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PwrGSD Calculate Power in a Group Sequential Design

Description

Derives power in a two arm clinical trial under a group sequential design. Allows for ar-
bitrary number of interim analyses, arbitrary specification of arm-0/arm-1 time to event
distributions (via survival or hazard), arm-0/arm-1 censoring distribution, provisions for
two types of continuous time non-compliance according to arm-0/arm-1 rate followed by
switch to new hazard rate. Allows for analyses using (I) weighted log-rank statistic, with
weighting function (a) a member of the Flemming-Harrington G-Rho class, or (b) a stopped
version thereof, or (c) the ramp-plateau deterministic weights, or (II) the integrated survival
distance (currently under method==”S” without futility only). Stopping boundaries are
computed via the Lan-Demets method, Haybittle method, or converted from the stochas-
tic curtailment procedure. The Lan-Demets boundaries can be constructed usign either
O’Brien-Flemming, Pocock or Wang-Tsiatis power alpha-spending. The C kernel is readily
extensible, and further options will become available in the near future.

Usage

PwrGSD(EfficacyBoundary = LanDemets(alpha = 0.05, spending = ObrienFleming),

FutilityBoundary = LanDemets(alpha = 0.1, spending = ObrienFleming),

sided = c("2", ">", "<"), method = c("S", "A"), accru, accrat,

tlook, tcut0 = NULL, h0 = NULL, s0 = NULL, tcut1 = NULL,

rhaz = NULL, h1 = NULL, s1 = NULL, tcutc0 = NULL, hc0 = NULL,

sc0 = NULL, tcutc1 = NULL, hc1 = NULL, sc1 = NULL, tcutd0A = NULL,

hd0A = NULL, sd0A = NULL, tcutd0B = NULL, hd0B = NULL, sd0B = NULL,

tcutd1A = NULL, hd1A = NULL, sd1A = NULL, tcutd1B = NULL,

hd1B = NULL, sd1B = NULL, tcutx0A = NULL, hx0A = NULL, sx0A = NULL,

tcutx0B = NULL, hx0B = NULL, sx0B = NULL, tcutx1A = NULL,

hx1A = NULL, sx1A = NULL, tcutx1B = NULL, hx1B = NULL, sx1B = NULL,

noncompliance = c("none", "crossover", "mixed", "user"),

gradual = FALSE, WtFun = c("FH", "SFH", "Ramp"), ppar = cbind(c(0, 0)),

Spend.Info = c("Variance", "Events", "Hybrid(k)", "Calendar"), RR.Futility = NULL,

qProp.one.or.Q = c("one", "Q"), Nsim = NULL, detail = FALSE, StatType = c("WLR",

"ISD"))

Arguments

EfficacyBoundary

This specifies the method used to construct the efficacy boundary. The
available choices are

(i) Lan-Demets(alpha=<total type I error>, spending=<spending function>).
The Lan-Demets method is based upon a error probability spending ap-
proach. The spending function can be set to ObrienFleming, Pocock, or
Power(rho), where rho is the the power argument for the power spending
function: rho=3 is roughly equivalent to the O’Brien-Fleming spending
function and smaller powers result in a less conservative spending func-
tion.

(ii) Haybittle(alpha=<total type I error>, b.Haybittle=<user specified

boundary point>). The Haybittle approach is the simplest, which sets
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the boundary points equal to b.Haybittle, a user specified value (try 3)
for all analyses except the last, which is calculated so as to result in the
total type I error, set with the argument alpha.

(iii) SC(alpha=<total type I error>, crit=<threshold for conditional

type I error for efficacy stopping>). The stochastic curtailment
method is based upon the conditional probability of type I error given the
current value of the statistic. Under this method, a sequence of boundary
points on the standard normal scale (as are boundary points under all
other methods) is calculated so that the total probability of type I error,
alpha, is maintained. This is done by considering the joint probabilities of
continuing to the current analysis and then exceeding the threshold at the
current analysis. A good value for the threshold value for the conditional
type I error, crit is 0.90 or greater.

(iv) User supplied boundary points in the form c(b1, b2, b3, ..., b_m),
where m is the number of looks.

FutilityBoundary

This specifies the method used to construct the futility boundary. The
available choices are

(i) Lan-Demets(alpha=<total type II error>, spending=<spending function>).
The Lan-Demets method is based upon a error probability spending ap-
proach. The spending function can be set to ObrienFleming, Pocock, or
Power(rho), where rho is the the power argument for the power spending
function: rho=3 is roughly equivalent to the O’Brien-Fleming spending
function and smaller powers result in a less conservative spending func-
tion.

(ii) Haybittle(alpha=<total type I error>, b.Haybittle=<user specified

boundary point>). The Haybittle approach is the simplest, which sets
the boundary points equal to b.Haybittle, a user specified value (try 3)
for all analyses except the last, which is calculated so as to result in the
total type II error, set with the argument alpha.

(iii) SC(alpha=<total type II error>, crit=<threshold for conditional

type II error for futility stopping>, drift.end=<projected drift

at end of trial>). The stochastic curtailment method is based upon
the conditional probability of type II error given the current value of the
statistic. Under this method, a sequence of boundary points on the stan-
dard normal scale (as are boundary points under all other methods) is
calculated so that the total probability of type II error, alpha, is main-
tained. This is done by considering the joint probabilities of continuing
to the current analysis and then exceeding the threshold at the current
analysis. A good value for the threshold value for the conditional type I
error, crit is 0.90 or greater.

(iv) User supplied boundary points in the form c(b1, b2, b3, ..., b_m),
where m is the number of looks.

sided If two-sided tests of H0, set to “2” (quoted). If one-sided test of H0,
set to “>” for upper tail, “<” for lower tail. If method==“S” then this
must be of the same length as StatType because the interpretation of
sided is different depending upon whether StatType==“WLR”(negative
is benefit) or StatType==“ISD”(positive is benefit)

method Determines how to calculate the power. Set to “A” (Asymptotic method,
the default) or “S” (Simulation method)
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accru The upper endpoint of the accrual period beginning with time 0.

accrat The rate of accrual per unit of time.

tlook The times of planned interim analyses.

tcut0 Left hand endpoints for intervals upon which the arm-0 specific mortality
is constant. The last given component is the left hand endpoint of the
interval having right hand endpoint infinity.

h0 A vector of the same length as tcut0 which specifies the piecewise con-
stant arm-0 mortality rate.

s0 Alternatively, the arm-0 mortality distribution can be supplied via this
argument, in terms of of the corresponding survival function values at
the times given in the vector tcut0. If s0 is supplied, then h0is derived
internally, assuming the piecewise exponential distrubiton. If you specify
s0, the first element must be 1, and correspondingly, the first component
of tcut0 will be the lower support point of the distribution. You must
supply either h0 or s0 but not both.

tcut1 Left hand endpoints for intervals upon which the arm-1 specific mortality
is constant. The last given component is the left hand endpoint of the
interval having right hand endpoint infinity.

rhaz A vector of piecewise constant arm-1 versus arm-0 mortality rate ratios. If
tcut1 and tcut0 are not identical, then tcut1, h0, and rhaz are internally
rederived at the union of the sequences tcut0 and tcut1. In all cases the
arm-1 mortality rate is then derived at the time cutpoints tcut1 as rhaz
× h0.

h1 Alternatively, the arm-1 mortality distribution can be supplied via this
argument by specifying the piecewise constant arm-1 mortality rate. See
the comments above.

s1 Alternatively, the arm-1 mortality distribution can be supplied via this
argument, in terms of of the corresponding survival function values at the
times given in the vector tcut1. Comments regarding s0 above apply
here as well. You must supply exactly one of the following: h1, rhaz, or
s1.

tcutc0 Left hand endpoints for intervals upon which the arm-0 specific censoring
distribution hazard function is constant. The last given component is the
left hand endpoint of the interval having right hand endpoint infinity.

hc0 A vector of the same length as tcutc0 which specifies the arm-0 censoring
distribution in terms of a piecewise constant hazard function.

sc0 Alternatively, the arm-0 censoring distribution can be supplied via this
argument, in terms of of the corresponding survival function values at the
times given in the vector tcutc0. See comments above. You must supply
either hc0 or sc0 but not both.

tcutc1 Left hand endpoints for intervals upon which the arm-1 specific censoring
distribution hazard function is constant. The last given component is the
left hand endpoint of the interval having right hand endpoint infinity.

hc1 A vector of the same length as tcutc1 which specifies the arm-1 censoring
distribution in terms of a piecewise constant hazard function.

sc1 Alternatively, the arm-1 censoring distribution can be supplied via this
argument, in terms of of the corresponding survival function values at the
times given in the vector tcutc1. See comments above. You must supply
either hc1 or sc1 but not both.



PwrGSD 5

noncompliance (i) Seting noncompliance to “none” for no non-compliance will automat-
ically set the non-compliance arguments, below, to appropriate values
for no compliance. This requires no additional user specification of non-
compliance parameters. (ii) Setting noncompliance to “crossover” will
automatically set crossover values in the arm 0/1 specific post-cause-
B-delay-mortality for cross-over, i.e. simple interchange of the arm 0
and arm 1 mortalities. The user is required to specify all parameters
corresponding to the arm 0/1 specific cause-B-delay distributions. The
cause-A-delay and post-cause-A-delay-mortality are automatically set so
as not to influence the calculations. Setting noncompliance to “mixed”
will set the arm 0/1 specific post-cause-B-delay-mortality distributions for
crossover as defined above. The user specifies the arm 0/1 specific cause-
B-delay distribution as above, and in addition, all parameters related
to the arm 0/1 specific cause-A-delay distributions and corresponding
arm 0/1 specific post-cause-A-delay-mortality distributions. (iii) Setting
noncompliance to “user” requires the user to specify all non-compliance
distribution parameters.

tcutd0A Left hand endpoints for intervals upon which the arm-0 specific cause-A
delay distribution hazard function is constant. The last given compo-
nent is the left hand endpoint of the interval having right hand endpoint
infinity. Required only when noncompliance is set to “mixed” or “user”.

hd0A A vector of the same length as tcutd0A containing peicewise constant
hazard rates for the arm-0 cause-A delay distribution. Required only
when noncompliance is set to “mixed” or “user”.

sd0A When required, the arm-0 cause-A-delay distribution is alternately spec-
ified via a survival function. A vector of the same length as tcutd0A.

tcutd0B Left hand endpoints for intervals upon which the arm-0 specific cause-B
delay distribution hazard function is constant. The last given component
is the left hand endpoint of the interval having right hand endpoint infin-
ity. Always required when noncompliance is set to any value other than
“none”.

hd0B A vector of the same length as tcutd0B containing peicewise constant
hazard rates for the arm-0 cause-B delay distribution. Always required
when noncompliance is set to any value other than “none”.

sd0B When required, the arm-0 cause-B-delay distribution is alternately spec-
ified via a survival function. A vector of the same length as tcutd0B.

tcutd1A Left hand endpoints for intervals upon which the arm-1 specific cause-A
delay distribution hazard function is constant. The last given compo-
nent is the left hand endpoint of the interval having right hand endpoint
infinity. Required only when noncompliance is set to “mixed” or “user”.

hd1A A vector of the same length as tcutd1A containing peicewise constant
hazard rates for the arm-1 cause-A delay distribution. Required only
when noncompliance is set to “mixed” or “user”.

sd1A When required, the arm-1 cause-A-delay distribution is alternately spec-
ified via a survival function. A vector of the same length as tcutd1A.

tcutd1B Left hand endpoints for intervals upon which the arm-1 specific cause-B
delay distribution hazard function is constant. The last given component
is the left hand endpoint of the interval having right hand endpoint infin-
ity. Always required when noncompliance is set to any value other than
“none”.
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hd1B A vector of the same length as tcutd1B containing peicewise constant
hazard rates for the arm-1 cause-B delay distribution. Always required
when noncompliance is set to any value other than “none”.

sd1B When required, the arm-1 cause-A-delay distribution is alternately spec-
ified via a survival function. A vector of the same length as tcutd1A.

tcutx0A Left hand endpoints for intervals upon which the arm-0 specific post-
cause-A-delay-mortality rate is constant. The last given component is
the left hand endpoint of the interval having right hand endpoint infinity.
Required only when noncompliance is set to “mixed” or “user”.

hx0A A vector of the same length as tcutx0A containing the arm-0 post-cause-
A-delay mortality rates. Required only when noncompliance is set to
“mixed” or “user”.

sx0A When required, the arm-0 post-cause-A-delay mortality distribution is
alternately specified via a survival function. A vector of the same length
as tcutx0A.

tcutx0B Left hand endpoints for intervals upon which the arm-0 specific post-cause-
B-delay-mortality rate is constant. The last given component is the left
hand endpoint of the interval having right hand endpoint infinity. Always
required when noncompliance is set to any value other than “none”.

hx0B A vector of the same length as tcutx0B containing the arm-0 post-cause-
B-delay mortality rates. Always required when noncompliance is set to
any value other than “none”.

sx0B When required, the arm-0 post-cause-B-delay mortality distribution is
alternately specified via a survival function. A vector of the same length
as tcutx0B.

tcutx1A Left hand endpoints for intervals upon which the arm-1 specific post-
cause-A-delay-mortality rate is constant. The last given component is
the left hand endpoint of the interval having right hand endpoint infinity.
Required only when noncompliance is set to “mixed” or “user”.

hx1A A vector of the same length as tcutx1A containing the arm-1 post-cause-
A-delay mortality rates. Required only when noncompliance is set to
“mixed” or “user”.

sx1A When required, the arm-1 post-cause-A-delay mortality distribution is
alternately specified via a survival function. A vector of the same length
as tcutx1A.

tcutx1B Left hand endpoints for intervals upon which the arm-1 specific post-cause-
B-delay-mortality rate is constant. The last given component is the left
hand endpoint of the interval having right hand endpoint infinity. Always
required when noncompliance is set to any value other than “none”.

hx1B A vector of the same length as tcutx1B containing the arm-1 post-cause-
B-delay mortality rates. Always required when noncompliance is set to
any value other than “none”.

sx1B When required, the arm-1 post-cause-B-delay mortality distribution is
alternately specified via a survival function. A vector of the same length
as tcutx1B.

gradual Should the conversion to post-noncompliance mortality be gradual. Under
the default behavior, gradual=FALSE, there is an immediate conversion
to the post-noncompliance mortality rate function. If gradual is set to
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TRUE then this conversion is done “gradually”. In truth, at the individual
level what is done is that the new mortality rate function is a convex com-
bination of the pre-noncompliance mortality and the post-noncompliance
mortality, with the weighting in proportion to the time spent in compli-
ance with the study arm protocal.

WtFun Specifies the name of a weighting function (of time) for assigning relative
weights to events according to the times at which they occur. The default,
“FH”, a two parameter weight function, specifies the ‘Fleming-Harrington’
g-rho family of weighting functions defined as the pooled arm survival
function (Kaplan-Meier estimate) raised to the g times its complement
raised to the rho. Note that g=rho=0 corresponds to the unweighted
log-rank statistic. A second choice is the “SFH” function, (for ‘Stopped
Fleming-Harrington’), meaning that the “FH” weights are capped at their
value at a user specified time, which has a total of 3 parameters. A third
choice is Ramp(tcut). Under this choice, weights are assigned in a linearly
manner from time 0 until a user specified cut-off time, tcut, after which
events are weighted equally. It is possible to conduct computations on
nstat candidate statistics within a single run. In this case, WtFun should
be a character vector of length nstat having components set from among
the available choices.

ppar A vector containing all the weight function parameters, in the order deter-
mined by that of“WtFun”. For example, if WtFun is set to c("FH","SFH","Ramp")
then ppar should be a vector of length six, with the “FH” parameters in
the first two elements, “SFH” parameters in the next 3 elements, and
“Ramp” parameter in the last element.

RR.Futility The relative risk corresponding to the alternative alternative hypothesis
that is required in the construction of the futility boundary. Required if
Boundary.Futility is set to a non-null value.

Spend.Info When the test statistic is something other than the unweighted log-rank
statistic, the variance information, i.e. the ratio of variance at interim
analysis to variance at the end of trial, is something other than the ratio
of events at interim analysis to the events at trial end. The problem is
that in practice one doesn’t necessarily have a good idea what the end of
trial variance should be. In this case the user may wish to spend the type I
and type II error probabilities according to a different time scale. Possible
choices are “Variance”, (default), which just uses the variance ratio scale,
“Events”, which uses the events ratio scale, “Hybrid(k)”, which makes a
linear transition from the “Variance” scale to the “Events”scale beginning
with analysis number k. The last choice, “Calendar”, uses the calendar
time scale

qProp.one.or.Q

If a futility boundary is specified, what assumption should be made about
the drift function (the mean value of the weighted log-rank statistic at
analysis j normalized by the square root of the variance function at anal-
ysis k). In practice we don’t presume to know the shape of the drift
function. Set to “one” or “Q”. The choice “one” results in a more conser-
vative boundary.

Nsim If you specify method==“S”, then you must specify the number of simu-
lations. 1000 should be sufficient.

detail If you specify method==“S”, and want to see the full level of detail regard-
ing arguments returned from the C level code, specify detail==TRUE



8 PwrGSD

StatType If you specify method==“S”, then the available choices are“WLR”(weighted
log-rank) and “ISD” (integrated survival difference).

Value

Returns a value of class PwrGSD which has components listed below. Note that the print
method will display a summary table of estimated powers and type I errors as a nstat by
2 matrix. The summary method returns the same object invisibly, but after computing the
summary table mentioned above, and it is included in the returned value as a commponent
TBL. See examples below.

dPower A length(tlook) by nstat matrix containing in each column, an incre-
ment in power that resulted at that analysis time for the given statistic.

dErrorI A length(tlook) by nstat matrix containing in each column, an in-
crement in type I error that resulted at that analysis time for the given
statistic. Always sums to the total alpha specified in alphatot

detail A list with components equal to the arguments of the C-call, which cor-
respond in a natural way to the arguments specified in the R call, along
with the computed results in palpha0vec, palpha1vec, inffrac, and mu.
The first two are identical to dErrorI and dPower, explained above. The
last two are length(tlook) by nstat matrices. For each statistic spec-
ified in par, the corresponding columns of pinffrac and mu contain the
information fraction and drift at each of the analysis times.

call the call

Author(s)

Grant Izmirlian 〈izmirlian@nih.gov〉
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See Also

cpd.PwrGSD

Examples

library(PwrGSD)

test.example <-

PwrGSD(EfficacyBoundary = LanDemets(alpha = 0.05, spending = ObrienFleming),

FutilityBoundary = LanDemets(alpha = 0.1, spending = ObrienFleming),

RR.Futility = 0.82, sided="<",method="A",accru =7.73, accrat =9818.65,
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tlook =c(7.14, 8.14, 9.14, 10.14, 10.64, 11.15, 12.14, 13.14,

14.14, 15.14, 16.14, 17.14, 18.14, 19.14, 20.14),

tcut0 =0:19, h0 =c(rep(3.73e-04, 2), rep(7.45e-04, 3),

rep(1.49e-03, 15)),

tcut1 =0:19, rhaz =c(1, 0.9125, 0.8688, 0.7814, 0.6941,

0.6943, 0.6072, 0.5202, 0.4332, 0.6520,

0.6524, 0.6527, 0.6530, 0.6534, 0.6537,

0.6541, 0.6544, 0.6547, 0.6551, 0.6554),

tcutc0 =0:19, hc0 =c(rep(1.05e-02, 2), rep(2.09e-02, 3),

rep(4.19e-02, 15)),

tcutc1 =0:19, hc1 =c(rep(1.05e-02, 2), rep(2.09e-02, 3),

rep(4.19e-02, 15)),

tcutd0B =c(0, 13), hd0B =c(0.04777, 0),

tcutd1B =0:6, hd1B =c(0.1109, 0.1381, 0.1485, 0.1637, 0.2446,

0.2497, 0),

noncompliance =crossover, gradual =TRUE,

WtFun =c("FH", "SFH", "Ramp"),

ppar =c(0, 1, 0, 1, 10, 10))

cpd.PwrGSD Create a skeleton compound PwrGSD object

Description

Given a user defined indexing dataframe as its only argument, creates a skeleton compound
PwrGSD object having a component Elements, a list of PwrGSD objects, of length equal to
the number of rows in the indexing dataframe

Usage

cpd.PwrGSD(descr)

Arguments

descr A dataframe of a number of rows equal to the length of the resulting
list, Elements, of PwrGSD objects. The user defines the mapping between
rows of descr and components of Elements and uses it to set up a loop
over scenarios. There are several S3 classes and methods for example
plot.cpd.PwrGSD, which exploit this mapping between characteristics of
a run and the rows of desr for subsetting and constructing conditioned
plots. See the example below.

Value

An object of class cpd.PwrGSD containing elements:

date the POSIX date that the object was created–its quite useful

Elements a list of length equal to the number of rows of descr which will later
contain objects of class PwrGSD

descr a copy of the indexing dataframe argument for use in navigating the com-
pound object in subsequent calls to other functions such as the related
plot method, and the subset extractor, Elements
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Note

A cpd.PwrGSD object essentially a list of PwrGSD objects that a user may set up in order to
investigate the space of possible trial scenarios, test statistics, and boundary construction
options. One could store a list of results without appealing at all to these internal indexing
capabilities. The advantage of setting up a cpd.PwrGSD object is the nice summarization
functionality provided, for example the plot method for the cpd.PwrGSD class.

The key ingredient to (i) the construction of the empty object, (ii) and summarizing the
results in tabular or plotted form via its manipulation in subsequent function calls, is the
indexing dataset, descr (for description). The correspondence between rows of descr and
elements in the list of PwrGSD objects is purposely left very loose. In the example outlined
below, the user creates a “base case”call to PwrGSD and then decides which quantities in this
“base case” call to vary in order to navigate the space of possible trial scenarios, monitoring
statistics and boundary construction methods. Next, for each one of these settings being
varied, a variable with levels that determine each possible setting is created. The dataset
descr is created with one line corresponding to each combination of the selection variables
so created. In order to ensure that there is 1-1 correspondence between the order of the
rows in descr and the order in the list Elements of PwrGSD objects, the user carries out
the computation in a loop over rows of descr in which the values of the selection variables
in each given row of descr are used to create the corresponding component of Elements

via an update the “base case” call.

Author(s)

Grant Izmirlian <izmirlian@nih.gov>

See Also

Elements, plot.cpd.PwrGSD and Power

Examples

## don
�

t worry--these examples are guaranteed to work,

## its just inconvenient for the package checker

## Not run:

library(PwrGSD)

## In order to set up a compound object of class
�

cpd.PwrGSD
�

## we first construct a base case: a two arm trial randomized in just

## under eight years with a maximum of 20 years of follow-up.

## We compute power at a specific alternative,
�

rhaz
�

, under

## an interim analysis plan with roughly one annual analysis, some

## crossover between intervention and control arms, with Efficacy

## and futility boundaries constructed via the Lan-Demets procedure

## with O
�

Brien-Fleming spending on the hybrid scale. Investigate

## the behavior of three weighted log-rank statistics.

test.example <-

PwrGSD(EfficacyBoundary = LanDemets(alpha = 0.05, spending = ObrienFleming),

FutilityBoundary = LanDemets(alpha = 0.1, spending = ObrienFleming),

RR.Futility = 0.82, sided="<",method="A",accru =7.73, accrat =9818.65,

tlook =c(7.14, 8.14, 9.14, 10.14, 10.64, 11.15, 12.14, 13.14,

14.14, 15.14, 16.14, 17.14, 18.14, 19.14, 20.14),

tcut0 =0:19, h0 =c(rep(3.73e-04, 2), rep(7.45e-04, 3),

rep(1.49e-03, 15)),
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tcut1 =0:19, rhaz =c(1, 0.9125, 0.8688, 0.7814, 0.6941,

0.6943, 0.6072, 0.5202, 0.4332, 0.6520,

0.6524, 0.6527, 0.6530, 0.6534, 0.6537,

0.6541, 0.6544, 0.6547, 0.6551, 0.6554),

tcutc0 =0:19, hc0 =c(rep(1.05e-02, 2), rep(2.09e-02, 3),

rep(4.19e-02, 15)),

tcutc1 =0:19, hc1 =c(rep(1.05e-02, 2), rep(2.09e-02, 3),

rep(4.19e-02, 15)),

tcutd0B =c(0, 13), hd0B =c(0.04777, 0),

tcutd1B =0:6, hd1B =c(0.1109, 0.1381, 0.1485, 0.1637, 0.2446,

0.2497, 0),

noncompliance =crossover, gradual =TRUE,

WtFun =c("FH", "SFH", "Ramp"),

ppar =c(0, 1, 0, 1, 10, 10))

## we will construct a variety of alternate hypotheses relative to the

## base case specified above

rhaz <-

c(1, 0.9125, 0.8688, 0.7814, 0.6941, 0.6943, 0.6072, 0.5202, 0.4332,

0.652, 0.6524, 0.6527, 0.653, 0.6534, 0.6537, 0.6541, 0.6544,

0.6547, 0.6551, 0.6554)

max.effect <- 0.80 + 0.05*(0:8)

n.me <- length(max.effect)

## we will also vary extent of censoring relative to the base case

## specified above

hc <- c(rep(0.0105, 2), rep(0.0209, 3), rep(0.0419, 15))

cens.amt <- 0.75 + 0.25*(0:2)

n.ca <- length(cens.amt)

## we may also wish to compare the Lan-Demets/O
�

Brien-Fleming efficacy

## boundary with a Pocock efficacy boundary

Eff.bound.choice <- 1:2

ebc.nms <- c("LanDemets(alpha=0.05, spending=ObrienFleming)",

"SC(alpha=0.05, crit=0.90)")

n.ec <- length(Eff.bound.choice)

## The following line creates the indexing dataframe,
�

descr
�

, with one

## line for each possible combination of the selection variables we
�

ve

## created.

descr <- as.data.frame(

cbind(Eff.bound.choice=rep(Eff.bound.choice, each=n.ca*n.me),

cens.amt=rep(rep(cens.amt, each=n.me), n.ec),

max.effect=rep(max.effect, n.ec*n.ca)))

descr$Eff.bound.choice <- ebc.nms[descr$Eff.bound.choice]

## Now descr contains one row for each combination of the levels of

## the user defined selection variables,
�

Eff.bound.choice
�

,

##
�

max.effect
�

and
�

cens.amt
�

. Keep in mind that the names and number

## of these variables is arbitrary. Next we create a skeleton
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##
�

cpd.PwrGSD
�

object with a call to the function
�

cpd.PwrGSD
�

with

## argument
�

descr
�

test.example.set <- cpd.PwrGSD(descr)

## Now, the newly created object, of class
�

cpd.PwrGSD
�

, contains

## an element
�

descr
�

, a component
�

date
�

, the date created

## and a component
�

Elements
�

, an empty list of length equal

## to the number of rows in
�

descr
�

. Next we do the computation in

## a loop over the rows of
�

descr
�

.

n.descr <- nrow(descr)

for(k in 1:n.descr){

## First, we copy the original call to the current call,

##
�

Elements[[k]]$call
�

test.example.set$Elements[[k]]$call <- test.example$call

## Use the efficacy boundary choice in the kth row of
�

descr
�

## to set the efficacy boundary choice in the current call

test.example.set$Elements[[k]]$call$EfficacyBoundary <-

parse(text=as.character(descr[k,"Eff.bound.choice"]))[[1]]

## Derive the
�

rhaz
�

defined by the selection variable "max.effect"

## in the kth row of
�

descr
�

and use this to set the
�

rhaz
�

## components of the current call

test.example.set$Elements[[k]]$call$rhaz <-

exp(descr[k,"max.effect"] * log(rhaz))

## Derive the censoring components from the selection variable

## "cens.amt" in the kth row of
�

descr
�

and place that result

## into the current call

test.example.set$Elements[[k]]$call$hc0 <-

test.example.set$Elements[[k]]$call$hc1 <-

exp(descr[k, "cens.amt"] * log(hc))

## Now the current call corresponds exactly to the selection

## variable values in row
�

k
�

of
�

descr
�

. The computation is

## done by calling
�

update
�

test.example.set$Elements[[k]] <-

update(test.example.set$Elements[[k]])

cat(k/n.descr, "\r")

}

## We can create a new
�

cpd.PwrGSD
�

object by subsetting on

## the selection variables in
�

descr
�

:

Elements(test.example.set,

subset=(substring(Eff.bound.choice, 1,9)=="LanDemets" &

max.effect >= 1))
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## or we can plot the results -- see the help under
�

plot.cpd.PwrGSD
�

plot(test.example.set, formula = ~ max.effect | stat * cens.amt,

subset=(substring(Eff.bound.choice, 1,9)=="LanDemets"))

plot(test.example.set, formula = ~ max.effect | stat * cens.amt,

subset=(substring(Eff.bound.choice, 1,2)=="SC"))

## Notice the appearance of the selection variable
�

stat
�

which was

## not defined in the dataset
�

descr
�

.

## Recall that each single "PwrGSD" object can contain results

## for a list of test statistics, as in the example shown here where

## we have results on three statistics per component of
�

Elements
�

.

## For this reason the variable
�

stat
�

can be also be referenced in

## the
�

subset
�

or
�

formula
�

arguments of calls to this
�

plot
�

method,

## and in the
�

subset
�

argument of the function
�

Power
�

shown below.

## The function
�

Power
�

is used to convert the
�

cpd.PwrGSD
�

object

## into a dataframe, stacked by rows of
�

descr
�

and by
�

stat
�

## (there are three statistics being profiled per each component of

##
�

Elements
�

), for generating tables or performing other

## computations.

Power(test.example.set,

subset=(substring(Eff.bound.choice, 1,2)=="SC" & stat %in% c(1,3)))

## End(Not run)

Power Extract the Power results

Description

Extract the Power results from a compound object into a Stacked Dataframe

Usage

Power(object, subset)

Arguments

object an object of class cpd.PwrGSD

subset you may extract a subset via a logical expression in the variables of the
index dataframe, descr

Value

an object of class cpd.PwrGSD. See help on that topic for details.

Author(s)

Grant Izmirlian <izmirlian@nih.gov>
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See Also

cpd.PwrGSD and PwrGSD

Examples

## See the
�

cpd.PwrGSD
�

example

Elements Create a subset of a ”cpd.PwrGSD” object

Description

Create a subset of a cpd.PwrGSD object

Usage

Elements(object, subset, na.action = na.pass)

Arguments

object an object of class cpd.PwrGSD

subset you may extract a subset via a logical expression in the variables of the
index dataframe, descr

na.action a method for handling NA values in the variables in the subset expression.

Value

an object of class cpd.PwrGSD. See help on that topic for details.

Author(s)

Grant Izmirlian <izmirlian@nih.gov>

See Also

cpd.PwrGSD and PwrGSD

Examples

## See the
�

cpd.PwrGSD
�

example
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plot.cpd.PwrGSD Plot Method for cpd.PwrGSD objects

Description

Creates a trellis plot of type II error probability and power at each interim analysis, stacked,
versus an effect size variable, conditioned upon levels of up to two factors.

Usage

## S3 method for class
�

cpd.PwrGSD
�

:

plot(x, formula, subset, na.action,...)

Arguments

x an object of class cpd.PwrGSD

formula a one sided formula of the form ~ effect | f1 or ~ effect | f1 *

f2 where effect, f1, and f2 are variables in the indexing dataframe
descr, or the special variable stat which may be used when there are
multiple test statistics per component of Elements. See the example in
the documentation for cpd.PwrGSD

subset the plot can be applied to a subset of rows of descr via a logical expres-
sion on its variables in combination with the special variable, stat when
applicable.

na.action a na.action method for handling NA values

... other parameters to pass to the R function coplot usually not neccesary

Value

Returns the object, x, invisibly

Note

This processes the cpd.PwrGSD object into a dataframe, stacked on interim looks and then
passes the results to the R function coplot

Author(s)

Abovementioned cpd.PwrGSD processing done by Grant Izmirlian <izmirlian@nih.gov>

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

See Also

cpd.PwrGSD Power and Elements

Examples

## See the example in the
�

cpd.PwrGSD
�

documentation
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GrpSeqBnds Computes efficacy and futility boundaries

Description

This computes efficacy and futility boundaries for interim analysis and sequential designs.
Two sided symmetric efficacy boundaries can be computed by specifying half of the intended
total type I error probability in the argument, Alpha.Efficacy. Otherwise, especially in
the case of efficacy and futility bounds only one sided boundaries are currently computed.
The computation allows for two different time scales–one must be the variance ratio, and
the second can be a user chosen increasing scale beginning with 0 that takes the value 1 at
the conclusion of the trial.

Usage

GrpSeqBnds(EfficacyBoundary = LanDemets(alpha = 0.05, spending = ObrienFleming),

FutilityBoundary = LanDemets(alpha = 0.1, spending = ObrienFleming),

frac, frac.ii = NULL, drift = rep(0, length(frac)))

Arguments

EfficacyBoundary

This specifies the method used to construct the efficacy boundary. The
available choices are

(i) Lan-Demets(alpha=<total type I error>, spending=<spending function>).
The Lan-Demets method is based upon a error probability spending ap-
proach. The spending function can be set to ObrienFleming, Pocock, or
Power(rho), where rho is the the power argument for the power spending
function: rho=3 is roughly equivalent to the O’Brien-Fleming spending
function and smaller powers result in a less conservative spending func-
tion.

(ii) Haybittle(alpha=<total type I error>, b.Haybittle=<user specified

boundary point>). The Haybittle approach is the simplest, which sets
the boundary points equal to b.Haybittle, a user specified value (try 3)
for all analyses except the last, which is calculated so as to result in the
total type I error, set with the argument alpha.

(iii) SC(alpha=<total type I error>, crit=<threshold for conditional

type I error for efficacy stopping>). The stochastic curtailment
method is based upon the conditional probability of type I error given the
current value of the statistic. Under this method, a sequence of boundary
points on the standard normal scale (as are boundary points under all
other methods) is calculated so that the total probability of type I error,
alpha, is maintained. This is done by considering the joint probabilities of
continuing to the current analysis and then exceeding the threshold at the
current analysis. A good value for the threshold value for the conditional
type I error, crit is 0.90 or greater.

(iv) User supplied boundary points in the form c(b1, b2, b3, ..., b_m),
where m is the number of looks.

FutilityBoundary

This specifies the method used to construct the futility boundary. The
available choices are
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(i) Lan-Demets(alpha=<total type II error>, spending=<spending function>).
The Lan-Demets method is based upon a error probability spending ap-
proach. The spending function can be set to ObrienFleming, Pocock, or
Power(rho), where rho is the the power argument for the power spending
function: rho=3 is roughly equivalent to the O’Brien-Fleming spending
function and smaller powers result in a less conservative spending func-
tion.

(ii) Haybittle(alpha=<total type I error>, b.Haybittle=<user specified

boundary point>). The Haybittle approach is the simplest, which sets
the boundary points equal to b.Haybittle, a user specified value (try 3)
for all analyses except the last, which is calculated so as to result in the
total type II error, set with the argument alpha.

(iii) SC(alpha=<total type II error>, crit=<threshold for conditional

type II error for futility stopping>, drift.end=<projected drift

at end of trial>). The stochastic curtailment method is based upon
the conditional probability of type II error given the current value of the
statistic. Under this method, a sequence of boundary points on the stan-
dard normal scale (as are boundary points under all other methods) is
calculated so that the total probability of type II error, alpha, is main-
tained. This is done by considering the joint probabilities of continuing
to the current analysis and then exceeding the threshold at the current
analysis. A good value for the threshold value for the conditional type I
error, crit is 0.90 or greater.

(iv) User supplied boundary points in the form c(b1, b2, b3,..., b_m),
where m is the number of looks.

frac The variance ratio. If the end of trial variance is unknown then normalize
all previous variances by the current variance. In this case you must
specify a second scale that is monotone increasing from 0 to 1 at the end
of the trial. Required.

frac.ii The second information scale that is used for type I and type II error
probability spending. Optional (see above)

drift The drift function of the underlying brownian motion, which is the ex-
pected value under the design alternative of the un-normalized weighted
log-rank statistic, then normalized to have variance one when the variance
ratio equals 1. See the examples below.

Value

An object of class boundaries with components: ”table” ”frac” ”frac.ii” ”drift” ”call”

call The call that produced the returned results.

frac The vector of variance ratios.

frac.ii The vector of information ratios for type I and type II error probabil-
ity spending, which differs from the above if the user sets the argument
frac.ii to a second scale as mentioned above.

drift The drift vector that is required as an argument when futility boundaries
are calculated.

table A matrix with components

frac The information ratio for type I and type II error probability spending.

b.f The calculated futility boundary (if requested).
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alpha.f The type II error probability spent at that analysis (if doing futility
bounds).

cum-alpha.f Cumulative sum of alpha.f (if doing futility bounds).

b.e The calculated efficacy boundary.

alpha.e The type I error probability spent at that analysis.

cum-alpha.e Cumulative sum of alpha.e.

Author(s)

Grant Izmirlian <izmirlian@nih.gov>

References

Gu, M.-G. and Lai, T.-L. “Determination of power and sample size in the design of clinical
trials with failure-time endpoints and interim analyses.” Controlled Clinical Trials 20 (5):
423-438. 1999

Izmirlian, G. “The PwrGSD package.” NCI Div. of Cancer Prevention Technical Report.
2004

Jennison, C. and Turnbull, B.W. (1999) Group Sequential Methods: Applications to Clinical
Trials Chapman & Hall/Crc, Boca Raton FL

Proschan, M.A., Lan, K.K.G., Wittes, J.T. (2006), corr 2nd printing (2008) Statistical
Monitoring of Clinical Trials A Unified Approach Springer Verlag, New York

See Also

PwrGSD

Examples

## NOTE: In an unweighted analysis, the variance ratios and event ratios

## are the same, whereas in a weighted analysis, they are quite different.

##

## For example, in a trial with 7 or so years of accrual and maximum follow-up of 20 years

## using the stopped Fleming-Harrington weights,
�

WtFun
�

= "SFH", with paramaters

##
�

ppar
�

= c(0, 1, 10) we might get the following vector of variance ratios:

frac <- c(0.006995655, 0.01444565, 0.02682463, 0.04641363, 0.0585665,

0.07614902, 0.1135391, 0.168252, 0.2336901, 0.3186155, 0.4164776,

0.5352199, 0.670739, 0.8246061, 1)

## and the following vector of event ratios:

frac.ii <- c(0.1494354, 0.1972965, 0.2625075, 0.3274323, 0.3519184, 0.40231,

0.4673037, 0.5579035, 0.6080742, 0.6982293, 0.7671917, 0.8195019,

0.9045182, 0.9515884, 1)

## and the following drift under a given alternative hypothesis

drift <- c(0.06214444, 0.1061856, 0.1731267, 0.2641265, 0.3105231, 0.3836636,

0.5117394, 0.6918584, 0.8657705, 1.091984, 1.311094, 1.538582,

1.818346, 2.081775, 2.345386)

## JUST ONE SIDED EFFICACY BOUNDARY
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## In this call, we calculate a one sided efficacy boundary at each of 15 analyses

## which will occur at the given (known) variance ratios, and we use the variance

## ratio for type I error probability spending, with a total type I error probabilty

## of 0.05, using the Lan-Demets method with Obrien-Fleming spending (the default).

gsb.all.just.eff <- GrpSeqBnds(frac=frac,

EfficacyBoundary=LanDemets(alpha=0.05, spending=ObrienFleming))

## ONE SIDED EFFICACY AND FUTILTY BOUNDARIES

## In this call, we calculate a one sided efficacy boundary at each of 15 analyses

## which will occur at the given (known) variance ratios, and we use the variance

## ratio for type I and type II error probability spending, with a total type I error

## probabilty of 0.05 and a total type II error probability of 0.10, using the Lan-Demets

## method with Obrien-Fleming spending (the default) for both efficacy and futilty.

gsb.all.eff.fut <- GrpSeqBnds(frac=frac,

EfficacyBoundary=LanDemets(alpha=0.05, spending=ObrienFleming),

FutilityBoundary=LanDemets(alpha=0.10, spending=ObrienFleming),

drift=drift)

## Now suppose that we are performing the 7th interim analysis. We don
�

t know what the variance

## will be at the end of the trial, so we normalize variances of the current and previous

## statistics by the variance of the current statistic. This is equivalent to the following

## length 7 vector of variance ratios:

frac7 <- frac[1:7]/frac[7]

## To proceed under the "unknown variance at end of trial" case, we must use a second

## scale for spending type I and II error probabilty. Unlike the above scale

## which is renormalized at each analysis to have value 1 at the current analysis, the

## alpha spending scale must be monotone increasing and attain the value 1 only at the

## end of the trial. A natural choice is the event ratio, which is known in advance if

## the trial is run until a required number of events is obtained, a so called

## maximum information trial:

frac7.ii <- frac.ii[1:7]

## the first seven values of the drift function

drift7 <- drift[1:7]/frac[7]^0.5

gsb.1st7.eff.fut <- GrpSeqBnds(frac=frac7, frac.ii=frac7.ii,

EfficacyBoundary=LanDemets(alpha=0.05, spending=ObrienFleming),

FutilityBoundary=LanDemets(alpha=0.10, spending=ObrienFleming),

drift=drift7)

## Of course there are other options not covered in these examples but this should get you

## started

CondPower Conditional type I and type II error probabilities given current
value of the test statistic
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Description

Computes conditional type I and type II error probabilities given current value of the
test statistic for monitoring based upon stochastic curtailment. This is now obsolete and
included in the functionality of “GrpSeqBnds” and is here for instructional purposes only.

Usage

CondPower(Z, frac, drift, drift.end, err.I, sided = 1)

Arguments

Z Current value of test statistic standardized to unit variance.

frac Current value of the information fraction (variance fraction).

drift Current value of the drift, i.e. the expected value of the test statistic
normalized to have variance equal to the information fraction. Required
if you want to compute conditional type II error, otherwise enter 0.

drift.end Projected value of the drift at the end of the trial.

err.I Overall (total) type I error probability

sided Enter 1 or 2 for sided-ness of the test.

Value

A named numeric vector containing the two components“Pr.cond.typeIerr”and“Pr.cond.typeIIerr”

Author(s)

Grant Izmirlian <izmirlian@nih.gov>

References

A General Theory on Stochastic Curtailment for Censored Survival Data D. Y. Lin, Q.
Yao, Zhiliang Ying Journal of the American Statistical Association, Vol. 94, No. 446 (Jun.,
1999), pp. 510-521

See Also

GrpSeqBnds

Examples

## None as yet
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SimGSB Verifies the results of ”GrpSeqBnds” via simulation

Description

Verifies the results of GrpSeqBnds via simulation

Usage

SimGSB(object, nsim = 1e+05, ...)

Arguments

object an object of class either boundaries or PwrGSD

nsim number of simulations to do

... if object is of class PwrGSD and there are more than one statistic under
investigation, then you may specify an argument stat. The default value
is 1, meaning the first one.

Value

A tabulation of the results

Author(s)

Grant Izmirlian <izmirlian@nih.gov

See Also

GrpSeqBnds

Examples

## none as yet

as.boundaries Convert a ”PwrGSD” object to a ”boundaries” object

Description

Convert a PwrGSD object to a boundaries object

Usage

as.boundaries(object, ...)

Arguments

object an object of class PwrGSD

... if object is of class PwrGSD and there are more than one statistic under
investigation, then you may specify an argument stat. The default value
is 1, meaning the first one.
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Value

an object of class boundaries. See the documentation for GrpSeqBnds

Author(s)

Grant Izmirlian <izmirlian@nih.gov

See Also

GrpSeqBnds

Examples

## none as yet

wtdlogrank Weighted log-rank test

Description

Computes a two sample weighted log-rank statistic with events weighted according to one
of the available weighting function choices

Usage

wtdlogrank(formula = formula(data), data = parent.frame(), WtFun = c("FH", "SFH", "Ramp"),

param = c(0, 0), sided = c(2, 1), subset, na.action, w = FALSE)

Arguments

formula a formula of the form Surv(Time, Event) ~ arm where arm is a dichoto-
mous variable with values 0 and 1.

data a dataframe

WtFun a selection from the available list: “FH” (Fleming-Harrington), “SFH”
(stopped Fleming-Harrington) or “Ramp”. See param in the following
line.

param Weight function parameters. Length and interpretation depends upon the
selected value of WtFun: If WtFun==\dQuote{FH} then param is a length
2 vector specifying the power of the pooled (across arms) kaplan meier
estimate and its complement. If WtFun==\dQuote{SFH} then param is
a length 3 vector with first two components as in the “FH” case, and
third component the time (in the same units as the time to event) at
which the “FH” weight function is capped off at its current value. If
WtFun==\dQuote{SFH} then param is of length 1 specifying the time (same
units as time to event) at which events begin to get equal weight. The
“Ramp”weight function is a linearly increasing deterministic weight func-
tion which is capped off at 1 at the user specified time.

sided One or Two sided test? Set to 1 or 2

subset Analysis can be applied to a subset of the dataframe based upon a logical
expression in its variables

na.action Method for handling NA values in the covariate, arm

w currently no effect
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Value

An object of class survtest containing components

pn sample size

wttyp internal representation of the WtFun argument

par internal representation of the param argument

time unique times of events accross all arms

nrisk number at risk accross all arms at each event time

nrisk1 Number at risk in the experimental arm at each event time

nevent Number of events accross all arms at each event time

nevent1 Number of events in the experimental arm at each event time

wt Values of the weight function at each event time

pntimes Number of event times

stat The un-normalized weighted log-rank statistic, i.e. the summed weighted
observed minus expected differences at each event time

var Variance estimate for the above

UQt Cumulative sum of increments in the sum resulting in stat above

varQt Cumulative sum of increments in the sum resulting in var above

var1t Cumulative sum of increments in the sum resulting in the variance of an
unweighted version of the statistic

pu0 person units of follow-up time in the control arm

pu1 person units of follow-up time in the intervention arm

n0 events in the control arm

n1 events in the intervention arm

n sample size, same as pn

call the call that created the object

Author(s)

Grant Izmirlian <izmirlian@nih.gov>

References

Harrington, D. P. and Fleming, T. R. (1982). A class of rank test procedures for censored
survival data. Biometrika 69, 553-566.

See Also

IntSurvDiff

Examples

library(PwrGSD)

data(lung)

fit.wlr <- wtdlogrank(Surv(time, I(status==2))~I(sex==2), data=lung, WtFun="SFH", param=c(0,1,300))
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IntSurvDiff Weighted Integrated Survival function test

Description

Computes a two sample weighted integrated survival function log-rank statistic with events
weighted according to one of the available weighting function choices

Usage

IntSurvDiff(formula = formula(data), data = parent.frame(), WtFun = c("FH", "SFH", "Ramp"),

param = c(0, 0), sided = c(2, 1), subset, na.action, w = FALSE)

Arguments

formula a formula of the form Surv(Time, Event) ~ arm where arm is a dichoto-
mous variable with values 0 and 1.

data a dataframe

WtFun a selection from the available list: “FH” (Fleming-Harrington), “SFH”
(stopped Fleming-Harrington) or “Ramp”. See param in the following
line.

param Weight function parameters. Length and interpretation depends upon the
selected value of WtFun: If WtFun==\dQuote{FH} then param is a length
2 vector specifying the power of the pooled (across arms) kaplan meier
estimate and its complement. If WtFun==\dQuote{SFH} then param is
a length 3 vector with first two components as in the “FH” case, and
third component the time (in the same units as the time to event) at
which the “FH” weight function is capped off at its current value. If
WtFun==\dQuote{SFH} then param is of length 1 specifying the time (same
units as time to event) at which events begin to get equal weight. The
“Ramp”weight function is a linearly increasing deterministic weight func-
tion which is capped off at 1 at the user specified time.

sided One or Two sided test? Set to 1 or 2

subset Analysis can be applied to a subset of the dataframe based upon a logical
expression in its variables

na.action Method for handling NA values in the covariate, arm

w currently no effect

Value

An object of class survtest containing components

pn sample size

wttyp internal representation of the WtFun argument

par internal representation of the param argument

time unique times of events accross all arms

nrisk number at risk accross all arms at each event time

nrisk1 Number at risk in the experimental arm at each event time
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nevent Number of events accross all arms at each event time

nevent1 Number of events in the experimental arm at each event time

wt Values of the weight function at each event time

pntimes Number of event times

stat The un-normalized weighted log-rank statistic, i.e. the summed weighted
observed minus expected differences at each event time

var Variance estimate for the above

pu0 person units of follow-up time in the control arm

pu1 person units of follow-up time in the intervention arm

n0 events in the control arm

n1 events in the intervention arm

n sample size, same as pn

call the call that created the object

Author(s)

Grant Izmirlian <izmirlian@nih.gov

References

Weiand S, Gail MH, James BR, James KL. (1989). A family of nonparametric statistics
for comparing diagnostic makers with paired or unpaired data. Biometrika 76, 585-592.

See Also

wtdlogrank

Examples

library(PwrGSD)

data(lung)

fit.isd <- IntSurvDiff(Surv(time, I(status==2))~I(sex==2), data=lung, WtFun="SFH", param=c(0,1,300))

mysurvfit My Survfit

Description

Computes numbers at risk, numbers of events at each unique event time within levels of a
blocking factor

Usage

mysurvfit(formula = formula(data), data = parent.frame(), subset, na.action = na.fail)
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Arguments

formula Should be a formula of the form Surv(ti, ev) ~ block where block

is the blocking factor. It need not be a factor per se but should have
relatively few discrete levels. Sorry, no staggered entry allowed at present

data a dataframe

subset you can subset the analysis via logical expression in variables in the
dataframe

na.action pass a method for handling NA values in block such as na.omit, or
na.fail

Value

A dataframe of 2*NLEV + 1 columns where NLEV is the number of levels of the factor block.

time The sorted vector of unique event times from all blocks

nrisk1 The number at risk in block level 1 at each event time

nevent1 The number of events in block level 1 at each event time

...

nriskNLEV The number at risk in block level NLEV at each event time

neventNLEV The number of events in block level NLEV at each event time

Author(s)

Grant Izmirlian <izmirlian@nih.gov>

Examples

library(PwrGSD)

data(lung)

fit.msf <- mysurvfit(Surv(time, I(status==2)) ~ sex, data=lung)

fit.msf

## Not run:

plot(fit.msf)

## End(Not run)

agghaz Aggregated Hazard

Description

Computes the MLE for the model that assumes piecewise constant hazards on intervals
defined by a grid of points. One applications for example is to calculate monthly hazard
rates given numbers of events, numbers at risk and event times reported to the day. Can
also handle time to event data stratified on a blocking factor.

Usage

agghaz(t.agg, time, nrisk, nevent)
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Arguments

t.agg Vector defining intervals upon which the user wants constant hazard rates.

time Event times, possibly stratified on a blocking factor into multiple columns,
in units that occur in enough numbers per interval specified above. If
there is just a single column then it must be in column form (see example
below).

nrisk Numbers at risk at specified event times

nevent Numbers of events at specified event times

Value

time.a User supplied left-hand endpoints of intervals of hazard constancy

nrisk.a Numbers at risk on specified intervals

nevent.a Numbers of events on specified intervals

Author(s)

Grant Izmirlian <izmirlian@nih.gov>

Examples

library(PwrGSD)

data(lung)

fit.msf <- mysurvfit(Surv(time, I(status==2)) ~ sex, data=lung)

## A single stratum:

with(fit.msf$Table, agghaz(30, time, cbind(nrisk1), cbind(nevent1)))

## Multiple strata--pooled and group 1:

with(fit.msf$Table, agghaz(30, time, cbind(nrisk1+nrisk2,nrisk1), cbind(nevent1+nevent2,nevent1)))

mystack Stack a dataset

Description

Given a dataframe containing one or more variables named with a common prefix, this
function creates a stacked dataset with one set of observed values of the variables (in order
of occurence) per line.

Usage

mystack(object, fu.vars, create.idvar = FALSE)

Arguments

object a dataframe containing one or more variables named with a common prefix

fu.vars a list of the unique prefixes

create.idvar Do you want to add an ID variable with a common value given to all
records resulting from a given input record? Default is FALSE
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Value

A stacked dataframe

Author(s)

Grant Izmirlian <izmirlian@nih.gov>

Examples

## none as yet

CDFOR2LRR Convert CDF Odds Ratio to Logged Relative Risks

Description

A concise (1-5 lines) description of what the function does.

Usage

CDFOR2LRR(tcut, tmax, h0, CDFOR)

Arguments

tcut Describe tcut here

tmax Describe tmax here

h0 Describe h0 here

CDFOR Describe CDFOR here

Details

If necessary, more details than the description above

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

...

Author(s)

Grant Izmirlian <izmirlian@nih.gov

See Also

objects to See Also as help,

Examples

## none as yet
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CY2TOShaz Calender year rates to Study Year Rates

Description

Given the cutpoints at which the hazard is to be constant, the values taken by the calender
year rates and the calender time offset from the start of the trial at which randomization
ended, this function converts to time on study rates, assuming uniform accrual.

Usage

CY2TOShaz(tcut, t.eor, m, verbose = FALSE)

Arguments

tcut Left hand endpoints of intervals on which time on study hazard is taken
to be constant

t.eor Time offsest from the beginning of the trial at which randomization ended

m Annual calender time rates

verbose do you want to see alot of debugging info–defaults to FALSE

Value

hazard = h, table = attr(obj., ”tbl”)

hazard time on study hazard values taken on intervals specified by the argument
tcut

table a table containg the observed and fitted values

Author(s)

Grant Izmirlian <izmirlian@nih.gov>

Examples

## none as yet

CRRtoRR Cumulative-risk ratios to risk ratios

Description

Given a vector of cumulative-risk ratios, computes risk ratios

Usage

CRRtoRR(CRR, DT, h = NULL)
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Arguments

CRR vector of cumulative risk ratios of length m

DT vector of time increments upon which the cumulative ratios represent.
For example if the hazard takes values h1, h2, . . . , hm on the intervals
[t1, t2), [t2, t3), . . . , [tm, tm+1) then DT will be c(t2 − t1, t3 − t2, . . . , tm+1 −
tm)

h The hazard in the reference arm, of length m

Value

The vector of risk ratios at the m time points

Author(s)

Grant Izmirlian <izmirlian@nih.gov>

Examples

## none as yet

RCM2RR Relative cumulative mortality to Relative Risk

Description

Relative cumulative mortality to Relative Risk

Usage

RCM2RR(tlook, tcut.i, h.i, hOth, accru, rcm)

Arguments

tlook

tcut.i

h.i

hOth

accru

rcm

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

Author(s)

Grant Izmirlian <izmirlian@nih.gov>
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See Also

objects to See Also as help,

Examples

## none as yet

RR2RCM Relative risk to Relative Cumulative Mortality

Description

Relative risk to Relative Cumulative Mortality

Usage

RR2RCM(tlook, tcut.i, tcut.ii, h, rr, hOth, accru)

Arguments

tlook Describe tlook here

tcut.i Describe tcut.i here

tcut.ii Describe tcut.ii here

h Describe h here

rr Describe rr here

hOth Describe hOth here

accru Describe accru here

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

Author(s)

Grant Izmirlian <izmirlian@nih.gov

See Also

objects to See Also as help,

Examples

## none as yet



32 lung

lookup Lookup values for a piecewise constant function

Description

Given the values and lefthand endpoints for intervals of constancy, lookup values of the
function at arbitrary values of the independent variable.

Usage

lookup(xgrid, ygrid, x, y0 = 0)

Arguments

xgrid Lefthand endpoints of intervals of constancy

ygrid Values on these intervals, of same length as xgrid

x Input vector of arbitrary independent variables.

y0 Value to be returned for values of x that are smaller than min(xgrid).

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

Author(s)

Grant Izmirlian <izmirlian@nih.gov>

Examples

## none as yet

lung Mayo Clinic Lung Cancer Data

Description

Survival in patients with lung cancer at Mayo Clinic. Performance scores rate how well the
patient can perform usual daily activities.

Usage

data(lung)
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Format

inst: Institution code
time: Survival time in days
status: censoring status 1=censored, 2=dead
age: Age in years
sex: Male=1 Female=2
ph.ecog: ECOG performance score (0=good 5=dead)
ph.karno: Karnofsky performance score (bad=0-good=100) rated by physician
pat.karno: Karnofsky performance score rated by patient
meal.cal: Calories consumed at meals
wt.loss: Weight loss in last six months

Source

Terry Therneau

DX function to do ...

Description

A concise (1-5 lines) description of what the function does.

Usage

DX(x)

Arguments

x Describe x here

Details

If necessary, more details than the description above

Value

Describe the value returned If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

...

Author(s)

Grant Izmirlian <izmirlian@nih.gov
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References

put references to the literature/web site here

Examples

## none as yet

paste The paste operator

Description

A binary operator shortcut for paste(x,y)

Usage

x %,% y

Arguments

x a character string

y a character string

Value

paste(x, y, sep=””)

Author(s)

Grant Izmirlian 〈izmirlian@nih.gov〉

Examples

library(PwrGSD)

"var" %,% (1:10)
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