to the profile. This
is a nice way of debugging a profile, and figuring out which permissions exactly a program
requires to do its work.

5. Profiling R: Defining security policies

The “hard” part of the problem is actually profiling R. With profiling we mean defining the
policies: which files and directories should R be allowed to read and write to? Which external
programs is it allowed to execute? Which libraries or shared modules it allowed to load, etc.
We want to minimize ways in which the process could potentially damage the system, but
we don’t want to be overly restrictive either: preferebly, users should be able to do anything
they normally do in R. Because R is such a complete system with a big codebase and a wide
range of functionality, the base system actually already requires quite a lot of access to the
file system.

As often, there is no “one size fits all” solution. Depending on which functionality is needed
for an application we might want to grant or deny certain privileges. We might even want to
execute some parts of a process with tighter privileges than other parts. For example, within
a web service, the service process should be able to write to system log files, which should
not be writable by custom code from a user. We might also want to be more strict on some
users than others, e.g. allow all users to run code, but only allow privileged users to install a
new package.

5.1. AppArmor policy configuration syntax

The AppArmor policy configuration syntax is used to define the access control profiles in
AppArmor. Other mandatory access control systems might implement different functionality
and require other syntax, but in the end they address mostly similar issues. AppArmor is
quite advanced and provides access control over many of the features and resources found in
the Linux kernel, e.g. file access, network rules, Linux capability modes, mounting rules, etc.
All of these can be useful, but most of them are very application specific. Furthermore, the
policy syntax has some meta functionality that allows for defining subprofiles, and includes.

The most important form of access control which will be the focus of the remaining of the
section are file permission access modes. Once AppArmor is enforcing mandatory access con-
trol, a process can only access files and directories on the system for which it has explicitly
been granted access in its security profile. Because in Linux almost everything is a file (even
sockets, devices, etc) this gives a great deal of control. AppArmor defines a number of access
modes on files and directories, of which the most important ones are:

r – read file or directory.

w – write to file or directory.

20 The RAppArmor Package

m – load file in memory.

px – discrete profile execute of executable file.

cs – transition to subprofile for executing a file.

ix – inherit current profile for executing a file.

ux – unconfined execution of executable file (dangerous).

Using this syntax we will present some example profiles for R. Because the profiles are defined
using absolute paths of system files, we will assume the standard file layout for Debian and
Ubuntu systems. This includes files that are part of r-base and other packages that are used
by R, e.g. texlive, libxml2, bash, libpango, libcairo, etc.

5.2. Profile: r-base

Appendix A.1 contains a profile that we have named r-base. It is a fairly basic and gen-
eral profile. It grants read/load access to all files in common shared system directories,
e.g. /usr/lib, /usr/local/lib, /usr/share, etc. However, the default profile only grants
write access inside /tmp, not in e.g. the home directory. Furthermore, R is allowed to exe-
cute any of the shell commands in /bin or /usr/bin for which the program will inherit the
restrictions.

R> library("RAppArmor")

R> aa_change_profile("r-base")

Switching profiles...

R> list.files("/")

character(0)

R> list.files("~")

character(0)

R> file.create("~/test")

[1] FALSE

R> list.files("/tmp")

character(0)

R> install.packages("wordcloud")

Error opening file for reading: Permission denied

R> library("ggplot2");

R> setwd(tempdir())

R> pdf("test.pdf")

R> qplot(speed, dist, data=cars);

R> dev.off()

null device

1

R> list.files()

[1] "downloaded_packages"

Journal of Statistical Software 21

[2] "libloc_107_669a3e12.rds"

[3] "libloc_118_46fd5f8e.rds"

[4] "libloc_128_97f33314.rds"

[5] "pdf6d1117f7d683"

[6] "repos_http%3a%2f%2fcran.stat.ucla.edu%2fsrc%2fcontrib.rds"

[7] "test.pdf"

R> file.remove("test.pdf")

[1] TRUE

The r-base profile effectively protects R from most malicious activity, while still allowing
access to all of the libraries, fonts, icons, and programs that it might need. One thing to
note is that the profile does not allow listing of the contents of /tmp, but it does allow full rw
access on any of its subdirectories. This is to prevent one process from reading/writing files
in the temp directory of another active R process (given that it cannot discover the name of
the other temp directory).

The r-base profile is a quite liberal and general purpose profile. When using AppArmor

in a more specific application, it is recommended to make the profile a bit more restrictive
by specifying exactly which of the packages, shell commands and system libraries should be
accessible by the application. That could prevent potential problems when vulnerabilities are
discovered in some of the standard libraries.

5.3. Profile: r-compile

The r-base profile does not allow access to the compiler, nor does it allow for loading (m) or
execution (ix) of files in places where it can also write. If we want user to be able to compile
e.g. C++ code, we will need to give it access to the compiler. In order to do so, we need to
add these lines:

/usr/include/** r,

/usr/lib/gcc/** rix,

/tmp/** rmw,

Note especially the last line. The m allows R to load shared objects into memory from anywhere
under /tmp. This is needed to load the compiled code after it has been installed to a temporary
directory. Note that this does not come without a cost: compiled code can potentially contain
malicious code or even exploits that can do harm when loaded into memory. If this privilege
is not needed, it is generally recommended to only allow m and ix access modes on files that
have been installed by the system administrator. The new profile including these rules ships
with the package as r-compile and is also printed in appendix A.2.

After adding the lines above and reloading the profile, it should be possible to compile a
package that contains C++ code and install it to somewhere in /tmp:

R> eval.secure(install.packages("wordcloud", lib=tempdir()), profile="r-compile");

trying URL 'http://cran.stat.ucla.edu/src/contrib/wordcloud_2.0.tar.gz'

downloaded 36 Kb

22 The RAppArmor Package

* installing *source* package 'wordcloud' ...

** package 'wordcloud' successfully unpacked and MD5 sums checked

** libs

g++ -I/usr/share/R/include -DNDEBUG -I"/usr/local/lib/R/site-library/Rcpp/include"

-fpic -O3 -pipe -g -c layout.cpp -o layout.o

g++ -shared -o wordcloud.so layout.o -L/usr/local/lib/R/site-library/Rcpp/lib

-lRcpp -Wl,-rpath,/usr/local/lib/R/site-library/Rcpp/lib -L/usr/lib/R/lib -lR

installing to /tmp/RtmpFCM6WS/wordcloud/libs

** R

** data

** preparing package for lazy loading

** help

*** installing help indices

** building package indices

** testing if installed package can be loaded

* DONE (wordcloud)

The downloaded source packages are in

'/tmp/RtmpFCM6WS/downloaded_packages'

5.4. Profile: r-user

Appendix A.3 defines a profile named r-user. This profile is designed to be a nice balance be-
tween security and freedom for day to day use of R. It extends the r-compile profile with some
additional privileges with respect to the user’s home directory. The variable @{HOME} is defined
in the tunables/global include and matches the location of the user’s home directory, i.e.
/home/jeroen for a user named “jeroen”. The profile assumes that there is a directory named
R directly inside the home directory (e.g /home/jeroen/R), to which R can read and write.
Furthermore, R can load and execute files in the directories i686-pc-linux-gnu-library and
x86_64-pc-linux-gnu-library inside of this R directory. These are the standard locations
where R installs a user’s personal package library.

Using the r-user profile, the user will be able to do most of his day to day work, including
installing and loading new packages in his personal library, while still being protected against
most malicious activities. The r-user profile is also the basis of the default usr.bin.r profile
mentioned in section 4.9.

5.5. Installing packages

An additional privilege that might be needed in some situations is the option to install pack-
ages to the system’s global library, which is readable by all users. In order to allow this, a
profile needs to include write access to the site-library directory:

/usr/local/lib/R/site-library/ rw,

/usr/local/lib/R/site-library/** rwm,

Journal of Statistical Software 23

After adding this line to a profile, the policy will allow for installing R packages to the global
site library. However, note that AppArmor does not replace, but supplements the standard
access control system. Hence if a user does not have permission to write into this directory
(either by standard Unix access controls or by running with superuser privileges), it will still
not be able to install packages in the global site library, even though the AppArmor profile
does grant this permission.

6. Concluding remarks

In this paper the reader was introduced to some potential security issues related to the use of
the R software. We hope to have raised awareness that security is an increasingly important
concern for the R user, but also that addressing this issue could open doors to new applications
of the software. The RAppArmor package was introduced as an example that demonstrates
how some security issues could be addressed using facilities from the operating system, in this
case Linux. This implementation provides a starting point for creating a sandbox in R, but
as was emphasized throughout the paper, it is still up to the administrator to actually design
security policies that are appropriate for a certain application or system.

Our package uses the AppArmor software from the Linux kernel, which works for us, but
this is just one way to approach the issue. Linux has two other mandatory access control
systems that are worth exploring: TOMOYO and SELinux. Especially the latter is known to
be very sophisticated, but also extremely hard to set up. Other more recent technology that
might be interesting is provided by Linux CGroups. Using CGroups, control of allocation and
security is managed by hierarchical process groups. The upcoming LXC (Linux Containers)
build on CGroups to provide virtual environments which have their own process and network
space. A completely different direction is suggested by renjin (Bertram 2012), a JVM-based
Interpreter for the R Language. If R code can be executed though the JVM, we might be able
to use some tools from the Java community to address similar issues. Finally we curious to
see what the BSD community has to offer in this area, as BSD distributions are known to have
a lot of emphasis on security in the design of the operating system.

However, no matter which tools are used, security always comes down to the trade off between
use and abuse. This has a major human aspect to it, and is a learning process in itself. A
balance has to be found between providing enough freedom to use facilities as desired, yet
minimize opportunities for undesired activity. Apart from the technical parameters, a good
balance also depends on factors like what exactly is considered undesired and how well you
know your users. For example a job using 20 parallel cores might be considered as abusive
by many administrators, but might actually be regular use for a MCMC simulation study on
a supercomputer. Security policies are not unlike legal policies in the sense that they won’t
always work out as intended, and have to evolve over time as part of an iterative process.
It might not be until an application is put in production that users start complaining about
their favorite package not working, or that it turns out that the system is being abused in a
way that was hard to foresee. We hope that our research will contribute to this process and
help take a step in the direction of a safer R.

24 The RAppArmor Package

7. Acknowledgments

We owe a thank you to several people who have been specifically helpful in the course of this
research. Things would not have been possible without their valuable criticism, support and
feedback. Among others these include Dirk Eddelbuettel and Michael Rutter for providing
excellent packages for the Debian and Ubuntu distributions on which we largely build our
implementation. Daróczi Gergely and Aleksandar Blagotić for always being “early adopters”
(guinea pigs) and putting things to the test. And finally John Johansen, Seth Arnold and
Steve Beattie have been very helpful (and patient) by providing support and feedback through
the apparmor mailing lists.

A. Example profiles

This appendix prints some of the example profiles that ship with the RAppArmor package. To
load them in AppArmor, simply copy-paste the profile into a file that you put in the directory
/etc/apparmor.d and then run sudo service apparmor restart. You should then be able
to load them into an R session using either the aa_change_profile or secure.eval function
from the RAppArmor package.

A.1. Profile: r-base

#include <tunables/global>

profile r-base {

#include <abstractions/base>

#include <abstractions/nameservice>

/bin/* rix,

/etc/R/ r,

/etc/R/* r,

/etc/fonts/** mr,

/etc/xml/* r,

/tmp/** rw,

/usr/bin/* rix,

/usr/lib/R/bin/* rix,

/usr/lib{,32,64}/** mr,

/usr/lib{,32,64}/R/bin/exec/R rix,

/usr/local/lib/R/** mr,

/usr/local/share/** mr,

/usr/share/** mr,

}

A.2. Profile: r-compile

#include <tunables/global>

profile r-compile {

Journal of Statistical Software 25

#include <abstractions/base>

#include <abstractions/nameservice>

/bin/* rix,

/etc/R/ r,

/etc/R/* r,

/etc/fonts/** mr,

/etc/xml/* r,

/tmp/** rmw,

/usr/bin/* rix,

/usr/include/** r,

/usr/lib/gcc/** rix,

/usr/lib/R/bin/* rix,

/usr/lib{,32,64}/** mr,

/usr/lib{,32,64}/R/bin/exec/R rix,

/usr/local/lib/R/** mr,

/usr/local/share/** mr,

/usr/share/** mr,

}

A.3. Profile: r-user

#include <tunables/global>

profile r-user {

#include <abstractions/base>

#include <abstractions/nameservice>

capability kill,

capability net_bind_service,

capability sys_tty_config,

@{HOME}/ r,

@{HOME}/R/ r,

@{HOME}/R/** rw,

@{HOME}/R/{i686,x86_64}-pc-linux-gnu-library/** mrwix,

/bin/* rix,

/etc/R/ r,

/etc/R/* r,

/etc/fonts/** mr,

/etc/xml/* r,

/tmp/** mrwix,

/usr/bin/* rix,

/usr/include/** r,

/usr/lib/gcc/** rix,

/usr/lib/R/bin/* rix,

/usr/lib{,32,64}/** mr,

26 The RAppArmor Package

/usr/lib{,32,64}/R/bin/exec/R rix,

/usr/local/lib/R/** mr,

/usr/local/share/** mr,

/usr/share/** mr,

}

B. Security unit tests

This appendix prints a number of unit tests that contain malicious code and which should be
prevented by any sandboxing tool.

B.1. Access system files

Usually R has no business in the system logs, and these are not included in the profiles. The
codechunk below attempts to read the syslog file.

readSyslog <- function(){

readLines('/var/log/syslog');

}

When executing this with a r-user profile, access to this file is denied, resulting in an error:

R> eval.secure(readSyslog(), profile='r-user')

Switching profiles...

Error in file(con, "r") : cannot open the connection

B.2. Access user files

Access to system files can to some extend by prevented by running processes as non privi-
leged users. But it is easy to forget that also the user’s personal files can contain senstive
information. Below a simple function that scans the Documents directory of the current user
for files that contain credit card numbers.

findCreditCards <- function(){

pattern <- "([0-9]{4}[-]){3}[0-9]{4}"

for (filename in list.files("~/Documents", full.names=TRUE, recursive=TRUE)){

if(file.info(filename)$size > 1e6) next;

doc <- readLines(filename)

results <- gregexpr(pattern, doc)

output <- unlist(regmatches(doc, results));

if(length(output) > 0){

cat(paste(filename, ":", output, collapse="\n"), "\n")

}

}

}

Journal of Statistical Software 27

This example prints the credit card numbers to the user, but it would be quite easy to post
them to some server on the internet. For this reason the r-user profile denies access to the
user’s home dir, except for the ∼/R directory.

B.3. Limiting memory

When a system or service is used by many users at the same time, it is important that we cap
the memory that can be used by a single process. The following function generates a quite
large matrix:

memtest <- function(){

A <- matrix(rnorm(1e7), 1e4);

}

When R tries to allocate more memory than allowed, it will throw an error:

R> A <- eval.secure(memtest(), RLIMIT_AS = 1000*1024*1024)

RLIMIT_AS:

Previous limits: soft=-1; hard=-1

Current limits: soft=1048576000; hard=1048576000

R> rm(A)

R> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 193074 10.4 407500 21.8 350000 18.7

Vcells 299822 2.3 17248096 131.6 20301001 154.9

R> A <- eval.secure(memtest(), RLIMIT_AS = 100*1024*1024)

RLIMIT_AS:

Previous limits: soft=-1; hard=-1

Current limits: soft=104857600; hard=104857600

Error: cannot allocate vector of size 76.3 Mb

B.4. Limiting CPU time

Suppose we are hosting a web service and we want to kill jobs that do not finish in 5 seconds.
Below is a snippet that will take much more than 5 seconds on most machines. Note that
because R calling out to C code, it will not be possible to terminate this function prematurely
using R’s setTimeLimit or even using CTRL+C in an interactive console. If this would happen
inside of a bigger system, the entire service might become unresponsive.

cputest <- function(){

A <- matrix(rnorm(1e7), 1e3);

B <- svd(A);

}

28 The RAppArmor Package

In RAppArmor we have actually two different options to deal with this. The first one is
setting the RLIMIT_CPU value. This will cause the kernel to kill the process after 5 seconds:

R> Sys.time()

[1] "2012-08-02 11:26:21 CEST"

R> x <- eval.secure(cputest(), RLIMIT_CPU=5)

RLIMIT_CPU:

Previous limits: soft=-1; hard=-1

Current limits: soft=5; hard=5

R> Sys.time()

[1] "2012-08-02 11:26:26 CEST"

R> print(x)

NULL

However, this is actually a bit of a harsh measure: because the kernel actually terminates the
process after 5 seconds we have no control over what should happen, nor can we throw an
informative error. Setting RLIMIT_CPU is a bit like starting a job with a self-destruction timer.
A more elegant solution is to terminate the process from R using the timeout argument from
the eval.secure function. Because the actual job is processed in a fork, the parent process
stays responsive, and is used to kill the child process.

R> Sys.time()

[1] "2012-07-08 16:59:06 CEST"

R> eval.secure(cputest(), timeout=5)

Error: R call did not return within 5 seconds. Terminating process.

R> Sys.time()

[1] "2012-07-08 16:59:11 CEST"

One could even consider a Double Dutch solution by setting both timeout and a slightly
higher value for RLIMIT_CPU, so that if all else fails, the kernel will end up killing the process
and its children.

B.5. Fork bomb

A fork bomb is a process that spawns many child processes, which often results in the operating
system getting stuck to a point where it has to be rebooted. Performing a fork bomb in R is
quite easy and requires no special privileges:

forkbomb <- function(){

repeat{

parallel::mcparallel(forkbomb());

}

}

Do not call this function outside sandbox, because it will make the machine unresponsive.
However, inside our sandbox we can use the RLIMIT_NPROC to limit the number of processes
the user is allowed to own:

Journal of Statistical Software 29

R> eval.secure(forkbomb(), RLIMIT_NPROC = 20)

RLIMIT_NPROC:

Previous limits: soft=39048; hard=39048

Current limits: soft=20; hard=20

Error in mcfork() :

unable to fork, possible reason: Resource temporarily unavailable

Note that the process count is based on the Linux user. Hence if the same Linux user already
has a number of other processes, which is usually the case for non-system users, the cap has to
be higher than this number. Different processes owned by a single user can enforce different
NPROC limits, however in the actual process count all active processes from the current user
are taken into account. Therefore it might make sense to create a separate Linux system user
that is only used to process R jobs. That way RLIMIT_NPROC actually corresponds to the
number of concurrent R processes. The eval.secure function has arguments uid and gid

that can be used to switch Linux users before evaluating the call.

References

Abu Rajab M, Zarfoss J, Monrose F, Terzis A (2006). “A Multifaceted Approach to Under-
standing the Botnet Phenomenon.” In Proceedings of the 6th ACM SIGCOMM conference
on Internet measurement, pp. 41–52. ACM. URL conferences.sigcomm.org/imc/2006/

papers/p4-rajab.pdf.

Armbrust M, et al. (2010). “A View of Cloud Computing.” Communications of the ACM,
53(4), 50–58. URL http://dl.acm.org/citation.cfm?id=1721672.

Banfield J (1999). “Rweb: Web-based Statistical Analysis.” Journal of Statistical Software,
4(1), 1–15. ISSN 1548-7660. URL http://www.jstatsoft.org/v04/i01.

Bates D, Eddelbuettel D (2004). Using R on Debian: Past, Present, and Future. UseR 2004,
URL http://www.r-project.org/conferences/useR-2004/abstracts/Eddelbuettel+

Bates+Gebhardt.pdf.

Bates D, Maechler M, Bolker B (2011). lme4: Linear Mixed-Effects Models Using S4 Classes.
R package version 0.999375-39, URL http://CRAN.R-project.org/package=lme4.

Bauer M (2006). “Paranoid Penguin: an Introduction to Novell AppArmor.” Linux Journal,
2006(148), 13. URL www.linuxjournal.com/article/9036.

Bertram A (2012). Renjin: JVM-based Interpreter for R . URL http://code.google.com/

p/renjin/.

Canonical, Inc (2012). Ubuntu 12.04 Precise Manual: GETRLIMIT(2). URL http:

//manpages.ubuntu.com/manpages/precise/man2/getrlimit.2.html.

Chew K (2012). Cloudstat: Analyze Big Data With R in the Cloud. URL http://www.

cloudstat.org.

conferences.sigcomm.org/imc/2006/papers/p4-rajab.pdf
conferences.sigcomm.org/imc/2006/papers/p4-rajab.pdf
http://dl.acm.org/citation.cfm?id=1721672
http://www.jstatsoft.org/v04/i01
http://www.r-project.org/conferences/useR-2004/abstracts/Eddelbuettel+Bates+Gebhardt.pdf
http://www.r-project.org/conferences/useR-2004/abstracts/Eddelbuettel+Bates+Gebhardt.pdf
http://CRAN.R-project.org/package=lme4
www.linuxjournal.com/article/9036
http://code.google.com/p/renjin/
http://code.google.com/p/renjin/
http://manpages.ubuntu.com/manpages/precise/man2/getrlimit.2.html
http://manpages.ubuntu.com/manpages/precise/man2/getrlimit.2.html
http://www.cloudstat.org
http://www.cloudstat.org

30 The RAppArmor Package

Dabbish L, Stuart C, Tsay J, Herbsleb J (2012). “Social Coding in GitHub: Transparency
and Collaboration in an Open Software Repository.” In Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work, pp. 1277–1286. ACM. URL http:

//dl.acm.org/citation.cfm?id=2145396.

Dahl DB, Crawford S (2009). “RinRuby: Accessing the R Interpreter from Pure Ruby.” Jour-
nal of Statistical Software, 29(4), 1–18. ISSN 1548-7660. URL http://www.jstatsoft.

org/v29/i04.

Daroczi G (2012). The sandboxR package: Filtering ”malicious” Calls in R . URL https:

//github.com/daroczig/sandboxR.

Eddelbuettel D, Francois R (2011). RInside: C++ Classes to Embed R in C++ Applications.
R package version 0.2.4, URL http://CRAN.R-project.org/package=RInside.

Free Software Foundation (2012). GETRLIMIT – Linux Programmer’s Manual. URL http:

//www.kernel.org/doc/man-pages/online/pages/man2/setrlimit.2.html.

Gautier L (2008). rpy2: A Aimple and Efficient Access to R from Python . URL http:

//rpy.sourceforge.net/rpy2.html.

Harada T, Horie T, Tanaka K (2004). “Task Oriented Management Obviates Your Onus
on Linux.” In Linux Conference. URL http://sourceforge.jp/projects/tomoyo/

document/lc2004-en.pdf.

Heiberger R, Neuwirth E (2009). R Through Excel: A Spreadsheet Interface for Statistics,
Data Analysis, and Graphics. Springer-Verlag New York Inc. URL http://www.springer.

com/statistics/computational+statistics/book/978-1-4419-0051-7.

Horner J (2011). rApache: Web Application Development with R and Apache. URL http:

//www.rapache.net/.

Horner J, Eddelbuettel D (2011). littler: A Scripting Front-end for GNU R . Littler version
0.1.5, URL http://dirk.eddelbuettel.com/code/littler.html.

IOCCC (2012). “The International Obfuscated C Code Contest.” URL http://www.ioccc.

org.

Mirkovic J, Reiher P (2004). “A taxonomy of DDoS Attack and DDoS Defense Mechanisms.”
ACM SIGCOMM Computer Communication Review, 34(2), 39–53. URL www.eecis.udel.

edu/~sunshine/publications/ccr.pdf.

Moreira W, Warnes G (2006). “RPy: R from Python.” URL http://rpy.sourceforge.net/

rpy/README.

Ooms J (2009). Stockplot web application: A Web Interface for Plotting Historical Stock
Values. URL http://rweb.stat.ucla.edu/stockplot.

Ooms J (2010). lme4 web application: A Web Interface for the R Package lme4. URL
http://rweb.stat.ucla.edu/lme4.

Ooms J (2011). OpenCPU: Producing and Reproducing Results. URL http://www.opencpu.

org.

http://dl.acm.org/citation.cfm?id=2145396
http://dl.acm.org/citation.cfm?id=2145396
http://www.jstatsoft.org/v29/i04
http://www.jstatsoft.org/v29/i04
https://github.com/daroczig/sandboxR
https://github.com/daroczig/sandboxR
http://CRAN.R-project.org/package=RInside
http://www.kernel.org/doc/man-pages/online/pages/man2/setrlimit.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/setrlimit.2.html
http://rpy.sourceforge.net/rpy2.html
http://rpy.sourceforge.net/rpy2.html
http://sourceforge.jp/projects/tomoyo/document/lc2004-en.pdf
http://sourceforge.jp/projects/tomoyo/document/lc2004-en.pdf
http://www.springer.com/statistics/computational+statistics/book/978-1-4419-0051-7
http://www.springer.com/statistics/computational+statistics/book/978-1-4419-0051-7
http://www.rapache.net/
http://www.rapache.net/
http://dirk.eddelbuettel.com/code/littler.html
http://www.ioccc.org
http://www.ioccc.org
www.eecis.udel.edu/~sunshine/publications/ccr.pdf
www.eecis.udel.edu/~sunshine/publications/ccr.pdf
http://rpy.sourceforge.net/rpy/README
http://rpy.sourceforge.net/rpy/README
http://rweb.stat.ucla.edu/stockplot
http://rweb.stat.ucla.edu/lme4
http://www.opencpu.org
http://www.opencpu.org

Journal of Statistical Software 31

R Development Core Team (2012). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Ripley B (2011). “The R Development Process.” The R User Conference 2011, URL http:

//web.warwick.ac.uk/statsdept/user2011/invited/user2011_Ripley.pdf.

Smalley S, Vance C, Salamon W (2001). “Implementing SELinux as a Linux Security Module.”
NAI Labs Report, 1, 43. URL http://www.nsa.gov/research/_files/publications/

implementing_selinux.pdf.

Torvalds L, Hamano J (2010). GIT: Fast Version Control System. URL http://git-scm.com.

Urbanek S (2007). rJava: Low-level R to Java interface. URL http://www.rforge.net/

rJava.

Urbanek S (2011a). JRI - Java- R Interface. JRI is now part of rJava, URL http://www.

rforge.net/JRI/index.html.

Urbanek S (2011b). Rserve: Binary R server. R package version 0.6-5, URL http://CRAN.

R-project.org/package=Rserve.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
ISBN 978-0-387-98140-6. URL http://had.co.nz/ggplot2/book.

Affiliation:

Jeroen Ooms
UCLA Department of Statistics
University of California
E-mail: jeroen.ooms@stat.ucla.edu
URL: http://www.stat.ucla.edu/~jeroen

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume VV, Issue II Submitted: yyyy-mm-dd
MMMMMM YYYY Accepted: yyyy-mm-dd

http://www.R-project.org/
http://www.R-project.org/
http://web.warwick.ac.uk/statsdept/user2011/invited/user2011_Ripley.pdf
http://web.warwick.ac.uk/statsdept/user2011/invited/user2011_Ripley.pdf
http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf
http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf
http://git-scm.com
http://www.rforge.net/rJava
http://www.rforge.net/rJava
http://www.rforge.net/JRI/index.html
http://www.rforge.net/JRI/index.html
http://CRAN.R-project.org/package=Rserve
http://CRAN.R-project.org/package=Rserve
http://had.co.nz/ggplot2/book
mailto:jeroen.ooms@stat.ucla.edu
http://www.stat.ucla.edu/~jeroen
http://www.jstatsoft.org/
http://www.amstat.org/

	Security in R: Introduction and motivation
	Security when using contributed code
	Sandboxing the R environment

	Use cases and concerns of sandboxing R
	Running untrusted code
	Shared resources
	Embedded systems and services

	System privileges and hardware resources
	System abuse
	Resource restrictions

	Different approaches of confining R
	Application level security: Predefined services
	Code injection

	Sanitizing and blacklisting
	Sandboxing on the level of the operating system

	The RAppArmor package
	AppArmor profiles
	Automatic installation
	Manual installation
	Linux security methods
	Setting user and group ID
	Setting Task Priority
	Linux Resource Limits (RLIMIT)
	Activating AppArmor profiles
	AppArmor without RAppArmor
	Learning using complain mode

	Profiling R: Defining security policies
	AppArmor policy configuration syntax
	Profile: r-base
	Profile: r-compile
	Profile: r-user
	Installing packages

	Concluding remarks
	Acknowledgments
	Example profiles
	Profile: r-base
	Profile: r-compile
	Profile: r-user

	Security unit tests
	Access system files
	Access user files
	Limiting memory
	Limiting CPU time
	Fork bomb

