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Underlying Theory of the Test

Sources

This test of multivariate normality is based on the univariate work of Csérgo and Seshadri (1970, 1971) and
on my doctoral dissertation (Fairweather 1973). As indicated in the titles of these articles, the test is based
on a characterization; that is, it is based on a feature of the normal distribution that is unique to it among
all (nondegenerate) multivariate distributions. The MVNtestchar package implements this test.

Transformations and the Characterization

Consider a set of p x 1 random vectors of full rank X;, i =1, .. ., 4(p+1). Let Y; = Xo; — X1, i=1,. . .,
2(p+1).

The Y; have a distribution that is centered at 0. In fact, all of the odd moments of the Y; are zero regardless
of the underlying distribution of the X;. Now, define

p+1
Wi=) VY
i=1

and

2(p+1)
W= ) vy
i=p+2

where Y’; is the transpose of Y;. The W; are then independently distributed, symmetric matrices of rank p.

Let T = W; + Wy and let S = T-Y/2 W, T-Y/2 | S is a positive definite (symmetric) matrix of rank p
regardless of the underlying distribution of the Xj.

It is shown in the Appendix that S is distributed uniformly on its support region if and only if the X; are
multivariate normal. It is this characteristic that underlies the test.

The support region for S

The p x p symmetric matrix S is equivalent to a set of p(p+1)/2 random variables V1, Vg, ... , V,, Vig,
Vi3, .., Vip, ..., Vpo1,p. This is easily seen if we lay out the V; and the Vj; in the matrix format, showing
only the upper triangle:



vi Vvi2 Vi3 ... Vip

V2 V23 ... V2p
V3 ... V3p
Vp

V; through V,, are the diagonal elements of the matrix and V2 ... V1, are the off-diagonal elements.

By construction, the diagonal elements of S all lie in the interval [0,1]. Because S is positive definite, the
off-diagonal elements all lie in the interval [-1,1]. The support region of S is within the hyperrectangle

R, = [0,1]° x [-1,1]™ ,where m = p(p-1)/2.

The support region is difficult to envision in higher dimensions. For p = 2, the matrix S has two diagonal
elements and one off-diagonal element: Vi, V,, and V5. The support region of S is then that part of the
3-dimensional rectangle bounded by R o = [0,1] x [0,1] x [-1,1] that satisfies V1 Vo — V215 > 0. By stepping
[Vi2| up from 0 to 1.0, the following graph shows the support region (shaded) as a function of V; and V.
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The package contains four functions that produce rotatable graphs depicting this hyperrectangle and the
positive definite region within it. The function support.p2( ) shows the entire positive definite region. The
functions slice.v1( ) and slice.v12( ) show slices through the region for fixed values of V; and Via, respectively.
Finally, mazvi2( ) shows the maximum value of Vi3 as a function of V; and V.

The latest values of the rotational parameters are output in list format upon exit from the graphics functions
to facilitate return to that rotation, if desired. To capture these, assign the function to a new variable.



Implementing the Test

The function testunknown(z, pvector, k) implements the test of multivariate normality of the n x p matrix, x.
x can be either a matrix or an array. The input parameters will be discussed more fully below.

The matrix x is assumed to be a sample of n observations on the unknown p-variate distribution. Here, n
= 4r(p+1) for r a positive integer. The transformations involve exact numbers of random variables, and
testunknown( ) will discard observations at random to ensure that this condition holds.

testunknown( ) divides the sample into r groups of 4(p+1) observations and performs the transformations
described above on each of the r sets independently. This results in positive definite matrices Sy, ..., S;
distributed independently as described above regardless of the distribution of the X;.

S1, ..., S; are distributed uniformly on the positive definite subspace of the hyperrectangle
R, = [0,1]° x [-1,1]™ if and only if x is a sample from a multivariate normal distribution.

testunknown( ) performs a chisquare goodness of fit test by filling this hyperrectangle with minicubes and
counting the number of S; in each minicube. As implied, the minicubes are hypercubical (equal length in
every dimension).

The input variable pvector is essentially a check to ensure that the matrix is oriented properly; it should
equal the value of p taken from x directly. If this test fails, the function aborts. The parameter k defines the
number of cuts to be made on each edge of the hyperrectangle. The minicubes will then be of size

1/kx 1/kx ... x 1/k. There are p(p+1)/2 terms in this set. It is possible to undertake various research
projects with this test function, and an array with mobs layers is allowed in order to facilitate this possibility.
We have in mind simulations with mobs repetitions. If x is an array with 1 layer, x should have dimension

nxpxl.

Relating Sample Size to the Size of Minicubes

Any goodness of fit test, univariate or multivariate, must consider the relationship of the sample size to the
number of “bins” into which the support is subdivided. The sample size is always finite and the samples are
continuous, so that creating too many bins will always result in exactly 1 observation per occupied bin. With
too many bins, there can be no distinction here between null and alternative distributions.

In our case, the number of minicubes (“bins”) into which the hypercube is divided is

N(k,p) = kP (2k)™, where m = p(p-1)/2. For p=2, m = 1 and N(k,p) = 2k3. Similarly, N(k,3) = 8k% and
N(k,4) = 64k'0 .

Minicubes are entirely, partially, or not at all within the positive definite region of the hyperrectangle.
Whenever k=1, the region of the hyperrectangle representing the diagonal elements of the matrix is not
subdivided and the region representing the off-diagonal elements is only subdivided into the positive and
negative values of each element. In all cases with k=1 each minicube is partially within the positive definite
region. We can calculate analytically the fraction of the hyperrectangle that is within the positive definite
region only for p=2. This fraction is 4/9. For p>2, the calculation appears to be intractable.

The number of minicubes clearly grows rapidly with the dimensionality of the sample. However, the support
of the S; is only a subset of the hyperrectangle, namely the positive definite region. The following table shows
the number of minicubes in the hyperrectangle, N(k,p), the ratio of the positive definite region to the overall
volume of the hyperrectangle, and the approximate number of minicubes in the positive definite region, as a
function of k and p < 4.



Table 1. The number of minicubes, N(k,p) in the positive definite region of the hyperrectangle,
as a function of the number of cuts, k and the dimensionality, p of the sample.

p=2 p=3 p=4
k N(k,p) ratio pos def k N(k,p) ratio pos def k N(k,p) ratio pos def
R R )
1 2 16 44 .4 7 2 512 14.8 76 2 65536 0.6 344
2 5 250 44.4 111 5 125000 7.2 8948 3 3779136 0.5 20410
3 10 2000 44.4 889 6 373248 7.8 29213 4 67108864 0.5 335544
4 15 6750 44.4 3000 7 941192 7.8 73688 5 6.3e+08 0.5 3e+06
5 20 16000 44.4 7110 9 4251528 7.8 331619 6 3.9e+09 0.5 2e+07

N(k,p) is easily calculated in each case. For p=2, the calculated ratio was multiplied by the number of
minicubes to get the approximate number of positive definite minicubes. For p > 2, rows 1 through 4 of
Table 1 were calculated as follows: The hyperrectangle was filled with minicubes as described above. A
minicube was defined to be within the positive definite region if a point very near the center of the minicube
represented a positive definite matrix. The last row of the table is an extrapolation obtained by applying the
asymptotic ratio to the calculated value of N(k,p).

For each value of p the ratio of minicubes in the positive definite region to the overall number in the
hyperrectangle is fairly constant. For p > 2, this ratio is a very small part of the overall volume of the
hyperrectangle. Nevertheless, Table 1 shows that a very large number of “bins” in the support region will
result if k is set too large.

In performing the characterization transformations, the number of vector samples is substantially reduced to
form the positive definite matrices that are tested for uniformity of distribution. Table 1 refers to the number
of bins into which the matrices S; will fall. 4(p+1) vectors X; will result in a single matrix S;. This multiplier
is 12 for p=2, is 16 for p=3, and is 20 for p=4. Assuming that the expected number of S; in each bin should
be 3 or 5, Table 2 gives the number of X; that should be in the sample for each value of k.

Table 2. Relationship of sample size n to number of cuts k, as a function of the expected
number E of S; per minicube.

1 2 256 427 2 3648 6080 2 20640 34400
2 5 4000 6666 5 429504 715840 3 1224600 2041000
3 10 31997 53328 6 1402224 2337040 4 20132640 33554400
4 15 107989 179982 7 3537024 5395040 5 1.87e+08 3.12e+08
5 20 255974 426624 9 15917712 26529520 6 1.19e+09 1.98e+09

From Table 2, we conclude that if we wish to test a trivariate sample for normality, and we have about 715,000
vector observations, we should set k to be no more than 5 to ensure that there are about E=5 observations
per minicube.



Example Databases Included in MV Ntestchar Package
In order to gain experience with the test function, the package contains four sample databases:
e unknown.Np2
e unknown.Np4
e unknown.Bp2
e unknown.Bp4

In these names N symbolizes a sample of normal random vectors and B symbolizes a sample of modified
Bernoulli random vectors. The number in the name indicates the vector rank. True Bernoulli random variables
cause the test program to crash because of colinearity, so a normal variable with extremely small variance
was added to each one to make the Bernoulli vectors continuous random variables. Finally, unknown.Bp2 is a
matrix; the others are arrays with a single layer.
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