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This vignette presents package NMF, which implements a framework for Nonegative Matrix
Factorization (NMF) algorithms in R [R Software, 2008]. The objective is to provide implemen-
tation for some standard algorithms, while allowing the user to easily implement new methods
readily integrated into the package’s framework.

The last stable version of the NMF package can be installed from any CRAN repository
mirror via:

> install.packages('NMF')
It loads with the following standard call:

> library (NMF)
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1 Overview of Nonnegative Matrix Factorization

Let X be a n X p non-negative matrix, (i.e with x;; > 0, denoted X > 0), and r > 0 an integer.
Non-negative Matrix Factorization (NMF) counsists in finding an approximation X ~ WH,
where W, H are n X r and r X p non-negative matrices, respectively. In practice, the factorization
rank 7 is often chosen such that r < min(n, p). The objective behind this choice is to summarize
and split the information containned in X into r factors: the columns of W. Depending on
the application field, these factors are given different names: basis images, metagenes, source
signals.
The main approach to NMF is to estimate matrices W and H as a local minimum:

Jmin  [D(X,WH) + ROV, 1) 1)

=F(W,H)
where

e D is a loss function that measures the quality of the approximation. Common loss func-
tions are based on either the Frobenius distance

D:A B~ Tr(AB") = %Z(aij - bz‘j)2»
ij

or the generalized Kullback-Leibler divergence.

i
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e R is an optional regularization function, defined to enforce desirable properties on matrices
W and H, such as smoothness or sparsity | ].

1.1  Algorithms

Algorithms to solve problem (1) iteratively build a sequence of matrices (W}, Hy) that reduces
at each step the value of the objective function F' They differ in the optimization techniques
used to compute updates for (Wy, Hy).

For reviews on NMF algorithms see | , ] and references
therein.

Package NMF implements a number of published algorithms, and provides a general frame-
work to implement other ones.

Implemented NMF algorithms are listed or retrieved with function nmfAlgorithm. Specific
algorithms are retrieved by their name (a character key) that is partially matched against the
list of available algorithms:

> # list all available algorithms
> nmfAlgorithm()

[1] "brunet" "lee" "1nmf" "nsNMF" "offset" "snmf/1" "snmf/r"

> # retrieve a specific algorithm: 'brunet'
> nmfAlgorithm('brunet')

<object of class: NMFStrategylterative >

name: brunet
objective: 'KL'
NMF model: NMFstd



<Iterative schema:>

Preprocess : ''

Update : 'nmf.update.brunet'
Stop : 'nmf.stop.consensus'
WrapNMF : "'

> # partial match is also fine
> identical (nmfAlgorithm('br'), nmfAlgorithm('brunet'))
[1] TRUE

1.2 Initialization: seeding methods

NMF algorithms need to be initialized with a seed (i.e. a value for Wy and/or Hy'), from which
to start the iteration process. Because there is no global minimization algorithm, and due to
the problem’s high dimensionality, the choice of the initialization is in fact very important to
ensure meaningful results.

The more common seeding method is to start with a random guess, where the entries of W
and/or H are drawn from a uniform distribution. This method is very simple to implement.
However, a major drawback is that to achieve stability it requires to perform multiple runs,
each with a different starting point. This significantly increases NMF algorithms’ running time.

To tackle this problem, some methods have been proposed so as to compute a starting point
from the target matrix itself. The objective is to produce deterministic algorithms that need to
run only once, still giving meaningful results.

For a review on some existing NMF initializations see | | and references
therein.

Package NMF implements a number of standard seeding methods, and provides a general
framework to implement other ones.

Implemented seeding methods are listed or retrieved with function nmfSeed. Specific seeding
methods are retrieved by their name (a character key) that is partially matched against the
list of available seeding methods:

> # list all available seeding methods
> nmfSeed ()

[1] "ica" "nndsvd" "none" "random"

> # retrieve a specific method: 'nndsvd'
> nmfSeed('nndsvd')

<object of class: NMFSeed >
name: nndsvd
method: <function>

> # partial match is also fine
> identical (nmfSeed('nn'), nmfSeed('nndsvd'))

[1] TRUE

1.3 How to run NMF algorithms

Method nmf provides a single interface to run NMF algorithms. It can perform NMF on object
of class matrix, data.frame and ExpressionSet. The interface takes four main parameters:

1Some algorithms only need one matrix factor (either W or H) to be initialized. See for example SNMF
algorithms.



nmf (x, rank, method=’brunet’, seed=’random’, ...)

e x is the target matrix — data.frame or ExpressionSet
e rank is the factorization rank

e method is the algorithm used to estimate the factorization. Default algorithm is from

[ J

e seed is the seeding method used to compute the starting point. Default is to use a random
initialization.

See ?nmf for more details on the interface and extra parameters.

2 Use case: Golub dataset

The Golub dataset on leukemia used in | ] is included in package NMF. It is
wrapped into an ExpressionSet object and can be loaded as follows. For performance reason
we only use the first 1000 genes:

> data(esGolub)
> esGolub
ExpressionSet (storageMode: lockedEnvironment)
assayData: 5000 features, 38 samples
element names: exprs
phenoData
sampleNames: ALL_19769_B-cell, ALL_23953_B-cell, ..., AML_7 (38 total)
varLabels and varMetadata description:
Sample: Sample name from the file ALL_AML_data.txt
ALL.AML: ALL/AML status
Cell: Cell type
featureData
featureNames: M12759_at, U46006_s_at, ..., D86976_at (5000 total)
fvarLabels and fvarMetadata description:
Description: Short description of the gene
experimentData: use 'experimentData(object)'
Annotation:

> esGolub <- esGolub[1:1000,]

2.1 Single run

The following code runs the default NMF algorithm on data esGolub with factorization rank
equal to 3:

> # using default algorithm
> res <- nmf (esGolub, 3)
> res
<0Object of class: NMFfit >
# Model:
<0Object of class: NMFstd >



genes: 1000

basis: 3
coefficients: 38
# Details:
algorithm: brunet
seed: random

distance metric: 'KL'
residuals: 2844567
Timing:

user system elapsed
2.740 0.048 2.809

Quality and performance measures about the factorization are computed by method sum-
mary:

> summary(res)

rank  sparseness time residuals
3.000000e+00 6.731665e-01 2.740000e+00 2.844567e+06

If there is some prior knowledge of classes present in the data, extra measures about the
unsupervised clustering’s performance are be computed. Here we use the phenotypic variable
Cell that gives the samples’ cell-types (T-cell, B-cell or NA):

> summary(res, class=esGolub$Cell)
rank  sparseness purity entropy time residuals
3.000000e+00 6.731665e-01 9.210526e-01 1.543928e-01 2.740000e+00 2.844567e+06

2.2 Specifying the algorithm

The algorithm used to compute the NMF is specified in the third argument (method). For
example, to use the Nonsmooth NMF algorithm from | ]:

> # using the Nonsmooth NMF algorithm with parameter theta=0.7
> res <- nmf(esGolub, 3, 'ns', theta=0.7)
> res
<0Object of class: NMFfit >
# Model:
<0Object of class: NMFns >
genes: 1000
basis: 3
coefficients: 38
theta: 0.7
# Details:
algorithm: nsNMF
seed: random
distance metric: 'KL'
residuals: 3314535



Timing:
user system elapsed
5.860 0.020 5.921

2.3 Multiple runs

The default seeding method being random seeding, multiple runs are required to achieve stabil-
ity. This can be done by setting argument nrun to the desired value. For performance reason
we use nrun=5 here, but a reasonnable choice would typically lies between 100 and 200:

> res.multirun <- nmf(esGolub, 3, nrun=5)
> res.multirun

<0Object of class: NMFSet >

method: brunet

runs: 5
fits: 1
Timing:

user system elapsed
12.6525 0.416 13.035
Avg. timing:
user system elapsed
2.5050 0.0832 2.6070

As we can see from the results above, the returned object contains only one fit, from the
5 runs that was perfomed. The default behaviour is to only keep the factorization achieving
the lowest approximation error (i.e. the lowest objective value). However if one is interested in
keeping the results from all the runs, one can set the option keep.all=TRUE:

> # using letter code 'k' in argument .options

> nmf (esGolub, 3, nrun=5, .options='k')

> # or explicitly setting the option

> nmf (esGolub, 3, nrun=5, .options=list(keep.all=TRUE))

2.4 Specifying the seeding method

The seeding method used to compute the starting point for the chosen algorithm can be set via
argument seed. Note that if the seeding method is deterministic there is no need to perform
multiple run anymore:

> res <- nmf(esGolub, 3, seed='nndsvd')

> res
<0Object of class: NMFfit >
# Model:
<0bject of class: NMFstd >
genes: 1000
basis: 3

coefficients: 38



# Details:
algorithm: brunet
seed: nndsvd

distance metric: 'KL'
residuals: 2848368
Timing:

user system elapsed
5.660 0.144 5.982

Another possibility, useful when comparing methods, is to set the seed of the random gener-
ator passing a numerical value in argument seed. In this case, function set.seed from package
base is called before using seeding method ’random’:

> res <- nmf (esGolub, 3, seed=123456)
> res
<0Object of class: NMFfit >
# Model:
<0bject of class: NMFstd >
genes: 1000
basis: 3
coefficients: 38
# Details:
algorithm: brunet
seed: 123456

distance metric: 'KL'
residuals: 2844567
Timing:

user system elapsed
2.500 0.056 2.606

2.5 Visualization methods
Error track

If the NMF computation is performed with error tracking enabled — using argument .options
— the trajectory of the objective value can be plot with method errorPlot (see Figure 1):

res <- nmf (esGolub, 3, .options='t')

# or alternatively:

# res <- nmf(esGolub, 3, .options=list(track=TRUE))
errorPlot (res)

Heatmaps

Method metaHeatmap provides an easy way to vizualize the resulting metagenes, metaprofiles
and, in the case of multiple runs, the consensus matrix. It produces pre-configured heatmaps
based on function heatmap.2 from package gplots. Examples of those heatmaps are shown in
figures 2, 3, 4 and 5.
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Figure 1: Error track for a single NMF run
The following — default — call plots the metaprofiles matrix (see result Figure 2):

> # default is to plot metaprofiles
> metaHeatmap (res)

The metagenes matrix can be plotted specifying the second argument what (see result Fig-
ure 3). We use argument filter to select only the genes that are specific to each metagene.
With £ilter=TRUE, the selection method is the one described in | ].

> metaHeatmap(res, what='features', filter=TRUE)

In the case of multiple runs method metaHeatmap plots the consensus matrix, i.e. the average
connecticity matrix accross the runs (see results Figures 4 and 5 for a consensus matrix obtained
with 100 runs of Brunet’s algorithm on Golub dataset):

> # The cell type is used to label rows and columns
> metaHeatmap(res.multirun, labRow=esGolub$Cell, labCol=esGolub$Cell)
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Figure 2: Heatmap of metaprofiles

2.6 Comparing algorithms

To compare the results from different algorithms, one can pass a list of methods in argument
method. To enable a fair comparison, a deterministic seeding method should also be used. Here
we fix the random seed to 123456.

> res.multi.method <- nmf(esGolub, 3, list('brunet', 'lee', 'ns'), seed=123456)

Passing the result to method compare produces a data.frame that contains summary mea-
sures for each method. Again, prior knowledge of classes may be used to compute clustering
quality measures:

> compare(res.multi.method)

method  seed metric rank sparseness time residuals
brunet brunet 123456 "KL' 3 0.6731665 2.360 2844567
nsNMF  nsNMF 123456 "KL' 3 0.7054783 4.632 3056230
lee lee 123456 'euclidean' 3 0.7013150 3.237 5850132039

> # If prior knowledge of classes is available
> compare(res.multi.method, class=esGolub$Cell)



Color Key

‘%a“dgjjnﬁfﬁaf Feature view

oo .
O s [Basis components]
Value
Figure 3: Heatmap of metagenes
method  seed metric rank sparseness purity entropy time

brunet brunet 123456 "KL' 3 0.6731665 0.9210526 0.1543928 2.360
nsNMF  nsNMF 123456 "KL' 3 0.7054783 0.8947368 0.2368421 4.632
lee lee 123456 'euclidean' 3 0.7013150 0.7631579 0.4139661 3.237

residuals
brunet 2844567
nsNMF 3056230

lee 5850132039

When the computation is performed with error tracking enabled, an error plot is produced
by method errorplot (see figure 6):

> res <- nmf(esGolub, 3, list('brunet', 'lee', 'ns'), seed=123456, .options='t"')
> errorPlot(res)

10
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Figure 4: Heatmap of consensus matrix

3 Advanced usage

We developped package NMF with the objective to allow the integration of new NMF methods,
trying to impose only few requirements on their implementations. All the built-in algorithms
and seeding methods are implemented as strategies that are called from within the main interface
method nmf.

The user can define new strategies and those are handled in exactly the same way as the
built-in ones, benefiting from the same utility functions to interpret the results and assess their
performance.

3.1 Custom algorithm

To define a strategy, the user needs to provide a function that implements the complete
algotihm. It must be of the form:

> my.algorithm <- function(target, start, param.l, param.2){
+ # do something with starting point

+ # ...
+
+

# return updated starting point

11
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Figure 5: Heatmap of consensus matrix (100 runs of Brunet’s algorithm on Golub dataset)

+ return(start)

+ }

Where:

target is a matrix;

start is an object that inherits from class NMF. This S4 class is used to handle NMF models
(matrices W and H, objective function, etc...);

param.l, param.2 are extra parameters specific to the algorithms;

The function must return an object that inherits from class NMF
For example:

> my.algorithm <- function(target, start, scale.factor=1){
+ # do something with starting point

+ #

+ # for example:

+ # 1. compute principal components

12
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Figure 6: Error tracks comparing methods ’brunet’, ’lee’, ’nsNMF’

pca <- prcomp(t(target), retx=TRUE)

# 2. use the absolute values of the first PC for the metagenes

# Note: the factorization rank is stored in object 'start'

factorization.rank <- nbasis(start)

metagenes(fit(start)) <- abs(pca$rotation[,l:factorization.rank])

# use the rotated matrix to get the mixture coefficient

# use a scaling factor (just to illustrate the use of extra parameters)
metaprofiles(fit(start)) <- t(abs(pca$x[,l:factorization.rank])) / scale.factor

# return updated data
return(start)

+ 4+ + + + + + + + + + +

To use the new method within the package framework, one pass my.algorithm to main
interface nmf via argument method. Here we apply the algorithm to some matrix V randomly
generated:

>n <- 50; r <- 3; p <- 20
> V <-syntheticNMF(n, r, p, noise=TRUE)

13



> nmf (V, 3, my.algorithm, scale.factor=10)

<0Object of class: NMFfit >

# Model:

<0Object of class: NMFstd >

genes: 50

basis: 3

coefficients: 20

# Details:

algorithm: NMF.algo.54e49eb4d

seed: random

distance metric: 'euclidean'
residuals: 715.1727
parameters:

$scale.factor

[1] 10

Timing:

user system elapsed
0.004 0.000 0.004

The default distance measure is based on the euclidean distance. If the algorithm is based on
another distance measure, this one can be specified in argumentobjective, either as a character
string corresponding to a built-in objective function, or a custom function definition:

> # based on Kullbach-Leibler divergence
> nmf (V, 3, my.algorithm, scale.factor=10, objective='KL')
<0Object of class: NMFfit >
# Model:
<0Object of class: NMFstd >
genes: 50
basis: 3
coefficients: 20
# Details:
algorithm: NMF.algo.2ca88611
seed: random

distance metric: 'KL'
residuals: 1638.295
parameters:
$scale.factor

[1] 10

Timing:

user system elapsed

0.004 0.000 0.002
> # based on custom distance metric
> nmf (V, 3, my.algorithm, scale.factor=10
+ , objective=function(target, x){
+ ( sum( (target-fitted(x))~4 ) )~{1/4}
+ }
+

)

14



3.2

The user can also define custom seeding method as a function of the form:

>
>

> my.seeding.method <- function(model, target){

+

+ + + + + + o+ o+

<0Object of class: NMFfit >

# Model:
<0Object of class: NMFstd >
genes: 50
basis: 3
coefficients: 20

# Details:
algorithm: NMF.algo.2901d82
seed: random
distance metric: <function>
residuals: 10.20292
parameters:
$scale.factor
[1] 10

Timing:

user system elapsed
0.004 0.000 0.003

Custom seeding method

# start: object of class NMF
# target: the target matrix

# use only the largest columns for W
w.cols <- apply(target, 2, function(x) sqrt(sum(x~2)))
metagenes (model) <- target[,order(w.cols) [1:nbasis(model)]]

# initialize H randomly
metaprofiles(model) <- matrix(runif(nbasis(model)*ncol(target))
, nbasis(model), ncol(target))

# return updated object
return(model)

To use the new seeding method:

> nmf(V, 3, 'snmf/r', seed=my.seeding.method)

<0Object of class: NMFfit >
# Model:
<0Object of class: NMFstd >
genes: 50
basis: 3
coefficients: 20
# Details:

15



algorithm: snmf/r
seed: NMF.seed.le7ff521
distance metric: 'euclidean'
residuals: 155.4585
Iterations: 90
Timing:
user system elapsed
0.620 0.000 0.626
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