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This vignette presents the NMF package, which implements a framework for Nonegative Ma-
trix Factorization (NMF) algorithms in R [R Software, 2008]. The objective is to provide an
implementation of some standard algorithms, while allowing the user to easily implement new
methods that integrate into the package’s framework.

Contents

1 Overview 2
1.1 Package features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Nonnegative Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Initialization: seeding methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 How to run NMF algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Use case: Golub dataset 5
2.1 Single run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Performing a single run . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Handling the result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Selecting the features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Specifying the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Custom function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Specifying the seeding method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Named seeding method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Numerical seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Fixed factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Custom function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Multiple runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Sequential runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Parallel computing on multi-core machines . . . . . . . . . . . . . . . . . 13
2.4.3 High Performance Computing on a cluster . . . . . . . . . . . . . . . . . . 14

2.5 Estimating the factorization rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Visualization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Comparing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Advanced usage 21
3.1 Custom algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Using a custom algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Using a custom distance measure . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Handling mixed sign data . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 Specifying the NMF model . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Custom seeding method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Package specific options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1



References 29
The last stable version of the NMF package can be installed from any CRAN repository

mirror, , and loaded with the standard calls:

## Not run

# install.packages('NMF')

library(NMF)

1 Overview

1.1 Package features

This section provides a quick overview of the NMF package’s features. Section 2 provides more
details, as well as sample code on how to actually perform common tasks in NMF analysis.

The NMF package:

� 8 built-in algorithms;

� 4 built-in seeding methods;

� Single interface to perform all aglorithms, and combine them with the seeding methods;

� Provides a common framework to test, compare and develop NMF methods;

� Accept custom algorithms and seeding methods;

� Plotting utility functions to visualize and help in the interpretation of the results;

� Transparent parallel computations;

� Optional layer for bioinformatics based on BioConductor [3];

1.2 Nonnegative Matrix Factorization

This section gives a formal definition for Nonnegative Matrix Factorization problems, and defines
the notations used throughout the vignette.

Let X be a n × p non-negative matrix, (i.e with xij ≥ 0, denoted X ≥ 0), and r > 0 an
integer. Non-negative Matrix Factorization (NMF) consists in finding an approximation

X ≈WH , (1)

where W, H are n×r and r×p non-negative matrices, respectively. In practice, the factorization
rank r is often chosen such that r � min(n, p). The objective behind this choice is to summarize
and split the information containned in X into r factors: the columns of W .

Depending on the application field, these factors are given different names: basis images,
metagenes, source signals. In this vignette we equivalenty and alternatively use the terms
basis matrix or metagenes to refer to matrix W , and mixture coefficient matrix and metagene
expression profiles to refer to matrix H.

The main approach to NMF is to estimate matrices W and H as a local minimum:

min
W,H≥0

[D(X,WH) + R(W, H)]︸ ︷︷ ︸
=F (W,H)

(2)

where

2

http://cran.r-project.org


� D is a loss function that measures the quality of the approximation. Common loss func-
tions are based on either the Frobenius distance

D : A, B 7→ Tr(ABt) =
1
2

∑
ij

(aij − bij)2,

or the Kullback-Leibler divergence.

D : A, B 7→
∑
i,j

aij log
aij

bij
− aij + bij .

� R is an optional regularization function, defined to enforce desirable properties on matrices
W and H, such as smoothness or sparsity [A. Cichocki et al., 2004].

1.3 Algorithms

NMF algorithms generally solve problem (2) iteratively, by building a sequence of matrices
(Wk, Hk) that reduces at each step the value of the objective function F . Beside some variations
in the specification of F , they also differ in the optimization techniques that are used to compute
the updates for (Wk, Hk).

For reviews on NMF algorithms see [Berry et al., 2006, Chu et al., 2004] and references
therein.

The NMF package implements a number of published algorithms, and provides a general
framework to implement other ones.

The built-in algorithms are listed or retrieved with function nmfAlgorithm. A given algo-
rithm is retrieved by its name (a character key), that is partially matched against the list of
available algorithms:

# list all available algorithms

nmfAlgorithm()

[1] "brunet" "lee" "lnmf" "nsNMF" "offset" "pe-nmf" "snmf/l" "snmf/r"

# retrieve a specific algorithm: 'brunet'

nmfAlgorithm('brunet')

<object of class: NMFStrategyIterative >

name: brunet

objective: 'KL'

NMF model: NMFstd

<Iterative schema:>

Update : 'nmf.update.brunet'

Stop : 'nmf.stop.consensus'

WrapNMF : ''

# partial match is also fine

identical(nmfAlgorithm('br'), nmfAlgorithm('brunet'))

[1] TRUE

1.4 Initialization: seeding methods

NMF algorithms need to be initialized with a seed (i.e. a value for W0 and/or H0
1), from which

to start the iteration process. Because there is no global minimization algorithm, and due to
1Some algorithms only need one matrix factor (either W or H) to be initialized. See for example the

SNMF/R(L) algorithm of Kim and Park [Kim and Park, 2007].
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the problem’s high dimensionality, the choice of the initialization is in fact very important to
ensure meaningful results.

The more common seeding method is to use a random starting point, where the entries of W
and/or H are drawn from a uniform distribution, usually within the same range as the target
matrix’s entries. This method is very simple to implement. However, a major drawback is that
to achieve stability it requires to perform multiple runs, each with a different starting point.
This significantly increases the computation time needed to obtain the desired factorization.

To tackle this problem, some methods have been proposed so as to compute a reasonnable
starting point from the target matrix itself. The objective is to produce deterministic algorithms
that need to run only once, still giving meaningful results.

For a review on some existing NMF initializations see [Albright et al., 2006] and references
therein.

The NMF package implements a number of already published seeding methods, and provides
a general framework to implement other ones.

The built-in seeding methods are listed or retrieved with function nmfSeed. A given seeding
method is retrieved by its name (a character key) that is partially matched against the list of
available seeding methods:

# list all available seeding methods

nmfSeed()

[1] "ica" "nndsvd" "none" "random"

# retrieve a specific method: 'nndsvd'

nmfSeed('nndsvd')

<object of class: NMFSeed >

name: nndsvd

method: <function>

# partial match is also fine

identical(nmfSeed('nn'), nmfSeed('nndsvd'))

[1] TRUE

1.5 How to run NMF algorithms

Method nmf provides a single interface to run NMF algorithms. It can directly perform NMF on
object of class matrix or data.frame and ExpressionSet – if the Biobase package is installed.
The interface has four main parameters:

nmf(x, rank, method, seed, ...)

x is the target matrix, data.frame or ExpressionSet 2

rank is the factorization rank, i.e. the number of columns in matrix W .

method is the algorithm used to estimate the factorization. The default algorithm is given
by the package specific option ’default.algorithm’, which defaults to ’brunet’ on
installation [Brunet et˜al., 2004].

seed is the seeding method used to compute the starting point. The default method is given by
the package specific option ’default.seed’, which defaults to ’random’ on initialization
(see method ?rnmf for details on its implementation).

See also ?nmf for details on the interface and extra parameters.
2ExpressionSet is the base class for handling microarray data in BioConductor, and is defined in the Biobase

package.
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2 Use case: Golub dataset

We illustrate the functionalities and the usage of the NMF package, by analysing the – now stan-
dard – Golub dataset on leukemia. It was used in several papers on NMF [Brunet et˜al., 2004, 2]
and is included in the NMF package’s data, wrapped into an ExpressionSet object. For perfor-
mance reason we use here only the first 200 genes:

data(esGolub)

esGolub

ExpressionSet (storageMode: lockedEnvironment)

assayData: 5000 features, 38 samples

element names: exprs

phenoData

sampleNames: ALL_19769_B-cell, ALL_23953_B-cell, ..., AML_7 (38 total)

varLabels and varMetadata description:

Sample: Sample name from the file ALL_AML_data.txt

ALL.AML: ALL/AML status

Cell: Cell type

featureData

featureNames: M12759_at, U46006_s_at, ..., D86976_at (5000 total)

fvarLabels and fvarMetadata description:

Description: Short description of the gene

experimentData: use 'experimentData(object)'

Annotation:

esGolub <- esGolub[1:50,]

Note: To run this example, the Biobase package from BioConductor is required.

2.1 Single run

2.1.1 Performing a single run

To run the default NMF algorithm on data esGolub with a factorization rank of 3, we call:

# default NMF algorithm

res <- nmf(esGolub, 3)

Here we did not specify either the algorithm or the seeding method, so that the computation
is done using the default algorithm and is seeded by the default seeding methods. These defaults
are set in the package specific options ’default.algorithm’ and ’default.seed’ respectively.

See also sections 2.2 and 2.3 for how to explicitly specify the algorithm and/or the seeding
method.

2.1.2 Handling the result

The result of a single NMF run is an object of class NMFfit, that holds both the fitted NMF
model and data about the run:

res
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<Object of class: NMFfit >

# Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 38

# Details:

algorithm: brunet

seed: random

distance metric: 'KL'

residuals: 178467.1

Iterations: 640

Timing:

user system elapsed

0.690 0.000 0.684

The fitted model can be retrieved via method fit, which returns an object of class NMF:

fit(res)

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 38

The estimated target matrix can be retrieved via the generic method fitted, which returns
a – generally big – matrix:

V.hat <- fitted(res)

dim(V.hat)

[1] 50 38

Quality and performance measures about the factorization are computed by method sum-
mary:

summary(res)

rank sparseness.basis sparseness.coef niter

3.000000e+00 6.829776e-01 5.775976e-01 6.400000e+02

time residuals

6.900000e-01 1.784671e+05

# More quality measures are computed, if the target matrix is provided:

summary(res, target=esGolub)

rank sparseness.basis sparseness.coef rss

3.000000e+00 6.829776e-01 5.775976e-01 5.016224e+08

evar niter time residuals

8.631025e-01 6.400000e+02 6.900000e-01 1.784671e+05

If there is some prior knowledge of classes present in the data, some other measures about
the unsupervised clustering’s performance are computed (purity, entropy, . . . ). Here we use the

6



phenotypic variable Cell found in the Golub dataset, that gives the samples’ cell-types (it is a
factor with levels: T-cell, B-cell or NA):

summary(res, class=esGolub$Cell)

rank sparseness.basis sparseness.coef purity

3.000000e+00 6.829776e-01 5.775976e-01 7.105263e-01

entropy niter time residuals

5.849030e-01 6.400000e+02 6.900000e-01 1.784671e+05

The basis matrix (i.e. matrix W or the metagenes) and the mixture coefficient matrix (i.e
matrix H or the metagene expression profiles) are retrieved using methods basis and coef
respectively:

# get matrix W

w <- basis(res)

dim(w)

[1] 50 3

# get matrix H

h <- coef(res)

dim(h)

[1] 3 38

If one wants to keep only part of the factorization, one can directly subset on the NMF object
on features and samples (separately or simultaneously):

# keep only the first 100 features TODO: put that to 100

res[1:10,]

<Object of class: NMFfit >

# Model:

<Object of class: NMFstd >

features: 10

basis/rank: 3

samples: 38

# Details:

algorithm: brunet

seed: random

distance metric: 'KL'

residuals: 178467.1

Iterations: 640

Timing:

user system elapsed

0.690 0.000 0.684

# keep only the first 10 samples

res[,1:10]

<Object of class: NMFfit >

# Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3
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samples: 10

# Details:

algorithm: brunet

seed: random

distance metric: 'KL'

residuals: 178467.1

Iterations: 640

Timing:

user system elapsed

0.690 0.000 0.684

# subset both features and samples: TODO: put that to 100

dim(res[1:20,1:10])

[1] 20 10 3

2.1.3 Selecting the features

In general NMF matrix factors are sparse, so that the metagenes can usually be characterized
by a relatively small set of genes. Those are determined based on their relative contribution to
each metagene.

Kim and Park [Kim and Park, 2007] defined a procedure to extract the relevant genes for
each metagene, based on a gene scoring schema.

The NMF package implements this procedure in methods featureScore and extractFea-
ture:

# only compute the scores

s <- featureScore(res)

summary(s)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.995e-05 3.849e-02 1.185e-01 2.130e-01 2.829e-01 9.997e-01

# compute the scores and characterize each metagene

s <- extractFeatures(res)

str(s)

List of 3

$ 1: int 30

$ 2: int [1:2] 2 39

$ 3: int [1:2] 1 43

- attr(*, "threshold")= num 0.505

2.2 Specifying the algorithm

subsubsectionNamed algorithm The NMF package provides a number of built-in algorithms, that
are listed or retrieved by function nmfAlgorithm. Each algorithm is identified by a unique
name. The following algorithms are currently implemented:

nmfAlgorithm()

[1] "brunet" "lee" "lnmf" "nsNMF" "offset" "pe-nmf" "snmf/l" "snmf/r"
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The algorithm used to compute the NMF is specified in the third argument (method). For ex-
ample, to use the Lee and Seung [Lee and Seung, 2000] NMF algorithm based on the Frobenius
euclidean norm, one make the following call:

# using Lee and Seung's algorithm

res <- nmf(esGolub, 3, 'lee')

res

<Object of class: NMFfit >

# Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 38

# Details:

algorithm: lee

seed: random

distance metric: 'euclidean'

residuals: 183823790

Iterations: 570

Timing:

user system elapsed

0.770 0.000 0.763

To use the Nonsmooth NMF algorithm from [Pascual-Montano et˜al., 2006]:

# using the Nonsmooth NMF algorithm with parameter theta=0.7

res <- nmf(esGolub, 3, 'ns', theta=0.7)

res

<Object of class: NMFfit >

# Model:

<Object of class: NMFns >

features: 50

basis/rank: 3

samples: 38

theta: 0.7

# Details:

algorithm: nsNMF

seed: random

distance metric: 'KL'

residuals: 224297.2

Iterations: 820

Timing:

user system elapsed

1.090 0.000 1.116

Or to use the PE-NMF algorithm from [5]:

# using the PE-NMF algorithm with parameters alpha=0.01, beta=1

res <- nmf(esGolub, 3, 'pe', alpha=0.01, beta=1)

res

9



<Object of class: NMFfit >

# Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 38

# Details:

algorithm: pe-nmf

seed: random

distance metric: <function>

residuals: 52.44378

parameters:

$alpha

[1] 0.01

$beta

[1] 1

Iterations: 2000

Timing:

user system elapsed

1.400 0.000 1.392

2.2.1 Custom function

The NMF package provides the user the possibility to define his own algorithm, and benefit from
all the functionalities available in the NMF framework. There are only few contraints on the
way the custom algorithm must be defined. See the details in Section˜3.1.1.

2.3 Specifying the seeding method

The seeding method used to compute the starting point for the chosen algorithm can be set via
argument seed. Note that if the seeding method is deterministic there is no need to perform
multiple run anymore.

2.3.1 Named seeding method

Similarly to the algorithms, the nmfSeed function can be used to list or retrieve the built-in
seeding methods.

The following seeding methods are currently implemented:

nmfSeed()

[1] "ica" "nndsvd" "none" "random"

To use a specific method to seed the computation of a factorization, one can provide the
name of the seeding method:

res <- nmf(esGolub, 3, seed='nndsvd')

res

<Object of class: NMFfit >

# Model:
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<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 38

# Details:

algorithm: brunet

seed: nndsvd

distance metric: 'KL'

residuals: 173800.5

Iterations: 1130

Timing:

user system elapsed

1.110 0.000 1.106

2.3.2 Numerical seed

Another possibility, useful when comparing methods or testing the reproducibility of the results,
is to set the seed of the random generator by passing a numerical value in argument seed. This
will call the function set.seed from package base before using the ’random’ seeding method:

res <- nmf(esGolub, 3, seed=123456)

res

<Object of class: NMFfit >

# Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 38

# Details:

algorithm: brunet

seed: 123456

distance metric: 'KL'

residuals: 178467.1

Iterations: 640

Timing:

user system elapsed

0.63 0.00 0.63

2.3.3 Fixed factorization

Yet another option is to completely specify the initial factorization, by passing values for ma-
trices W and H:

n <- nrow(esGolub); p <- ncol(esGolub)

res <- nmf(esGolub, 3, seed=NULL, W=matrix(0.5, n, 3), H=matrix(0.3, 3, p))

res

<Object of class: NMFfit >

# Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3
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samples: 38

# Details:

algorithm: brunet

seed: none

distance metric: 'KL'

residuals: 300070.8

Iterations: 420

Timing:

user system elapsed

0.410 0.000 0.408

Important: in this case, argument seed must absolutely be set to NULL, otherwise the model
instanciated with matrices W and H would only be used as a template, and reset passing it to
the default seeding method.

Two alternative ways of doing this would be to pass matrices W and H through argument
model, or a NMF model to argument seed:

res <- nmf(esGolub, 3, seed=NULL

, model=list(W=matrix(0.5, n, 3), H=matrix(0.3, 3, p)))

# or

res <- nmf(esGolub, 3, seed=newNMF(W=matrix(0.5, n, 3), H=matrix(0.3, 3, p)))

2.3.4 Custom function

The NMF package provides the user the possibility to define his own seeding method, and benefit
from all the functionalities available in the NMF framework. There are only few contraints on
the way the custom seeding method must be defined. See the details in Section˜3.2.

2.4 Multiple runs

When the seeding method is stochastic, multiple runs are usually required to achieve stability
or a resonable result. This can be done by setting argument nrun to the desired value. For
performance reason we use nrun=5 here, but a typical choice would lies between 100 and 200:

2.4.1 Sequential runs

res.multirun <- nmf(esGolub, 3, nrun=5)

res.multirun

<Object of class: NMFSet >

method: brunet

runs: 5

fits: 1

Timing:

user system elapsed

2.140 2.130 2.531

Avg. timing:

user system elapsed

0.4280 0.4260 0.5062
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As we can see from the results above, the returned object contains only one fit, from the 5
runs that were perfomed. Indeed the default behaviour is to only keep the factorization that
achieves the lowest approximation error (i.e. the lowest objective value). Even during the
computation, only the current best factorization is kept. This limits the memory requirement
of performing multiple runs, which in turn allows to perform more runs.

However if one is interested in keeping the results from all the runs, one can set the option
keep.all=TRUE:

# explicitly setting the option

nmf(esGolub, 3, nrun=5, .options=list(keep.all=TRUE))

# or using letter code 'k' in argument .options

nmf(esGolub, 3, nrun=5, .options='k')

Note that keeping all the results may be memory consuming. For example, a 3-rank NMF
model3 for the Golub gene expression matrix (5000× 38) takes a bit less that 350Kb.

2.4.2 Parallel computing on multi-core machines

To speed-up the analysis whenever possible, the NMF package implements transparent parallel
computations when run on multi-core machines. It uses the foreach framework developed
by REvolution Computing [foreach, 2009], together with the related doMC parallel backend
[doMC, 2009] – based on the multicore package – to make use of all the CPUs available
on the system. Each core will simultaneously perform part of the runs. Therefore, the required
memory increases linearly with the number of cores used. When only the best run is of interest,
the memory usage is optimized by using shared memory and mutex objects from the bigmemory
package, to only keep the current best factorization.

IMPORTANT NOTE: because it uses the multicore package, parallel computation over
multi-cores is available only for Unix and Mac machines.

The default parallel backend used by the nmf function is defined by the package specific
option ’parallel.backend’, which defaults to ’mc’ – for doMC. The backend can also be set
on runtime via argument ’.pbackend’.

There are two other runtime options, parallel and parallel.required, that can be passed
via argument .options, to control the behaviour of the parallel computation (see below).

A call for multiple runs will be computed in parallel if one of the following condition is
satisfied:

� call with option ’P’ or parallel.required set to TRUE (note the upper case in ’P’). In
this case, if for any reason the computation cannot be run in parallel (packages require-
ments, OS, ...), then an error is thrown. Use this mode to force the parallel execution.

� call with option ’p’ or parallel set to TRUE. In this case if something prevents a parallel
computation, the factorizations will be done sequentially.

� a valid parallel backend is specified in argument .pbackend. For the moment can either
be the string ’mc’ or a single numeric value specifying the number of core to use. Unless
option ’P’ is specified, it will run using option ’p’ (i.e. try-parallel mode).

3i.e. the result of a single NMF run with rank equal 3.
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Examples

# default call will try to run in parallel using all the cores

# => will be in parallel if all the requirements are satisfied

nmf(esGolub, 3, nrun=10, .opt='v')

Runs: 1 2 3 4 5 6 7 8 9 10 ... DONE

<Object of class: NMFSet >

method: brunet

runs: 10

fits: 1

Timing:

user system elapsed

6.070 6.050 4.576

Avg. timing:

user system elapsed

0.6070 0.6050 0.4576

# specifying the number of cores to use

nmf(esGolub, 3, nrun=10, .opt='v', .pbackend=2)

# force parallel computation: use option 'P'

nmf(esGolub, 3, nrun=10, .opt='vP')

# force sequential computation: use option '-p'

nmf(esGolub, 3, nrun=10, .opt='v-p')

# or use the SEQ backend: .pbackend=NULL or 'seq'

nmf(esGolub, 3, nrun=10, .opt='vp', .backend=NULL)

2.4.3 High Performance Computing on a cluster

To achieve further speed-up, the computation can be run on an HPC cluster. In our tests we
used the doMPI package to perform 100 factorizations using hybrid parallel computation on 4
quadri-core machines – i.e. making use of all the cores computation on each machine.

The scripts used to launch and run the factorizations can be found in file mpi.R in the
package’s examples directory:

file.show(file.system('examples/mpi.R', package='NMF'))

# and

file.show(file.system('examples/mpi_run.sh', package='NMF'))

The script file mpi.R contains some extra code to log and trace the computation. Reducing
it to the essential gives the following piece of code:

## 0. Create and register an MPI cluster

library(doMPI)

cl <- startMPIcluster()

registerDoMPI(cl)

library(NMF)
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## 1. Schedule the runs accross the workers

nrun <- 100;

nworker <- getDoParWorkers();

ntasks <- rep(round(nrun/nworker), nworker)

# allocate remainder runs

if( (remain <- nrun %% nworker) > 0 )

ntasks[1:remain] <- ntasks[1:remain] + 1

## 2. Send the jobs to the workers using a foreach loop

t <- system.time({

res <- foreach(i=1:getDoParWorkers(), n=ntasks,

.packages = c('NMF', 'doMC', 'Biobase')) %dopar% {

# each worker run its factorizations in parallel

#Note: only the best result is kept

data(esGolub)

nmf(esGolub, 3, 'brunet', nrun=n, .opt='p')

}

})

## 3. reduce the result and save it in a file

res <- NMF:::join(res, runtime=t, .merge=TRUE)

save(res, file='result.RData')

## 4. Shutdown the cluster and quit MPI

closeCluster(cl)

mpi.quit()

Passing the following shell script to qsub should launch the execution on a Sun Grid Engine
HPC cluster, with OpenMPI. Some adaptation might be necessary for other queueing systems.

#!/bin/bash

#$ -cwd

#$ -q opteron.q

#$ -pe mpich 5

echo "Got $NSLOTS slots. $TMP/machines"

orterun -v -n $NSLOTS -hostfile $TMP/machines R --slave -f mpi.R

2.5 Estimating the factorization rank

A critical parameter in NMF is the factorization rank r. It defines the number of metagenes
used to approximate the target matrix. Given a NMF method and the target matrix, a common
way of deciding on r is to try different values, compute some quality measure of the results, and
choose the best value according to this quality criteria.

The NMF package provides functions to run this procedure and plot the quality measures.
Note that this can be lenghty. Whereas the standard NMF procedure usually involves several
hundreds of random initialization, performing 30-50 runs is considered sufficient to get a robust
estimate of the factorization rank [Brunet et˜al., 2004, 4]. For performance reason, we perform
here only 10 runs for each value of the rank.

# perform 10 runs for each value of r in range 2:6

estim.r <- nmfEstimateRank(esGolub, range=2:6, nrun=10, seed=123456)
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Figure 1: Estimation of the rank: Quality measures computed from 10 runs for each value of r

The result is a S3 object of class NMF.rank, that contains a data.frame with the quality
measures in column, and the values of r in row. It also contains a list of the consensus matrix
for each value of r.

All the measures can be plotted at once by the following call, the result is shown in Fig-
ure˜2.5:

plot(estim.r)

Several approaches have been proposed to choose the optimal value of r. For example,
[Brunet et˜al., 2004] proposed to take the first value of r for which the cophenetic coefficient
starts decreasing, [4] suggested to choose the first value where the RSS curve presents an inflec-
tion point, and [1] considered the smallest value at which the decrease in the RSS is lower than
the decrease of the RSS obtained from random data.

The former approach may be useful to prevent or detect overfitting as it take into account
the results for unstructured data. However it requires to compute the quality measure(s) for the
random data. The NMF package provides a function that shuffles the original data, by permuting
the rows of each column, using each time a different permutation. The estimation procedure can
then be repeated on the randomized data, and the the “random” measures can be conveniently
added to the plot for comparison (see Figure˜):
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Figure 2: Estimation of the rank: Comparison of the quality measures with those obtained from
randomized data

# shuffle original data

V.random <- randomize(esGolub)

# estimate quality measures from the shuffled data

estim.r.random <- nmfEstimateRank(V.random, range=2:6, nrun=10, seed=123456)

# plot measures on same graph

plot(estim.r, ref=estim.r.random)

2.6 Visualization methods

Error track

If the NMF computation is performed with error tracking enabled – using argument .options
– the trajectory of the objective value can be plot with method errorPlot (see Figure 3):

res <- nmf(esGolub, 3, .options='t')

# or alternatively:

# res <- nmf(esGolub, 3, .options=list(track=TRUE))

errorPlot(res)
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Figure 3: Error track for a single NMF run

Heatmaps

Method metaHeatmap provides an easy way to vizualize the resulting metagenes, metaprofiles
and, in the case of multiple runs, the consensus matrix. It produces pre-configured heatmaps
based on function heatmap.2 from package gplots. Examples of those heatmaps are shown in
figures˜4, 5, 6 and 7.

The following – default – call plots the metaprofiles matrix (see result Figure˜4):

# default is to plot metaprofiles

metaHeatmap(res)

The metagenes matrix can be plotted specifying the second argument what (see result Fig-
ure˜5). We use argument filter to select only the genes that are specific to each metagene.
With filter=TRUE, the selection method is the one described in [Kim and Park, 2007].

metaHeatmap(res, what='features', filter=TRUE)
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Figure 4: Heatmap of metaprofiles

In the case of multiple runs method metaHeatmap plots the consensus matrix, i.e. the average
connecticity matrix accross the runs (see results Figures˜6 and 7 for a consensus matrix obtained
with 100 runs of Brunet’s algorithm on Golub dataset):

# The cell type is used to label rows and columns

metaHeatmap(res.multirun, labRow=esGolub$Cell, labCol=esGolub$Cell)

2.7 Comparing algorithms

To compare the results from different algorithms, one can pass a list of methods in argument
method. To enable a fair comparison, a deterministic seeding method should also be used. Here
we fix the random seed to 123456.

res.multi.method <- nmf(esGolub, 3, list('brunet', 'lee', 'ns'), seed=123456)

Passing the result to method compare produces a data.frame that contains summary mea-
sures for each method. Again, prior knowledge of classes may be used to compute clustering
quality measures:
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Figure 5: Heatmap of metagenes

compare(res.multi.method)

method seed metric rank sparseness.basis sparseness.coef niter

brunet brunet 123456 'KL' 3 0.6829776 0.5775976 640

nsNMF nsNMF 123456 'KL' 3 0.7573038 0.7371265 660

lee lee 123456 'euclidean' 3 0.7545134 0.4020160 840

time residuals

brunet 0.67 178467.1

nsNMF 0.91 202162.5

lee 1.27 183815371.8

# If prior knowledge of classes is available

compare(res.multi.method, class=esGolub$Cell)

method seed metric rank sparseness.basis sparseness.coef

brunet brunet 123456 'KL' 3 0.6829776 0.5775976

nsNMF nsNMF 123456 'KL' 3 0.7573038 0.7371265

lee lee 123456 'euclidean' 3 0.7545134 0.4020160

purity entropy niter time residuals

brunet 0.7105263 0.5849030 640 0.67 178467.1

nsNMF 0.6842105 0.5563767 660 0.91 202162.5

lee 0.6052632 0.7668766 840 1.27 183815371.8
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Figure 6: Heatmap of consensus matrix

When the computation is performed with error tracking enabled, an error plot is produced
by method errorplot (see figure˜8):

res <- nmf(esGolub, 3, list('brunet', 'lee', 'ns'), seed=123456, .options='t')

errorPlot(res)

3 Advanced usage

We developped the NMF package with the objective to facilitate the integration of new NMF
methods, trying to impose only few requirements on their implementations. All the built-in
algorithms and seeding methods are implemented as strategies that are called from within the
main interface method nmf.

The user can define new strategies and those are handled in exactly the same way as the
built-in ones, benefiting from the same utility functions to interpret the results and assess their
performance.
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Figure 7: Heatmap of consensus matrix (100 runs of Brunet’s algorithm on Golub dataset)

3.1 Custom algorithm

3.1.1 Using a custom algorithm

To define a strategy, the user needs to provide a function that implements the complete
algotihm. It must be of the form:

my.algorithm <- function(x, seed, param.1, param.2){

# do something with starting point

# ...

# return updated starting point

return(seed)

}

Where:

target is a matrix;

start is an object that inherits from class NMF. This S4 class is used to handle NMF models
(matrices W and H, objective function, etc. . . );
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Figure 8: Error tracks comparing methods ’brunet’, ’lee’, ’nsNMF’

param.1, param.2 are extra parameters specific to the algorithms;

The function must return an object that inherits from class NMF
For example:

my.algorithm <- function(x, seed, scale.factor=1){

# do something with starting point

# ...

# for example:

# 1. compute principal components

pca <- prcomp(t(x), retx=TRUE)

# 2. use the absolute values of the first PCs for the metagenes

# Note: the factorization rank is stored in object 'start'

factorization.rank <- nbasis(seed)

metagenes(fit(seed)) <- abs(pca$rotation[,1:factorization.rank])

# use the rotated matrix to get the mixture coefficient

# use a scaling factor (just to illustrate the use of extra parameters)

metaprofiles(fit(seed)) <- t(abs(pca$x[,1:factorization.rank])) / scale.factor

# return updated data
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return(seed)

}

To use the new method within the package framework, one pass my.algorithm to main
interface nmf via argument method. Here we apply the algorithm to some matrix V randomly
generated:

n <- 50; r <- 3; p <- 20

V <-syntheticNMF(n, r, p, noise=TRUE)

nmf(V, 3, my.algorithm, scale.factor=10)

<Object of class: NMFfit >

# Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 20

# Details:

algorithm: NMF.algo.3ca88ecf

seed: random

distance metric: 'euclidean'

residuals: 698.4492

parameters:

$scale.factor

[1] 10

Timing:

user system elapsed

0.000 0.000 0.005

3.1.2 Using a custom distance measure

The default distance measure is based on the euclidean distance. If the algorithm is based on an-
other distance measure, this one can be specified in argument objective, either as a character
string corresponding to a built-in objective function, or a custom function definition:

# based on Kullbach-Leibler divergence

nmf(V, 3, my.algorithm, scale.factor=10, objective='KL')

<Object of class: NMFfit >

# Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 20

# Details:

algorithm: NMF.algo.c058df5

seed: random

distance metric: 'KL'

residuals: 1730.667
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parameters:

$scale.factor

[1] 10

Timing:

user system elapsed

0.000 0.000 0.003

# based on custom distance metric

nmf(V, 3, my.algorithm, scale.factor=10

, objective=function(target, x){

( sum( (target-fitted(x))^4 ) )^{1/4}

}

)

<Object of class: NMFfit >

# Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 20

# Details:

algorithm: NMF.algo.3102bbe2

seed: random

distance metric: <function>

residuals: 9.397075

parameters:

$scale.factor

[1] 10

Timing:

user system elapsed

0.010 0.000 0.002

3.1.3 Handling mixed sign data

Some NMF algorithms work with relaxed constraints, where the input data and one of the matrix
factors are allowed to have negative entries (eg. semi-NMF). One can plug such algorithms into
the framework defined by package NMF, by specifying argument mixed=TRUE. The default value
for argument mixed is FALSE, so that method nmf throws an error if applied to a matrix with
some negative entries. Note that the sign of the factors is not checked, so that one can always
return factors with negative entries, independently of the value of argument mixed. Here we
reuse the previously defined custom algorithm4:

# put some negative input data

V.neg <- V; V.neg[1,] <- -1;

# this generates an error

err <- try( nmf(V.neg, 3, my.algorithm, scale.factor=10) )

err

[1] "Error in .local(x, rank, method, ...) : \n Input matrix x contains some negative entries.\n"

attr(,"class")

[1] "try-error"

4As it is defined here, the custom algorithm still returns nonnegative factors, which would not be desirable
in a real example.
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# this runs my.algorithm without error

nmf(V.neg, 3, my.algorithm, mixed=TRUE, scale.factor=10)

<Object of class: NMFfit >

# Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 20

# Details:

algorithm: NMF.algo.3a966cd0

seed: random

distance metric: 'euclidean'

residuals: 704.3985

parameters:

$scale.factor

[1] 10

Timing:

user system elapsed

0.010 0.000 0.003

3.1.4 Specifying the NMF model

If not specified in the call, the NMF model that is used is the standard one, as defined in
equation (1). However, some NMF algorithms have different underlying models, such as non-
smooth NMF [Pascual-Montano et˜al., 2006] which uses an extra matrix factor that introduces
an extra parameter, and change the way the target matrix is approximated.

The NMF models are defined as S4 classes that extends class NMF. All the available models
can be retireved using the nmf.models() function:

nmf.models()

[1] "NMFstd" "NMFOffset" "NMFns"

One can specify the NMF model to use with a custom algorithm, using argument model.
Here we first adapt a bit the custom algorithm, to justify and illustrate the use of a different
model. We use model NMFOffset [Badea L., 2008], that includes an offset to take into account
genes that have constant expression levels accross the samples:

my.algorithm.offset <- function(x, seed, scale.factor=1){

# do something with starting point

# ...

# for example:

# 1. compute principal components

pca <- prcomp(t(x), retx=TRUE)

# retrieve the model being estimated

data.model <- fit(seed)

# 2. use the absolute values of the first PCs for the metagenes

# Note: the factorization rank is stored in object 'start'
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factorization.rank <- nbasis(data.model)

metagenes(data.model) <- abs(pca$rotation[,1:factorization.rank])

# use the rotated matrix to get the mixture coefficient

# use a scaling factor (just to illustrate the use of extra parameters)

metaprofiles(data.model) <- t(abs(pca$x[,1:factorization.rank])) / scale.factor

# 3. Compute the offset as the mean expression

data.model@offset <- rowMeans(x)

# return updated data

fit(seed) <- data.model

seed

}

Then run the algorithm specifying it needs model NMFOffset:

# run custom algorithm with NMF model with offset

nmf(V, 3, my.algorithm.offset, model='NMFOffset', scale.factor=10)

<Object of class: NMFfit >

# Model:

<Object of class: NMFOffset >

features: 50

basis/rank: 3

samples: 20

offset: [ 0.5363089 1.246813 0.5796618 1.591864 0.9041704 ... ]

# Details:

algorithm: NMF.algo.f3f09d8

seed: random

distance metric: 'euclidean'

residuals: 376.9509

parameters:

$scale.factor

[1] 10

Timing:

user system elapsed

0.000 0.000 0.005

3.2 Custom seeding method

The user can also define custom seeding method as a function of the form:

# start: object of class NMF

# target: the target matrix

my.seeding.method <- function(model, target){

# use only the largest columns for W

w.cols <- apply(target, 2, function(x) sqrt(sum(x^2)))

metagenes(model) <- target[,order(w.cols)[1:nbasis(model)]]
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# initialize H randomly

metaprofiles(model) <- matrix(runif(nbasis(model)*ncol(target))

, nbasis(model), ncol(target))

# return updated object

return(model)

}

To use the new seeding method:

nmf(V, 3, 'snmf/r', seed=my.seeding.method)

<Object of class: NMFfit >

# Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 20

# Details:

algorithm: snmf/r

seed: NMF.seed.43d3bcd4

distance metric: 'euclidean'

residuals: 152.3523

Iterations: 75

Timing:

user system elapsed

0.320 0.000 0.321

3.3 Package specific options

The package specific options can be retieved or changed using the nmf.getOption and nmf.options
functions. These behave similarly as the getOption and nmf.options base functions:

#show default algorithm and seeding method

nmf.options('default.algorithm', 'default.seed')

$default.algorithm

[1] "brunet"

$default.seed

[1] "random"

# retrieve a single option

nmf.getOption('default.seed')

[1] "random"

# All options

nmf.options()

$default.algorithm

[1] "brunet"

$track.interval

[1] 30
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$error.track

[1] FALSE

$default.seed

[1] "random"

$parallel.backend

[1] "mc"

$verbose

[1] FALSE

$debug

[1] FALSE
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