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Abstract

LaplacesDemon, usually referred to as Laplace’s Demon, is a contributed R package
for Bayesian inference, and is freely available on the Comprehensive R Archive Network
(CRAN). Laplace’s Demon allows Laplace Approximation and the choice of numerous
MCMC algorithms to update a Bayesian model according to a user-specified model func-
tion. The user-specified model function enables Bayesian inference for any model form,
provided the user specifies, or approximates, the likelihood. Laplace’s Demon also at-
tempts to assist the user by creating and offering R code, based on a previous model
update, that can be copy/pasted and executed. Posterior predictive checks and many
other features are included as well. Laplace’s Demon seeks to be generalizable and user-
friendly to Bayesians, especially Laplacians.
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Bayesian inference is named after Reverend Thomas Bayes (1702-1761) for developing Bayes’
theorem, which was published posthumously after his death (Bayes and Price 1763). This
was the first instance of what would be called inverse probability1.

Unaware of Bayes, Pierre-Simon Laplace (1749-1827) independently developed Bayes’ theo-
rem and first published his version in 1774, eleven years after Bayes, in one of Laplace’s first
major works (Laplace 1774, p. 366–367). In 1812, Laplace introduced a host of new ideas
and mathematical techniques in his book, Theorie Analytique des Probabilites, (Laplace 1812).
Before Laplace, probability theory was solely concerned with developing a mathematical anal-
ysis of games of chance. Laplace applied probabilistic ideas to many scientific and practical
problems. Although Laplace is not the father of probability, Laplace may be considered the

1‘Inverse probability’ refers to assigning a probability distribution to an unobserved variable, and is in
essence, probability in the opposite direction of the usual sense. Bayes’ theorem has been referred to as “the
principle of inverse probability”. Terminology has changed, and the term ‘Bayesian probability’ has displaced
‘inverse probability’. The adjective “Bayesian” was introduced by R. A. Fisher as a derogatory term.
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father of the field of probability.

In 1814, Laplace published his “Essai Philosophique sur les Probabilites”, which introduced a
mathematical system of inductive reasoning based on probability (Laplace 1814). In it, the
Bayesian interpretation of probability was developed independently by Laplace, much more
thoroughly than Bayes, so some“Bayesians”refer to Bayesian inference as Laplacian inference.
This is a translation of a quote in the introduction to this work:

“We may regard the present state of the universe as the effect of its past and
the cause of its future. An intellect which at a certain moment would know all
forces that set nature in motion, and all positions of all items of which nature is
composed, if this intellect were also vast enough to submit these data to analysis,
it would embrace in a single formula the movements of the greatest bodies of
the universe and those of the tiniest atom; for such an intellect nothing would
be uncertain and the future just like the past would be present before its eyes”
(Laplace 1814).

The ‘intellect’ has been referred to by future biographers as Laplace’s Demon. In this quote,
Laplace expresses his philosophical belief in hard determinism and his wish for a computational
machine that is capable of estimating the universe.

This article is an introduction to an R (R Development Core Team 2012) package called
LaplacesDemon (Hall 2012), which was designed without consideration for hard determinism,
but instead with a lofty goal toward facilitating high-dimensional Bayesian (or Laplacian)
inference2, posing as its own intellect that is capable of impressive analysis. The LaplacesDe-
mon R package is often referred to as Laplace’s Demon. This article guides the user through
installation, data, specifying a model, initial values, updating Laplace’s Demon, summarizing
and plotting output, posterior predictive checks, general suggestions, discusses independence
and observability, high performance computing, covers details of the algorithm, software com-
parisons, and discusses large data sets and speed.

Herein, it is assumed that the reader has basic familiarity with Bayesian inference, numerical
approximation, and R. If any part of this assumption is violated, then suggested sources in-
clude the vignette entitled “Bayesian Inference” that comes with the LaplacesDemon package,
Gelman, Carlin, Stern, and Rubin (2004), and Crawley (2007).

1. Installation

To obtain Laplace’s Demon, simply open R and install the LaplacesDemon package from a
CRAN mirror:

> install.packages("LaplacesDemon")

A goal in developing Laplace’s Demon was to minimize reliance on other packages or software.
Therefore, the usual dep=TRUE argument does not need to be used, because LaplacesDemon
does not depend on anything other than base R. Once installed, simply use the library or

2Even though the LaplacesDemon package is dedicated to Bayesian inference, frequentist inference may be
used instead with the same functions by omitting the prior distributions and maximizing the likelihood.
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require function in R to activate the LaplacesDemon package and load its functions into
memory:

> library(LaplacesDemon)

2. Data

Laplace’s Demon requires data that is specified in a list3. As an example, there is a data set
called demonsnacks that is provided with the LaplacesDemon package. For no good reason,
other than to provide an example, the log of Calories will be fit as an additive, linear
function of some of the remaining variables. Since an intercept will be included, a vector of
1’s is inserted into design matrix X.

> data(demonsnacks)

> N <- nrow(demonsnacks)

> y <- log(demonsnacks$Calories)

> X <- cbind(1, as.matrix(demonsnacks[,c(7,8,10)]))

> J <- ncol(X)

> for (j in 2:J) {X[,j] <- CenterScale(X[,j])}

> mon.names <- c("LP","sigma")

> parm.names <- as.parm.names(list(beta=rep(0,J), log.sigma=0))

> MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)

There are J=4 independent variables (including the intercept), one for each column in design
matrix X. However, there are 5 parameters, since the residual variance, σ2, must be included
as well. The reason why it is called log.sigma will be explained later. Each parameter must
have a name specified in the vector parm.names, and parameter names must be included with
the data. This is using a function called as.parm.names. Also, note that each predictor has
been centered and scaled, as per Gelman (2008). Laplace’s Demon provides a CenterScale

function to center and scale predictors4.

Laplace’s Demon will consider using Laplace Approximation, and part of this consideration
includes determining the sample size. The user must specify the number of observations in
the data as either a scalar n or N. If these are not found by the LaplaceApproximation or
LaplacesDemon functions, then it will attempt to determine sample size as the number of
rows in y or Y.

3. Specifying a Model

Laplace’s Demon is capable of estimating any Bayesian model for which the likelihood is
specified5. To use Laplace’s Demon, the user must specify a model. Let’s consider a linear
regression model, which is often denoted as:

3Though most R functions use data in the form of a data frame, Laplace’s Demon uses one or more numeric
matrices in a list. It is much faster to process a numeric matrix than a data frame in iterative estimation.

4Centering and scaling a predictor is x.cs <- (x - mean(x)) / (2*sd(x)).
5Examples of more than 80 Bayesian models may be found in the “Examples” vignette that comes with the

LaplacesDemon package. Likelihood-free estimation is also possible by approximating the likelihood, such as
in Approximate Bayesian Computation (ABC).
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y ∼ N (µ, σ2)

µ = Xβ

The dependent variable, y, is normally distributed according to expectation vector µ and
scalar variance σ2, and expectation vector µ is equal to the inner product of design matrix X
and transposed parameter vector β.

For a Bayesian model, the notation for the residual variance, σ2, has often been replaced
with the inverse of the residual precision, τ−1. Here, σ2 will be used. Prior probabilities are
specified for β and σ (the standard deviation, rather than the variance):

βj ∼ N (0, 1000), j = 1, . . . , J

σ ∼ HC(25)

Each of the J β parameters is assigned a vague6 prior probability distribution that is normally-
distributed according to µ = 0 and σ2 = 1000. The large variance or small precision indicates
a lot of uncertainty about each β, and is hence a vague distribution. The residual standard
deviation σ is half-Cauchy-distributed according to its hyperparameter, scale=25. When
exploring new prior distributions, the user is encouraged to use the is.proper function to
check for prior propriety.

To specify a model, the user must create a function called Model. Here is an example for a
linear regression model:

> Model <- function(parm, Data)

+ {

+ ### Parameters

+ beta <- parm[1:Data$J]

+ sigma <- exp(parm[Data$J+1])

+ ### Log(Prior Densities)

+ beta.prior <- dnormv(beta, 0, 1000, log=TRUE)

+ sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)

+ ### Log-Likelihood

+ mu <- tcrossprod(beta, Data$X)

+ LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))

+ ### Log-Posterior

+ LP <- LL + sum(beta.prior) + sigma.prior

+ Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma), yhat=mu,

+ parm=parm)

+ return(Modelout)

+ }

6‘Traditionally, a vague prior would be considered to be under the class of uninformative or non-informative
priors. Non-informative’ may be more widely used than ’uninformative’, but here that is considered poor
English, such as saying something is ‘non-correct’ when there’s a word for that . . . ‘incorrect’. In any case,
uninformative priors do not actually exist (Irony and Singpurwalla 1997), because all priors are informative in
some way. These priors are being described here as vague, but not as uninformative.
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Laplace’s Demon iteratively maximizes the logarithm of the unnormalized joint posterior
density as specified in this Model function. In Bayesian inference, the logarithm of the unnor-
malized joint posterior density is proportional to the sum of the log-likelihood and logarithm
of the prior densities:

log[p(Θ|y)] ∝ log[p(y|Θ)] + log[p(Θ)]

where Θ is a set of parameters, y is the data, ∝ means ‘proportional to’7, p(Θ|y) is the joint
posterior density, p(y|Θ) is the likelihood, and p(Θ) is the set of prior densities.

During each iteration in which Laplace’s Demon is maximizing the logarithm of the unnormal-
ized joint posterior density, Laplace’s Demon passes two arguments to Model: parm and Data,
where parm is short for the set of parameters, and Data is a list of data. These arguments are
specified in the beginning of the function:

Model <- function(parm, Data)

Then, the Model function is evaluated and the logarithm of the unnormalized joint posterior
density is calculated as LP, and returned to Laplace’s Demon in a list called Modelout, along
with the deviance (Dev), a vector (Monitor) of any variables desired to be monitored in
addition to the parameters, yrep (yhat) or replicates of y, and the parameter vector parm.
All arguments must be returned. Even if there is no desire to observe the deviance and any
monitored variable, a scalar must be placed in the second position of the Modelout list, and
at least one element of a vector for a monitored variable. This can be seen in the end of the
function:

LP <- LL + sum(beta.prior) + sigma.prior

Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma),

yhat=mu, parm=parm)

return(Modelout)

The rest of the function specifies the parameters, log of the prior densities, and calculates the
log-likelihood. Since design matrix X has J=4 column vectors (including the intercept), there
are 4 beta parameters and a sigma parameter for the residual standard deviation.

Since Laplace’s Demon passes a vector of parameters called parm to Model, the function
needs to know which parameter is associated with which element of parm. For this, the vector
beta is declared, and then each element of beta is populated with the value associated in
the corresponding element of parm. The reason why sigma is exponentiated will, again, be
explained later.

beta <- parm[1:Data$J]

sigma <- exp(parm[Data$J+1])

To work with the log of the prior densities and according to the assigned names of the
parameters and hyperparameters, they are specified as follows:

beta.prior <- dnormv(beta, 0, 1000, log=TRUE)

sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)

It is important to reparameterize all parameters to be real-valued. For example, a positive-
only parameter such as variance should be allowed to range from −∞ to ∞, and be trans-

7For those unfamiliar with ∝, this symbol simply means that two quantities are proportional if they vary
in such a way that one is a constant multiplier of the other. This is due to an unspecified constant of
proportionality in the equation. Here, this can be treated as ‘equal to’.
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formed in the Model function with the exp function, which will force it to positive values.
A parameter θ that needs to be bounded in the model, such as in the interval [1,5], can be
transformed to that range with a logistic function, such as 1+4[exp(θ)/(exp(θ)+1)]. Alterna-
tively, each parameter may be constrained in the Model function, such as with the interval

function. Laplace’s Demon will attempt to increase or decrease the value of each parameter
to maximize LP, without consideration for the distributional form of the parameter. In the
above example, the residual standard deviation sigma receives a half-Cauchy distributed prior
of the form:

σ ∼ HC(25)

In this specification, sigma cannot be negative. By reparameterizing sigma as

sigma <- exp(parm[Data$J+1])

Laplace’s Demon will increase or decrease parm[Data$J+1], which is effectively log(sigma).
Now it is possible for Laplace’s Demon to decrease log(sigma) below zero without causing
an error or violating its half-Cauchy distributed specification.

Finally, everything is put together to calculate LP, the logarithm of the unnormalized joint
posterior density. The expectation vector mu is the inner product of the design matrix, Data$X,
and the transpose of the vector beta. Expectation vector mu, vector Data$y, and scalar sigma
are used to estimate the sum of the log-likelihoods, where:

y ∼ N (µ, σ2)

and as noted before, the logarithm of the unnormalized joint posterior density is:

log[p(Θ|y)] ∝ log[p(y|Θ)] + log[p(Θ)]

mu <- tcrossprod(Data$X, t(beta))

LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE)

LP <- LL + sum(beta.prior) + sigma.prior

Specifying the model in the Model function is the most involved aspect for the user of Laplace’s
Demon. But it has been designed so it is also incredibly flexible, allowing a wide variety of
Bayesian models to be specified. Missing values are also easy to estimate (see the “Examples”
vignette).

4. Initial Values

Laplace’s Demon requires a vector of initial values for the parameters. Each initial value is
a starting point for the estimation of a parameter. When all initial values are set to zero,
Laplace’s Demon will optimize initial values using a resilient backpropagation algorithm in
the LaplaceApproximation function. Laplace Approximation is asymptotic with respect to
sample size, so it is inappropriate in this example with a sample size of 39 and 5 parameters.
Laplace’s Demon will not use Laplace Approximation when the sample size is not at least five
times the number of parameters. Otherwise, the user may prefer to optimize initial values
in the LaplaceApproximation function before using the LaplacesDemon function. When
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Laplace’s Demon receives initial values that are not all set to zero, it will begin to update
each parameter.

In this example, there are 5 parameters. With no prior knowledge, it is a good idea either to
randomize each initial value, such as with the GIV function (which stands for “generate initial
values”), or set all of them equal to zero and let the LaplaceApproximation function optimize
the initial values, provided there is sufficient sample size. Here, the LaplaceApproximation

function will be introduced in the LaplacesDemon function, so the first 4 parameters, the
beta parameters, have been set equal to zero, and the remaining parameter, log.sigma, has
been set equal to log(1), which is equal to zero. This visually reminds me that I am working
with the log of sigma, rather than sigma, and is merely a personal preference. The order of
the elements of the vector of initial values must match the order of the parameters associated
with each element of parm passed to the Model function.

> Initial.Values <- c(rep(0,J), log(1))

5. Laplace’s Demon

Compared to specifying the model in the Model function, the actual use of Laplace’s Demon
is very easy. Since Laplace’s Demon is stochastic, or involves pseudo-random numbers, it’s a
good idea to set a ‘seed’ for pseudo-random number generation, so results can be reproduced.
Pick any number you like, but there’s only one number appropriate for a demon8:

> set.seed(666)

As with any R package, the user can learn about a function by using the help function
and including the name of the desired function. To learn the details of the LaplacesDemon
function, enter:

> help(LaplacesDemon)

Here is one of many possible ways to begin:

> Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,

+ Covar=NULL, Iterations=200000, Status=50000, Thinning=200,

+ Algorithm="twalk", Specs=list(SIV=Initial.Values+1, n1=4, at=6, aw=1.5))

In this example, an output object called Fit will be created as a result of using the Laplaces-
Demon function. Fit is an object of class demonoid, which means that since it has been
assigned a customized class, other functions have been custom-designed to work with it.
Laplace’s Demon offers Laplace Approximation and numerous MCMC algorithms (which are
explained in section 12). The above example specifies the t-walk algorithm for updating.

This example tells the LaplacesDemon function to maximize the first component in the list
output from the user-specified Model function, given a data set called Data, and according to
several settings.

8Demonic references are used only to add flavor to the software and its use, and in no way endorses beliefs
in demons. This specific pseudo-random seed is often referred to, jokingly, as the ‘demon seed’.
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� The Initial.Values argument requires a vector of initial values for the parameters.

� The Covar=NULL argument indicates that a user-specified variance vector or covariance
matrix has not been supplied, so the algorithm will begin with its own estimate.

� The Iterations=200000 argument indicates that the LaplacesDemon function will up-
date 200,000 times before completion.

� The Status=50000 argument indicates that a status message will be printed to the R
console every 50,000 iterations.

� The Thinning=200 argument indicates that only ever Kth iteration will be retained
in the output, and in this case, every 200th iteration will be retained. See the Thin

function for more information on thinning.

� The Algorithm argument requires the abbreviated name of the MCMC algorithm in
quotes. In this case, t-walk is abbreviated to twalk.

� Finally, the Specs argument contains specifications for each algorithm named in the
Algorithm argument. The twalk algorithm accepts four specifications, the first (SIV)
is recommended to be specified, and the remaining specifications are recommended to
remain as defaults: SIV, n1, at, and aw. Details on algorithms and specifications are
given later.

By running the LaplacesDemon function, the following output was obtained:

> Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,

+ Covar=NULL, Iterations=200000, Status=50000, Thinning=200,

+ Algorithm="twalk", Specs=list(SIV=Initial.Values+1, n1=4, at=6, aw=1.5))

Laplace's Demon was called on Mon Jul 2 11:11:25 2012

Performing initial checks...

Laplace Approximation will be used on initial values.

Sample Size: 39

Laplace Approximation begins...

Iteration: 10 of 100

Iteration: 20 of 100

Iteration: 30 of 100

Iteration: 40 of 100

Iteration: 50 of 100

Iteration: 60 of 100

Iteration: 70 of 100

Iteration: 80 of 100

Iteration: 90 of 100

Iteration: 100 of 100

Creating Summary from Point-Estimates

Laplace Approximation is finished.
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The covariance matrix from Laplace Approximation has been scaled

for Laplace's Demon, and the posterior modes are now the initial

values for Laplace's Demon.

Algorithm: t-walk

Laplace's Demon is beginning to update...

Iteration: 50000, Proposal: Multivariate Subset

Iteration: 100000, Proposal: Multivariate Subset

Iteration: 150000, Proposal: Multivariate Subset

Iteration: 200000, Proposal: Multivariate Subset

Assessing Stationarity

Assessing Thinning and ESS

Creating Summaries

Estimating Log of the Marginal Likelihood

Creating Output

Laplace's Demon has finished.

Laplace’s Demon finished quickly, though it had a small data set (N=39), few parameters
(K=5), and the model was very simple. The output object, Fit, was created as a list. As
with any R object, use str() to examine its structure:

> str(Fit)

To access any of these values in the output object Fit, simply append a dollar sign and the
name of the component. For example, here is how to access the observed acceptance rate:

> Fit$Acceptance.Rate

[1] 0.250095

6. Summarizing Output

The output object, Fit, has many components. The (copious) contents of Fit can be printed
to the screen with the usual R functions:

> Fit

> print(Fit)

While a user is welcome to continue this R convention, the LaplacesDemon package adds an-
other feature below the print function output in the Consort function. But before describing
the additional feature, the results are obtained as:
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> Consort(Fit)

#############################################################

# Consort with Laplace's Demon #

#############################################################

Call:

LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,

Covar = NULL, Iterations = 2e+05, Status = 50000, Thinning = 200,

Algorithm = "twalk", Specs = list(SIV = Initial.Values +

1, n1 = 4, at = 6, aw = 1.5))

Acceptance Rate: 0.2501

Adaptive: 200001

Algorithm: t-walk

Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)

[1] 2.518045e-16 2.518045e-16 2.518045e-16 2.518045e-16 2.518045e-16

Covariance (Diagonal) History: (NOT SHOWN HERE)

Deviance Information Criterion (DIC):

All Stationary

Dbar 82.48 82.308

pD 8.46 5.452

DIC 90.94 87.760

Delayed Rejection (DR): 0

Initial Values:

beta[1] beta[2] beta[3] beta[4] log.sigma

1.431484579 0.042252862 0.005882033 0.022319770 5.163186831

Iterations: 2e+05

Log(Marginal Likelihood): -42.9888

Minutes of run-time: 0.94

Model: (NOT SHOWN HERE)

Monitor: (NOT SHOWN HERE)

Parameters (Number of): 5

Periodicity: 1

Posterior1: (NOT SHOWN HERE)

Posterior2: (NOT SHOWN HERE)

Recommended Burn-In of Thinned Samples: 101

Recommended Burn-In of Un-thinned Samples: 20200

Recommended Thinning: 600

Status is displayed every 50000 iterations

Summary1: (SHOWN BELOW)

Summary2: (SHOWN BELOW)

Thinned Samples: 1000

Thinning: 200
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Summary of All Samples

Mean SD MCSE ESS LB Median

beta[1] 5.0423935 0.1137634 0.004732943 687.1895 4.8278198 5.0401542

beta[2] 1.4774269 0.2303922 0.007468725 1000.0000 1.0585381 1.4705194

beta[3] 0.5269607 0.2765857 0.012628882 630.4903 0.0299373 0.5155616

beta[4] 0.9874657 0.2587317 0.010370946 754.1476 0.4948897 0.9869138

log.sigma -0.3621324 0.1266120 0.006815453 502.4538 -0.5889436 -0.3702670

Deviance 82.4797906 4.1135035 0.296982949 335.4500 77.8420893 81.6655942

LP -62.4169592 2.0569348 0.148516210 335.4334 -66.7580009 -62.0096498

sigma 0.7013199 0.0930383 0.005558376 419.2609 0.5549132 0.6891981

UB

beta[1] 5.2683750

beta[2] 1.9579202

beta[3] 1.0519756

beta[4] 1.5001514

log.sigma -0.1186703

Deviance 91.1640392

LP -60.0977381

sigma 0.8990128

Summary of Stationary Samples

Mean SD MCSE ESS LB Median

beta[1] 5.0404876 0.10891465 0.004123040 794.1390 4.82816192 5.0367385

beta[2] 1.4772455 0.23168922 0.007583019 900.0000 1.05589391 1.4693777

beta[3] 0.5268889 0.26330708 0.009208656 900.0000 0.02250511 0.5199781

beta[4] 0.9856159 0.25584060 0.009157865 814.2606 0.50567837 0.9822276

log.sigma -0.3688615 0.11854461 0.004429594 807.3218 -0.58676627 -0.3751553

Deviance 82.3080579 3.30212502 0.124487829 888.3963 77.84236748 81.7031713

LP -62.3310632 1.65115963 0.148516210 888.4879 -66.46463439 -62.0288283

sigma 0.6958158 0.08328142 0.005558376 809.7844 0.55709619 0.6862527

UB

beta[1] 5.2581337

beta[2] 1.9608400

beta[3] 1.0338978

beta[4] 1.5007908

log.sigma -0.1390347

Deviance 90.5761081

LP -60.0981061

sigma 0.8748019

Demonic Suggestion

Due to the combination of the following conditions,

1. t-walk
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2. The acceptance rate (0.250095) is within the interval [0.15,0.5].

3. Each target MCSE is < 6.27% of its marginal posterior

standard deviation.

4. Each target distribution has an effective sample size (ESS)

of at least 100.

5. Each target distribution became stationary by

101 iterations.

Laplace's Demon has been appeased, and suggests

the marginal posterior samples should be plotted

and subjected to any other MCMC diagnostic deemed

fit before using these samples for inference.

Laplace's Demon is finished consorting.

Several components are labeled as NOT SHOWN HERE, due to their size, such as the covariance
matrix Covar or the stationary posterior samples Posterior2. As usual, these can be printed
to the screen by appending a dollar sign, followed by the desired component, such as:

> Fit$Posterior2

Although a lot can be learned from the above output, notice that it completed 2e+05 iterations
of 5 variables in 0.94 minutes. Of course this was fast, since there were only 39 records, and
the form of the specified model was simple. As discussed later, Laplace’s Demon does better
than most other MCMC software with large numbers of records, such as 100,000 (see section
14).

In R, there is usually a summary function associated with each class of output object. The
summary function usually summarizes the output. For example, with frequentist models, the
summary function usually creates a table of parameter estimates, complete with p-values.

Since this is not a frequentist package, p-values are not part of any table with the LaplacesDemon
function, and the marginal posterior distributions of the parameters and other variables have
already been summarized in Fit, there is no point to have an associated summary function.
Going one more step toward useability, the Consort function of LaplacesDemon allows the
user to consort with Laplace’s Demon about the output object.

The additional feature is a second section called Demonic Suggestion. The Demonic Suggestion

is a very helpful section of output. When Laplace’s Demon was developed initially in late
2010, there were not to my knowledge any tools of Bayesian inference that make suggestions
to the user.

Before making its Demonic Suggestion, Laplace’s Demon considers and presents five condi-
tions: the algorithm, acceptance rate, Monte Carlo standard error (MCSE), effective sample
size (ESS), and stationarity. In addition to these conditions, there are other suggested val-
ues, such as a recommended number of iterations or values for the Periodicity and Status

arguments. The suggested value for Status is seeking to print a status message every minute
when the expected time is longer than a minute, and is based on the time in minutes it took,
the number of iterations, and the recommended number of iterations.
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In the above output, Laplace’s Demon is appeased. However, if any of these five conditions
is unsatisfactory, then Laplace’s Demon is not appeased, and suggests it should continue
updating, and that the user should copy/paste and execute its suggested R code. Here are the
criteria it measures against. The final algorithm must be non-adaptive, so that the Markov
property holds (this is covered in section 12). The acceptance rate of most algorithms is
considered satisfactory if it is within the interval [15%,50%]9, and LMC or MALA must be
in the interval [50%, 65%]. MCSE is considered satisfactory for each target distribution if it
is less than 6.27% of the standard deviation of the target distribution. This allows the true
mean to be within 5% of the area under a Gaussian distribution around the estimated mean.
ESS is considered satisfactory for each target distribution if it is at least 100, which is usually
enough to describe 95% probability intervals. And finally, each variable must be estimated
as stationary.

In this example, notice that all criteria have been met: MCSEs are sufficiently small, ESSs
are sufficiently large, and all parameters were estimated to be stationary. Since the algorithm
was the non-adaptive t-walk (twalk), the Markov property holds, so let’s look at some plots.

7. Plotting Output

Laplace’s Demon has a plot.demonoid function to enable its own customized plots with
demonoid objects. The variable BurnIn (below) may be left as it is so it will show only
the stationary samples (samples that are no longer trending), or set equal to one so that all
samples can be plotted. In this case, so that we don’t see the initial values, it is set to 100.

The plot function also enables the user to specify whether or not the plots should be
saved as a .pdf file, and allows the user to select the parameters to be plotted. For ex-
ample, Parms=c("beta[1]","beta[2]") would plot only the first two regression effects, and
Parms=NULL will plot everything.

> BurnIn <- 100

> plot(Fit, BurnIn=100, MyData, PDF=FALSE, Parms=NULL)

There are three plots for each parameter, the deviance, and each monitored variable (which
in this example are LP and sigma). The leftmost plot is a trace-plot, showing the history
of the value of the parameter according to the iteration. The middlemost plot is a kernel
density plot. The rightmost plot is an ACF or autocorrelation function plot, showing the
autocorrelation at different lags. The chains look stationary (do not exhibit a trend), the
kernel densities look Gaussian, and the ACF’s show low autocorrelation.

Another useful plot is called the caterpillar plot, which plots a horizontal representation
of three quantiles (2.5%, 50%, and 97.5%) of each selected parameter from the posterior
samples summary. The caterpillar plot will attempt to plot the stationary samples first
(Fit$Summary2), but if stationary samples do not exist, then it will plot all samples (Fit$Summary1).
Here, only the first four parameters are selected for a caterpillar plot:

9While Spiegelhalter, Thomas, Best, and Lunn (2003) recommend updating until the acceptance rate is
within the interval [20%,40%], and Roberts and Rosenthal (2001) suggest [10%,40%], the interval recommended
here is [15%,50%]. HMC must be in the interval [60%, 70%]
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Figure 1: Plots of Marginal Posterior Samples
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Figure 2: Plots of Marginal Posterior Samples
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Figure 3: Plots of Marginal Posterior Samples

> caterpillar.plot(Fit, Parms=1:4)

If all is well, then the Markov chains should be studied with MCMC diagnostics (such as visual
inspections with the CSF or Cumulative Sample Function, introduced in the LaplacesDemon
package), and finally, further assessments of model fit should be estimated with posterior
predictive checks, showing how well (or poorly) the model fits the data. When the user
is satisfied, the BayesFactor function may be useful in selecting the best model, and the
marginal posterior samples may be used for inference.

8. Posterior Predictive Checks

A posterior predictive check is a method to assess discrepancies between the model and the
data (Gelman, Meng, and Stern 1996a). To perform posterior predictive checks with Laplace’s
Demon, simply use the predict function:

> Pred <- predict(Fit, Model, MyData)

This creates Pred, which is an object of class demonoid.ppc (where ppc is short for posterior
predictive check). Pred is a list that contains two components: y and yhat. If the data set
that was used to estimate the model is supplied in predict, then replicates of y (also called
yrep) are estimated. If, instead, a new data set is supplied in predict, then new, unobserved
instances of y (called ynew) are estimated. Note that with new data, a y vector must still be
supplied, and if unknown, can be set to something sensible such as the mean of the y vector
in the model.

The predict function calls the Model function once for each set of stationary samples in
Fit$Posterior2. Each set of samples is used to calculate mu, which is the expectation of y,
and mu is reported here as yhat. When there are few discrepancies between y and yrep, the
model is considered to fit well to the data.

Since Pred$yhat is a large (39 x 1000) matrix, let’s look at the summary of the posterior
predictive distribution:
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> summary(Pred, Discrep="Chi-Square")

Concordance: 0.5384615

Discrepancy Statistic: 623.386

L-criterion: 21.104, S.L: 0.43

Records:

y Mean SD LB Median UB PQ Discrep

1 4.174387 4.308 0.152 4.001 4.312 4.584 0.816 0.766

2 5.361292 5.407 0.204 5.002 5.407 5.806 0.592 0.050

3 6.089045 5.267 0.211 4.855 5.275 5.680 0.000 15.162

4 5.298317 5.214 0.185 4.852 5.216 5.575 0.312 0.209

5 4.406719 4.216 0.167 3.916 4.209 4.554 0.142 1.302

6 2.197225 3.803 0.167 3.469 3.801 4.138 1.000 92.256

7 5.010635 4.409 0.148 4.119 4.409 4.711 0.000 16.533

8 1.609438 3.820 0.166 3.488 3.818 4.152 1.000 177.234

9 4.343805 4.380 0.130 4.125 4.382 4.632 0.614 0.077

10 4.812184 4.513 0.139 4.240 4.515 4.781 0.010 4.603

11 4.189655 4.254 0.144 3.976 4.263 4.526 0.661 0.203

12 4.919981 4.380 0.130 4.125 4.382 4.632 0.000 17.266

13 4.753590 4.240 0.136 3.973 4.243 4.508 0.000 14.165

14 4.127134 4.204 0.140 3.928 4.207 4.480 0.707 0.298

15 3.713572 3.976 0.158 3.656 3.976 4.287 0.951 2.759

16 4.672829 4.551 0.138 4.272 4.556 4.811 0.186 0.776

17 6.930495 7.265 0.310 6.659 7.265 7.880 0.849 1.160

18 5.068904 4.564 0.152 4.256 4.564 4.863 0.000 10.986

19 6.775366 6.534 0.370 5.843 6.530 7.255 0.252 0.423
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20 6.553933 6.711 0.376 5.987 6.708 7.454 0.648 0.175

21 4.890349 4.926 0.143 4.650 4.921 5.211 0.591 0.062

22 4.442651 4.501 0.156 4.185 4.505 4.789 0.649 0.141

23 2.833213 4.067 0.151 3.756 4.073 4.353 1.000 66.395

24 4.787492 4.663 0.136 4.395 4.662 4.923 0.182 0.836

25 6.933423 7.312 0.308 6.684 7.320 7.927 0.898 1.514

26 6.180017 6.300 0.215 5.869 6.308 6.710 0.714 0.311

27 5.652489 5.038 0.181 4.702 5.038 5.389 0.000 11.484

28 5.429346 4.480 0.145 4.195 4.479 4.777 0.000 42.895

29 5.634790 5.912 0.528 4.922 5.911 6.932 0.700 0.276

30 4.262680 4.012 0.155 3.702 4.010 4.323 0.059 2.614

31 3.891820 4.276 0.149 3.967 4.280 4.546 0.996 6.597

32 6.613384 6.535 0.350 5.852 6.528 7.228 0.397 0.050

33 4.919981 4.292 0.134 4.032 4.296 4.553 0.000 21.892

34 6.541030 6.094 0.287 5.524 6.101 6.636 0.058 2.424

35 6.345636 5.876 0.227 5.401 5.875 6.321 0.014 4.265

36 3.737670 4.307 0.179 3.993 4.302 4.677 0.997 10.106

37 7.356280 8.326 0.460 7.443 8.320 9.285 0.984 4.454

38 5.739793 4.749 0.113 4.540 4.749 4.969 0.000 76.389

39 5.517453 4.894 0.165 4.559 4.900 5.225 0.000 14.278

The summary.demonoid.ppc function returns a list with 4 components when y is continu-
ous (different output occurs for categorical dependent variables when given the argument
Categorical=TRUE):

� Concordance is the predictive concordance of Gelfand (1996), that indicates the per-
centage of times that y was within the 95% probability interval of yhat. A goal is to
have 95% predictive concordance. For more information, see the accompanying vignette
entitled “Bayesian Inference”. In this case, roughly 1% of the time, y is within the 95%
probability interval of yhat. These results suggest that the model should be attempted
again under different conditions, such as using different predictors, or specifying a dif-
ferent form to the model.

� Discrepancy.Statistic is a summary of a specified discrepancy measure. There are
many options for discrepancy measures that may be specified in the Discrep argument.
In this example, the specified discrepancy measure was the χ2 test in Gelman et˜al.
(2004, p. 175), and higher values indicate a worse fit.

� L-criterion is a posterior predictive check for model and variable selection that mea-
sures the distance between y and yrep, providing a criterion to be minimized (Laud and
Ibrahim 1995).

� The last part of the summarized output reports y, information about the distribution
of yhat, and the predictive quantile (PQ). The mean prediction of y[1], or yrep

1 , given
the model and data, is 4.308. Most importantly, PQ[1] is 0.816, indicating that 81.6%
of the time, yhat[1,] was greater than y[1], or that y[1] is close to the mean of
yhat[1,]. Contrast this with the 6th record, where y[6]=2.197 and PQ[6]=1. There-
fore, yhat[6,] was not a good replication of y[6], because the distribution of yhat[6,]



18 LaplacesDemon

3.8 4.2 4.6

0.
0

1.
0

2.
0

Post. Pred. Plot of yhat[1,]

Black=Density, Red=y
Value

D
en

si
ty

4.5 5.0 5.5 6.0

0.
0

1.
0

2.
0

Post. Pred. Plot of yhat[2,]

Black=Density, Red=y
Value

D
en

si
ty

4.5 5.0 5.5 6.0

0.
0

1.
0

2.
0

Post. Pred. Plot of yhat[3,]

Black=Density, Red=y
Value

D
en

si
ty

4.5 5.0 5.5

0.
0

1.
0

2.
0

Post. Pred. Plot of yhat[4,]

Black=Density, Red=y
Value

D
en

si
ty

3.6 4.0 4.4 4.8

0.
0

1.
0

2.
0

Post. Pred. Plot of yhat[5,]

Black=Density, Red=y
Value

D
en

si
ty

3.2 3.6 4.0 4.4

0.
0

1.
0

2.
0

Post. Pred. Plot of yhat[6,]

Black=Density, Red=y
Value

D
en

si
ty

3.8 4.2 4.6

0.
0

1.
0

2.
0

Post. Pred. Plot of yhat[7,]

Black=Density, Red=y
Value

D
en

si
ty

3.2 3.6 4.0 4.4

0.
0

1.
0

2.
0

Post. Pred. Plot of yhat[8,]

Black=Density, Red=y
Value

D
en

si
ty

4.0 4.4 4.8

0.
0

1.
0

2.
0

3.
0

Post. Pred. Plot of yhat[9,]

Black=Density, Red=y
Value

D
en

si
ty

Figure 5: Posterior Predictive Plots

is almost always greater than y[6]. While y[1] is within the 95% probability interval
of yhat[1,], the 95% probability interval of yhat[6,] is above y[6] 99.8% of the time,
indicating a strong discrepancy between the model and data, in this case.

There are also a variety of plots for posterior predictive checks, and the type of plot is
controlled with the Style argument. Many styles exist, such as producing plots of covariates
and residuals. The last component of this summary may be viewed graphically as posterior
densities. Rather than observing plots for each of 39 records or rows, only the first 9 densities
will be shown here:

> plot(Pred, Style="Density", Rows=1:9)

The Importance function is not presented here in detail, but is a useful way to assess variable
importance, which is defined here as the impact of each variable on yrep, when the variable is
removed (or set to zero). Variable importance consists of differences in discrepancy statistics,
showing how well the model fits the data with each variable removed. This information may
be used for model revision, or presenting the relative importance of variables.

These posterior predictive checks indicate that there is plenty of room to improve this model.

9. General Suggestions

Following are general suggestions on how best to use Laplace’s Demon:

� As suggested by Gelman (2008), continuous predictors should be centered and scaled.
Here is an explicit example in R of how to center and scale a single predictor called
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x: x.cs <- (x - mean(x)) / (2*sd(x)). However, it is instead easier to use the
CenterScale function provided in LaplacesDemon.

� Do not forget to reparameterize any bounded parameters in the Model function to be
real-valued in the parm vector, and this is a good time to check for prior propriety with
the is.proper function.

� MCMC is a stochastic method of numerical approximation, and as such, results may
differ with each run due to the use of pseudo-random number generation. It is good
practice to set a seed so that each update of the model may be reproduced. Here is an
example in R: set.seed(666).

� Rather than specify the final, intended model in the Model function, start by specifying
the simplest possible form. Rather than beginning with actual data, start by simulat-
ing data given specified parameters. Update the simple model on simulated data and
verify that the algorithm converges to the correct target distributions. One by one, add
components to the model specification, simulate more complicated data, update, verify,
and progress toward the intended model. Also, during this phase, use the Juxtapose

function to compare the inefficiency of several MCMC algorithms (via integrated auto-
correlation time or IAT), and use this information to select the least inefficient algorithm
for your particular model. When confident the model is specified correctly and with in-
formed algorithmic selection, finally use actual data, but with few iterations, such as
Iterations=20.

� After studying updates with few iterations, the first “actual” update should be long
enough that proposals are accepted (the acceptance rate is not zero), adaptation begins
to occur (if used), and that enough iterations occur after the first adaptation to allow
the user to study the adaptation (assuming an adaptive algorithm is used). In the
supplied example, the t-walk algorithm is non-adaptive, so this is not a consideration.

� Depending on the model specification function, data, and intended iterations, it is a
good idea to use the LaplacesDemon.RAM function to estimate the amount of random-
access memory (RAM) that LaplacesDemon will use. If Laplace’s Demon uses more
RAM than the computer has available, then the computer will crash. This can be used
to estimate the maximum number of iterations for a particular model and data set on
a given computer.

� Once the final, intended model has begun (finally!), the mixing of the chains should
be observed after a larger trial run, say, arbitrarily, for 10,000 iterations. If the chains
do not mix as expected, then try a different algorithm, either one suggested by the
Consort function (such as when diminishing adaptation is violated), or use the next
least inefficient algorithm as indicated previously in the Juxtapose function.

� If adaptation does not seem to improve estimation (if adaptation is used) or the ini-
tial movement in the chains is worse than expected, then consider optimizing the ini-
tial values with the LaplaceApproximation function, changing the initial values, or
setting all initial values equal to zero so the LaplacesDemon function will use the
LaplaceApproximation function. In MCMC, initial values are most effective when
the starting points are close to the target distributions (though, if the target distribu-
tions were known a priori, then there would be little point in much of this). When
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initial values are far enough away from the target distributions to be in low-probability
regions, the algorithms (both Laplace Approximation and MCMC) may take longer
than usual. Some MCMC algorithms use a proposal covariance matrix, and these algo-
rithms will struggle more as the proposal covariance matrix approaches near-singularity
(though some algorithms, such as the t-walk or AMWG do not use a proposal covari-
ance matrix). In extreme examples, it is possible for the proposal covariance matrix to
become singular, which will stop Laplace’s Demon. If there is no information available
to make a better selection, then randomize the initial values with the GIV function and
use LaplaceApproximation. Centered and scaled predictors also help by essentially
standardizing the possible range of the target distributions.

� When speed is a concern, such as with complex models, there may be things in the
Model function that can be commented out, such as sometimes calculating yhat. The
model can be updated without some features, that can be un-commented and used for
posterior predictive checks. By commenting out things that are strictly unnecessary to
updating, the model will update more quickly. Other helpful hints for speed are found
in the documentation for the Model.Spec.Time function.

� If Laplace’s Demon is exploring areas of the state space that the user knows a priori
should not be explored, then the parameters may be constrained in the Model function
before being passed back to the LaplacesDemon function. Simply change the parameter
of interest as appropriate and place the constrained value back in the parm vector.

� Demonic Suggestion is intended as an aid, not an infallible replacement for criti-
cal thinking. As with anything else, its suggestions are based on assumptions, and
it is the responsibility of the user to check those assumptions. For example, the
Geweke.Diagnostic may indicate stationarity (lack of a trend) when it does not exist,
and this most likely occurs when too few thinned samples remain. Or, the Demonic

Suggestion may indicate that the next update may need to run for a million iterations
in a complex model, requiring weeks to complete.

� Use a two-phase approach with Laplace’s Demon (unless using a non-adaptive but self-
adjusting algorithm such as the t-walk algorithm), where the first phase consists of using
an adaptive algorithm (usually AHMC, AMWG, AMM, AM, DRAM, RAM, SAMWG,
or USAMWG) to achieve stationary samples that seem to have converged to the target
distributions (convergence can never be determined with MCMC, but some instances of
non-convergence can be observed). Once it is believed that convergence has occurred,
use a non-adaptive algorithm, such as DRM, HMC, MWG, RWM, SMWG, THMC, or
USMWG. The final samples should again be checked for signs of non-convergence. If
satisfactory, then the non-adaptive algorithm should have estimated the logarithm of the
marginal likelihood (LML). This is most easily checked with the is.proper function,
which considers the joint posterior distribution to be proper if it can verify that the
LML is finite.

� The desirable number of final, thinned samples for inference depends on the required
precision of the inferential goal. A good, general goal is to end up with 1,000 thinned
samples (Gelman et˜al. 2004, p. 295), where the ESS is at least 100 (and more is
desirable). See the ESS function for more information.
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� Disagreement exists in MCMC literature as to whether to update one, long chain (Geyer
1992, 2011), or multiple, long chains with different, randomized initial values (Gel-
man and Rubin 1992). Multiple chains are enabled with an extension function called
LaplacesDemon.hpc, which uses parallel processing. The Gelman.Diagnostic function
may be used to compare multiple chains. Samples from multiple chains may be put
together with the Combine function.

10. Independence and Observability

Laplace’s Demon was designed with independence and observability in mind. By indepen-
dence, it is meant that a goal was to minimize dependence on other software. Laplace’s
Demon requires only base R. The variety of packages makes R extremely attractive. However,
depending on multiple packages can be problematic when different packages have functions
with the same name, or when a change is made in one package, but other packages do not
keep pace, and the user is dependent on packages being in sync. By avoiding dependencies
on packages that are not in base R, Laplace’s Demon is attempting to be consistent and
dependable for the user.

For example, common MCMC diagnostics and probability distributions (such as Dirichlet,
multivariate normal, Wishart, and many others, as well as truncated forms of distributions)
in Bayesian inference have been included in LaplacesDemon so the user does not have to load
numerous R packages, except of course for exotic distributions that have not been included.

By observability, it is meant that Laplace’s Demon is written entirely in R. Certain functions
could be sped up in another language, but this may prevent some R users from understanding
the code. Laplace’s Demon is intended to be open and accessible. If a user desires speed and is
familiar with a faster language, then the user is encouraged to program the model specification
function in the faster language. See the documentation for the Model.Spec.Time function for
more information. Moreover, it is demonstrated in section 14 that Laplace’s Demon is often
significantly faster than other MCMC software that was programmed in faster languages, and
users are encouraged to time comparisons, especially with large samples.

Observability also enables users to investigate or customize functions in Laplace’s Demon. To
access any function, simply enter the function name and press enter. For example, to print
the code for LaplacesDemon to the R console, simply enter:

> LaplacesDemon

To access undocumented, internal-only functions, use the ::: operator, such as:

> LaplacesDemon:::RWM

Laplace’s Demon seeks to provide a complete, Bayesian environment within R. Independence
from other software facilitates dependability, and its open code makes it easier for a user to
investigate and customize.

11. High Performance Computing
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High performance computing (HPC) is a broad term that can mean many different things.
The LaplacesDemon package may expand into other HPC areas in the future. For the moment,
HPC refers to parallel processing.

The LaplacesDemon function is extended with the LaplacesDemon.hpc function to the par-
allel processing of multiple chains on different central processing units (CPUs). This requires
a minimum of two additional arguments: Chains to specify the number of parallel chains,
and CPUs to specify the number of CPUs. The LaplacesDemon.hpc function allows the paral-
lelization of any MCMC algorithm in the LaplacesDemon function. The LaplacesDemon.hpc

extension uses the parallel package of base R.

An example of using LaplacesDemon.hpc is to simultaneously update three chains as an aid
to checking MCMC convergence, as Gelman recommends (Gelman and Rubin 1992). Aside
from aiding convergence, another benefit of parallelization is that more posterior samples are
updated in the same time-frame as a non-parallel implementation. A multicore computer,
such as a quad-core, will yield more posterior samples (which is valuable only if it converges,
because it does not process more iterations), but a large computer cluster will yield many
orders more. If multiple CPUs are available, then it only makes sense to use them...all.

It is important to note two current limitations with LaplacesDemon.hpc. First, multiple
chains must begin with the same, rather than dispersed, initial values. This is only a limi-
tation until it can be programmed to accept dispersed initial values. Second, during parallel
processing, Status messages do not appear. Once submitted, the user must wait until it
finishes without knowing its status.

After updating a model with LaplacesDemon.hpc, the plot function may be applied so that
multiple chains may be viewed simultaneously, and this is helpful when comparing samplers
for a specific model. If this looks good, then the Gelman.Diagnostic function may be applied
to assess convergence. Otherwise, the as.initial.values function may be used to extract
the latest values from the first chain and use these to begin the next update. Once results seem
acceptable, the Combine function may be used to combine the posterior samples of multiple
chains into one demonoid object, from which the remaining facilities of the LaplacesDemon
package are available.

One of many attractive possible future HPC extensions is to include the inter-chain adaptive
(INCA) approach for adaptive MCMC (Craiu, Rosenthal, and Yang 2009; Solonen, Olli-
naho, Laine, Haario, Tamminen, and Jarvinen 2012). INCA uses parallel chains that are
independent, except that they share the adaptive component, and this sharing speeds con-
vergence. Recent attempts at coding this have been unsuccessful due to unfamiliarity with
how best to utilize package parallel. If you know how to extend the MCMC algorithms in
LaplacesDemon with INCA, or how to incorporate dispersed initial values, then please email
statisticat@gmail.com.

12. Details

The LaplacesDemon package uses two broad types of numerical approximation algorithms:
Laplace Approximation and Markov chain Monte Carlo (MCMC), and Approximate Bayesian
Computation (ABC) may be estimated within each. Each is described below, but MCMC is
emphasized.

statisticat@gmail.com
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12.1. Approximate Bayesian Computation

Approximate Bayesian Computation (ABC), also called likelihood-free estimation, is a family
of numerical approximation techniques in Bayesian inference. ABC is especially useful when
evaluation of the likelihood, p(y|Θ) is computationally prohibitive, or when suitable likeli-
hoods are unavailable. As such, ABC algorithms estimate likelihood-free approximations.
ABC is usually faster than a similar likelihood-based numerical approximation technique,
because the likelihood is not evaluated directly, but replaced with an approximation that is
usually easier to calculate. The approximation of a likelihood is usually estimated with a
measure of distance between the observed sample, y, and its replicate given the model, yrep,
or with summary statistics of the observed and replicated samples. See the accompanying
vignette entitled “Examples” for an example.

12.2. Laplace Approximation

The Laplace Approximation or Laplace Method is a family of asymptotic techniques used to
approximate integrals. Laplace’s method seems to accurately approximate unimodal posterior
moments and marginal posterior distributions in many cases. Since it is not applicable in all
cases, it is recommended here that Laplace Approximation is used cautiously in its own right,
or preferably, it is used before MCMC.

After introducing the Laplace Approximation (Laplace 1774, p. 366–367), a proof was pub-
lished later (Laplace 1814) as part of a mathematical system of inductive reasoning based on
probability. Laplace used this method to approximate posterior moments.

Since its introduction, the Laplace Approximation has been applied successfully in many
disciplines. In the 1980s, the Laplace Approximation experienced renewed interest, espe-
cially in statistics, and some improvements in its implementation were introduced (Tierney
and Kadane 1986; Tierney, Kass, and Kadane 1989). Only since the 1980s has the Laplace
Approximation been seriously considered by statisticians in practical applications.

There are many variations of Laplace Approximation, with an effort toward replacing Markov
chain Monte Carlo (MCMC) algorithms as the dominant form of numerical approximation in
Bayesian inference. The run-time of Laplace Approximation is a little longer than Maximum
Likelihood Estimation (MLE), and much shorter than MCMC (Azevedo-Filho and Shachter
1994).

The speed of Laplace Approximation depends on the optimization algorithm selected, and
typically involves many evaluations of the objective function per iteration (where the AMM
MCMC algorithm evaluates once per iteration), making most of the MCMC algorithms faster
per iteration. The attractiveness of Laplace Approximation is that it typically improves the
objective function better than MCMC when the parameters are in low-probability regions (in
which MCMC algorithms may suffer unreasonably low acceptance rates) until an adaptive
MCMC has “learned” how to move better. Laplace Approximation is also typically faster
because it is seeking point-estimates, rather than attempting to represent the target distribu-
tion with enough simulation draws. Laplace Approximation extends MLE, but shares similar
limitations, such as its asymptotic nature with respect to sample size. Bernardo and Smith
(2000) note that Laplace Approximation is an attractive numerical approximation algorithm,
and will continue to develop.

LaplaceApproximation seeks a global maximum of the logarithm of the unnormalized joint
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posterior density. The approach differs by Method. The LaplacesDemon function uses the
LaplaceApproximation algorithm to optimize initial values, estimate covariance, and save
time for the user.

Most optimization algorithms assume that the logarithm of the unnormalized joint posterior
density is defined and differentiable. An approximate gradient is taken for each initial value
as the difference in the logarithm of the unnormalized joint posterior density due to a slight
increase versus decrease in the parameter.

Adaptive Gradient Ascent

With adaptive gradient ascent, at 10 evenly-space times, LaplaceApproximation attempts
several step sizes, which are also called rate parameters in other literature, and selects the best
step size from a set of 10 fixed options. Thereafter, each iteration in which an improvement
does not occur, the step size shrinks, being multiplied by 0.999.

Gradient ascent is criticized for sometimes being relatively slow when close to the maximum,
and its asymptotic rate of convergence is inferior to other methods. However, compared to
other popular optimization algorithms such as Newton-Raphson, an advantage of the gradi-
ent ascent is that it works in infinite dimensions, requiring only sufficient computer memory.
Although Newton-Raphson converges in fewer iterations, calculating the inverse of the neg-
ative Hessian matrix of second-derivatives is more computationally expensive and subject to
singularities. Therefore, gradient ascent takes longer to converge, but is more generalizable.

Limited-Memory BFGS

The limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm is a quasi-Newton
optimization algorithm that compactly approximates the Hessian matrix. Rather than stor-
ing the dense Hessian matrix, L-BFGS stores only a few vectors that represent the approx-
imation. This algorithm is better suited for large-scale models than the BFGS algorithm.
This is the default algorithm (method="LBFGS") for LaplaceApproximation, which calls
method="L-BFGS-B" in the optim function of base R.

Resilient Backpropagation

“Rprop” stands for resilient backpropagation. In Rprop, the approximate gradient is taken for
each parameter in each iteration, and its sign is compared to the approximate gradient in the
previous iteration. A weight element in a weight vector is associated with each approximate
gradient. A weight element is multiplied by 1.2 when the sign does not change, or by 0.5 if
the sign changes. The weight vector is the step size, and is constrained to the interval [0.001,
50], and initial weights are 0.0125. This is the resilient backpropagation algorithm, which is
often denoted as the “Rprop-” algorithm of Riedmiller (1994).

Afterward

After LaplaceApproximation finishes, due either to early convergence or completing the
number of specified iterations, it approximates the Hessian matrix of second derivatives, and
attempts to calculate the covariance matrix by taking the inverse of the negative of this
matrix. If successful, then this covariance matrix may be passed to LaplacesDemon, and
the diagonal of this matrix is the variance of the parameters. If unsuccessful, then a scaled
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identity matrix is returned, and each parameter’s variance will be 1.

12.3. Markov Chain Monte Carlo

Although the LaplacesDemon function may be assisted by Laplace Approximation, Laplace’s
Demon mainly accomplishes numerical approximation with Markov chain Monte Carlo (MCMC)
algorithms, also called samplers. There are a large number of MCMC algorithms, too many
to review here. Popular families (which are often non-distinct) include Gibbs sampling,
Metropolis-Hastings, Random-Walk Metropolis (RWM), slice sampling, and many others, in-
cluding hybrid algorithms such as Hamiltonian Monte Carlo, Metropolis-within-Gibbs (Tier-
ney 1994), and algorithms for specific methods, such as Updating Adaptive Metropolis-within-
Gibbs for state-space models (SSMs). RWM was developed first (Metropolis, Rosenbluth,
M.N., and Teller 1953), and Metropolis-Hastings was a generalization of RWM (Hastings
1970). All MCMC algorithms are known as special cases of the Metropolis-Hastings algo-
rithm. Regardless of the algorithm, the goal in Bayesian inference is to maximize the unnor-
malized joint posterior distribution and collect samples of the target distributions, which are
marginal posterior distributions, later to be used for inference.

While designing Laplace’s Demon, the primary goal in numerical approximation was gener-
alization. The most generalizable MCMC algorithm is the Metropolis-Hastings (MH) gener-
alization of the RWM algorithm. The MH algorithm extended RWM to include asymmetric
proposal distributions. Having no need of asymmetric proposals, Laplace’s Demon uses varia-
tions of the original RWM algorithm, which use symmetric proposal distributions, specifically
Gaussian proposals (and sometimes others, such as in the RAM algorithm of Vihola (2011)).
For years, the main disadvantage of the RWM and MH algorithms was that the proposal
variance (see below) had to be tuned manually, and therefore other MCMC algorithms have
become popular because they do not need to be tuned.

Gibbs sampling became popular for Bayesian inference, though it requires conditional sam-
pling of conjugate distributions, so it is precluded from non-conjugate sampling in its purest
form. Gibbs sampling also suffers under high correlations (Gilks and Roberts 1996). Due to
these limitations, Gibbs sampling is less generalizable than RWM. Slice sampling samples a
distribution by sampling uniformly from the region under the plot of its density function, and
is more appropriate with bounded distributions that cannot approach infinity.

There are valid ways to tune the RWM algorithm as it updates. This is known by many
names, including adaptive Metropolis and adaptive MCMC, among others. A brief discussion
follows of MCMC algorithms in LaplacesDemon.

Block Updating

Usually, there is more than one target distribution, in which case it must be determined
whether it is best to sample from target distributions individually, in groups, or all at once.
Block updating refers to splitting a multivariate vector into groups called blocks, so each
block may be treated differently. A block may contain one or more variables. Advantages
of block updating are that a different MCMC algorithm may be used for each block (or
variable, for that matter), creating a more specialized approach, and the acceptance of a
newly proposed state is likely to be higher than sampling from all target distributions at once
in high dimensions. Disadvantages of block updating are that correlations probably exist
between variables between blocks, and each block is updated while holding the other blocks
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constant, ignoring these correlations of variables between blocks. Without simultaneously
taking everything into account, the algorithm may converge slowly or never arrive at the
proper solution. However, there are instances when it may be best when everything is not
taken into account at once, such as in state-space models. Also, as the number of blocks
increases, more computation is required, which slows the algorithm. In general, block updating
allows a more specialized approach at the expense of accuracy, generalization, and speed.
Laplace’s Demon generally avoids block updating, though this increases the importance that
the initial values are not in low-probability regions, and may cause Laplace’s Demon to have
chains that are slow to begin moving.

Random-Walk Metropolis

In MCMC algorithms, each iterative estimate of a parameter is part of a changing state.
The succession of states or iterations constitutes a Markov chain when the current state is
influenced only by the previous state. In random-walk Metropolis (RWM), a proposed future
estimate, called a proposal10 or candidate, of the joint posterior density is calculated, and
a ratio of the proposed to the current joint posterior density, called α, is compared to a
random number drawn uniformly from the interval (0,1). In practice, the logarithm of the
unnormalized joint posterior density is used, so log(α) is the proposal density minus the
current density. The proposed state is accepted, replacing the current state with probability
1 when the proposed state is an improvement over the current state, and may still be accepted
if the logarithm of a random draw from a uniform distribution is less than log(α). Otherwise,
the proposed state is rejected, and the current state is repeated so that another proposal may
be estimated at the next iteration. By comparing log(α) to the log of a random number when
log(α) is not an improvement, random-walk behavior is included in the algorithm, and it is
possible for the algorithm to backtrack while it explores.

Random-walk behavior is desirable because it allows the algorithm to explore, and hopefully
avoid getting trapped in undesirable regions. On the other hand, random-walk behavior is
undesirable because it takes longer to converge to the target distribution while the algorithm
explores. The algorithm generally progresses in the right direction, but may periodically
wander away. Such exploration may uncover multimodal target distributions, which other
algorithms may fail to recognize, and then converge incorrectly. With enough iterations,
RWM is guaranteed theoretically to converge to the correct target distribution, regardless
of the starting point of each parameter, provided the proposal variance for each proposal
of a target distribution is sensible. Nonetheless, multimodal target distributions are often
problematic.

Multiple parameters usually exist, and therefore correlations may occur between the param-
eters. Most MCMC algorithms in Laplace’s Demon are modified to attempt to estimate
multivariate proposals, thereby taking correlations into account through a covariance matrix.
If a failure is experienced in attempting to estimate multivariate proposals in the Adaptive
Metropolis (AM) of Haario, Saksman, and Tamminen (2001) here, or if the acceptance rate
is less than 5%, then Laplace’s Demon temporarily resorts to single-component proposals
by updating one randomly-selected parameter, and will continue to attempt to return to

10Laplace’s Demon allows the user to constrain proposals in the Model function. Laplace’s Demon generates
a proposal vector, which is passed to the Model function in the parm vector. In the Model function, the user
may constrain the proposal to prevent the sampler from exploring certain areas of the state space by altering
the proposed values and placing them back into the parm vector, which will be passed back to Laplace’s Demon.
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multivariate proposals at each iteration.

Throughout the RWM algorithm, the proposal covariance or variance remains fixed. The
user may enter a vector of proposal variances or a proposal covariance matrix, and if neither
is supplied, then Laplace’s Demon estimates both before it begins, based on the number of
variables.

The acceptance or rejection of each proposal should be observed at the completion of the
RWM algorithm as the acceptance rate, which is the number of acceptances divided by the
total number of iterations. If the acceptance rate is too high, then the proposal variance or
covariance is too small. In this case, the algorithm will take longer than necessary to find the
target distribution and the samples will be highly autocorrelated. If the acceptance rate is too
low, then the proposal variance or covariance is too large, and the algorithm is ineffective at
exploration. In the worst case scenario, no proposals are accepted and the algorithm fails to
move. Under theoretical conditions, the optimal acceptance rate for a sole, independent and
identically distributed (IID), Gaussian, marginal posterior distribution is 0.44 or 44%. The
optimal acceptance rate for an infinite number of distributions that are IID and Gaussian is
0.234 or 23.4%.

Markov Chain Properties

This tutorial introduces only briefly the basics of Markov chain properties. A Markov chain
is Markovian when the current iteration depends only on the previous iteration. Many (but
not all) adaptive algorithms are merely chains but not Markov chains when the adaptation
is based on the history of the chains, not just the previous iteration. A Markov chain is said
to be aperiodic when it is not repeating a cycle. A Markov chain is considered irreducible
when it is possible to go from any state to any other state, though not necessarily in one
iteration. A Markov chain is said to be recurrent if it will eventually return to a given state
with probability 1, and it is positive recurrent if the expected return time is finite, and null
recurrent otherwise. The ergodic theorem states that a Markov chain is ergodic when it is
aperiodic, irreducible, and positive recurrent.

The non-Markovian chains of an adaptive algorithm that adapt based on the history of the
chains should have two conditions: containment and diminishing adaptation. Containment
is difficult to implement and is not currently programmed into Laplace’s Demon. The con-
dition of diminishing adaptation is fulfilled when the amount of adaptation diminishes with
the length of the chain. Diminishing adaptation can be achieved when the proposal vari-
ances become smaller or by decreasing the probability of performing adaptations with more
iterations (Roberts and Rosenthal 2007). Trace-plots of the output of the LaplacesDemon

function automatically include plots of the absolute differences in proposal variance with each
adaptation for adaptive algorithms, and the Consort function will try to suggest a different
adaptive algorithm when these absolute differences are not trending downward.

The remaining MCMC algorithms in the LaplacesDemon package are now presented alpha-
betically.

Adaptive Hamiltonian Monte Carlo

This is an adaptive form of Hamiltonian Monte Carlo (HMC) called Adaptive Hamiltonian
Monte Carlo (AHMC). For more information on HMC, see the HMC section below. In
AHMC, an additional algorithm specification is included called Periodicity, which specifies
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how often the algorithm adapts, and it can only begin to adapt after the tenth iteration. Of
the remaining algorithm specifications, the vector epsilon (ε) is adapted, and L (L) is not.
When adapting, and considering K parameters, AHMC multiplies εk by 0.8 when a proposal
for parameter k has not been accepted in the last 10 iterations, or multiplies it by 1.2 when
a proposal has been accepted at least 8 of the last 10 iterations, as suggested by Neal (2011).

As with HMC, the Demonic Suggestion section of the output of Consort treats AHMC
differently when L > 1 than most other algorithms by potentially suggesting a new value
for L to achieve independent samples, without altering the latest specification of the user
for Iterations and Thinning. The suggested value of L may be close to correct or wildly
incorrect, so bear in mind that it is not an adaptive parameter here.

As with HMC, the AHMC algorithm is slower than many other algorithms, but often produces
chains with good mixing. If AHMC is used for adaptation, then the final, non-adaptive
algorithm should be HMC.

Adaptive Metropolis

The Adaptive Metropolis (AM) algorithm of Haario et˜al. (2001) adapts based on the observed
covariance matrix from the history of the chains11. Laplace’s Demon uses a variation of the
Adaptive Metropolis (AM) algorithm of Haario et˜al. (2001).

Given the number of dimensions (K ) or parameters, the optimal scale of the proposal vari-
ance, also called the jumping kernel, has been reported as 2.42/K12 based on the asymp-
totic limit of infinite-dimensional Gaussian target distributions that are independent and
identically-distributed (Gelman, Roberts, and Gilks 1996b). In applied settings, each prob-
lem is different, so the amount of correlation varies between variables, target distributions
may be non-Gaussian, the target distributions may be non-IID, and the scale should be opti-
mized. Laplace’s Demon uses a scale that is accurate to more decimals: 2.3812042/K. There
are algorithms in statistical literature that attempt to optimize this scale, such as the RAM

algorithm.

Haario et˜al. (2001) tested their algorithm with up to 200 dimensions or parameters. It
has been tested in Laplace’s Demon with as many as 2,600 parameters, so it is capable of
large-scale Bayesian inference. To effectively finish adapting, AM must solve the proposal
covariance matrix, and this can be slow in high dimensions.

The version of AM in Laplace’s Demon should be capable of more dimensions than the
AM algorithm as it was presented, because when Laplace’s Demon experiences an error in
multivariate AM, or when the acceptance rate is less than 5%, it defaults to random-scan
single-component adaptive proposals (Haario, Saksman, and Tamminen 2005). Although
single-component adaptive proposals should take more iterations to converge, the algorithm
is limited in dimension only by the random-access memory (RAM) of the computer.

In both the multivariate and single-component cases, the AM algorithm begins with a fixed
proposal variance or covariance that is either estimated internally or supplied by the user.
Next, the algorithm begins, and it does not adapt until the iteration is reached that is spec-
ified by the user in the Adaptive argument of the algorithm specification list. Then, the

11Haario et˜al. (2001) assert that the chains remain ergodic in the limit as the amount of change in the
adaptations should decrease to zero as the chains approach the target distributions, now referred to as the
diminishing adaptation condition of Roberts and Rosenthal (2007).

12The optimal proposal standard deviation in this case is approximately 2.4/
√
K.
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algorithm will adapt with every n iterations according to the Periodicity argument, also in
the algorithm specification list. Therefore, the user has control over when the AM algorithm
begins to adapt, and how often it adapts. The value of the Adaptive argument in Laplace’s
Demon is chosen subjectively by the user according to their confidence in the accuracy of the
initial proposal covariance or variance. The value of the Periodicity argument is chosen by
the user according to their patience: when the value is 1, the algorithm will adapt continu-
ously, which will be slower to calculate. The AM algorithm adapts the proposal covariance or
variance according to the observed covariance or variance in the entire history of all parameter
chains, as well as the scale factor.

As recommended by Haario et˜al. (2001), there are two tricks that may be used to assist
the AM algorithm in the beginning. Although Laplace’s Demon does not use the suggested
“greedy start” method (and will instead use Laplace Approximation when sample size per-
mits), it uses the second suggested trick of shrinking the proposal as long as the acceptance
rate is less than 5%, and there have been at least five acceptances. Haario et˜al. (2001) sug-
gest loosely that if “it has not moved enough during some number of iterations, the proposal
could be shrunk by a constant factor”. For each iteration that the acceptance rate is less
than 5% and that the AM algorithm is used but the current iteration is prior to adaptation,
Laplace’s Demon multiplies the proposal covariance or variance by (1 - 1/Iterations). Over
pre-adaptive time, this encourages a smaller proposal covariance or variance to increase the
acceptance rate so that when adaptation begins, the observed covariance or variance of the
chains will not be constant, and then shrinkage will cease and adaptation will take it from
there.

The AM algorithm performs very well in practice, though each adaptation is time-consuming
after numerous iterations. The Adaptive-Mixture Metropolis (AMM) of Roberts and Rosen-
thal (2009) and Robust Adaptive Metropolis (Vihola 2011) are extensions of the AM algo-
rithm.

Adaptive Metropolis-within-Gibbs

The Adaptive Metropolis-within-Gibbs (AMWG) algorithm is presented in (Roberts and
Rosenthal 2009; Rosenthal 2007). The standard deviation of the proposal of each param-
eter is manipulated to optimize the associated acceptance rate toward 0.44. This is much
simpler than other adaptive methods that adapt based on sample covariance in large di-
mensions. Large covariance matrices require a large number of elements to adapt, which
takes exponentially longer to adapt as the dimension increases. Regardless of dimension, the
AMWG optimizes each parameter to a univariate acceptance rate, and a sample covariance
matrix does not need to be estimated for adaptation, which consumes time and memory. The
order of the parameters for updating is randomized each iteration (random-scan AMWG), as
opposed to sequential updating (deterministic-scan AMWG).

Compared to other adaptive algorithms in LaplacesDemon, a disadvantage is the time to
complete each iteration increases as a function of parameters and model complexity, as noted
in MWG. For example, in a 100-parameter model, AMWG completes its first iteration as
the AMM algorithm completes its 100th. However, to adapt accurately, the AMM algorithm
must correctly estimate 5,050 elements of a sample covariance matrix, while AMWG must
correctly estimate only 100 proposal standard deviations. Roberts and Rosenthal (2009) have
shown an example model with 500 parameters that had a burn-in of around 25,000 iterations.
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The advantages of AMWG over AMM are that AMWG does not require a burn-in period
before it can begin to adapt, and that AMWG does not need to estimate a covariance matrix to
adapt properly. The disadvantages of AMWG compared to AMM are that correlation can be
problematic since it is not taken into account with a proposal covariance matrix, and AMWG
solves the model function once per parameter per iteration, which can be unacceptably slow
with large or complicated models. The advantage of AMWG over RAM is that AMWG
does not need to estimate a covariance matrix to adapt properly. The disadvantages of
AMWG compared to RAM are AMWG is less likely to handle multimodal or heavy-tailed
targets, and AMWG solves the model function once per parameter per iteration, which can
be unacceptably slow with large or complicated models. If AMWG is used for adaptation,
then the final, non-adaptive algorithm should be MWG.

Adaptive-Mixture Metropolis

The Adaptive-Mixture Metropolis (AMM) algorithm is an extension by Roberts and Rosen-
thal (2009) of the AM algorithm of Haario et˜al. (2001). AMM differs from the AM algorithm
in two respects. First, AMM updates a scatter matrix based on the cumulative current pa-
rameters and the cumulative associated outer-products, and these are used to generate a
multivariate normal proposal. This is more efficient with large numbers of parameters adapt-
ing over many iterations, especially with frequent adaptations, and results in a much faster
algorithm. The second (and main) difference, is that the proposal is a mixture. The two mix-
ture components are adaptive multivariate and static/symmetric univariate proposals. The
mixture is determined at each iteration with a mixture weight. The mixture weight must be in
the interval (0,1], and it defaults to 0.05, as in Roberts and Rosenthal (2009). A higher value
of the mixture weight is associated with more static/symmetric univariate proposals, and a
lower weight is associated with more adaptive multivariate proposals. The algorithm will be
unable to include the multivariate mixture component until it has accumulated some history,
and models with more parameters will take longer to be able to use adaptive multivariate
proposals.

The advantages of AMM over AMWG are that it takes correlation into account as it adapts,
and is much faster to update each iteration. The disadvantages are that AMWG does not
require a burn-in period before it can begin to adapt, and more information must be learned
in the covariance matrix to adapt properly (see AMWG for more). Disadvantages of AMM
compared to RAM are that RAM does not require a burn-in period before it can begin to
adapt, RAM is more likely to better handle multimodal or heavy-tailed targets, and RAM
also adapts to the shape of the target distributions and coerces the acceptance rate. If AMM
is used for adaptation, then the final, non-adaptive algorithm should be RWM.

Delayed Rejection Metropolis

The Delayed Rejection Metropolis (DRM or DR) algorithm is a RWM with one, small twist.
Whenever a proposal is rejected, the DRM algorithm will try one or more alternate pro-
posals, and correct for the probability of this conditional acceptance. By delaying rejection,
autocorrelation in the chains may be decreased, and the algorithm is encouraged to move.
Currently, Laplace’s Demon will attempt one alternate proposal when using the DRAM (see
below) or DRM algorithm. The additional calculations may slow each iteration of the algo-
rithm in which the first set of proposals is rejected, but it may also converge faster. For more
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information on DRM, see Mira (2001).

DRM may be considered to be an adaptive MCMC algorithm, because it adapts the proposal
based on a rejection. However, DRM does not violate the Markov property, because the
proposal is based on the current state. For the purposes of Laplace’s Demon, DRM is not
considered to be an adaptive MCMC algorithm, because it is not adapting to the target
distribution by considering previous states in the Markov chain, but merely makes more
attempts from the current state. Considered as a non-adaptive algorithm, it is acceptable to
conclude model updates with this algorithm, rather than following up with RWM.

Laplace’s Demon also temporarily shrinks the proposal covariance arbitrarily by 50% for
delayed rejection. A smaller proposal covariance is more likely to be accepted, and the goal
of delayed rejection is to increase acceptance. In the long-term, a proposal covariance that is
too small is undesirable, and so it is only used in this case to assist acceptance.

Each problem is different, and this can be a useful algorithm. In general, however, it is more
likely that other algorithms are used.

Delayed Rejection Adaptive Metropolis

The Delayed Rejection Adaptive Metropolis (DRAM) algorithm is merely the combination
of both DRM (or DR) and AM (Haario, Laine, Mira, and Saksman 2006). DRAM has been
demonstrated as robust in extreme situations where DRM or AM fail separately. Haario et˜al.
(2006) present an example involving ordinary differential equations in which least squares
could not find a stable solution, and DRAM did well.

The DRAM algorithm is useful to assist the AM algorithm when the acceptance rate is
low. As an alternative, the Adaptive-Mixture Metropolis (AMM) is an extension of the AM
algorithm that includes a mixture of proposals, and one mixture component has a small
proposal standard deviation to assist in overcoming initially low acceptance rates. If DRAM
is used for adaptation, then the final, non-adaptive algorithm should be RWM.

Hamiltonian Monte Carlo

Introduced under the name of hybrid Monte Carlo (Duane, Kennedy, Pendleton, and Roweth
1987), the name Hamiltonian Monte Carlo (HMC) surpasses it in popularity in statistics
literature. HMC introduces auxiliary momentum variables with independent, Gaussian pro-
posals. Momentum variables receive alternate updates, from simple updates to Metropolis
updates. Metropolis updates result in the proposal of a new state by computing a trajectory
according to Hamiltonian dynamics, from physics. Hamiltonian dynamics is discretized with
the leapfrog method. In this way, distant jumps can be proposed and random-walk behavior
avoided.

HMC has two algorithm specifications: a vector of the step size of the leapfrog steps, epsilon
(ε), that is equal in length to the number of parameters, and the number of leapfrog steps, L
(L). When L = 1, HMC reduces to Langevin Monte Carlo (LMC), also called the Metropolis-
Adjusted Langevin Algorithm (MALA), introduced by Rossky, Doll, and Friedman (1978).
These tuning parameters must be adjusted until the acceptance rate is appropriate. The
optimal acceptance rate of HMC is 65%, and Laplace’s Demon is appeased when it is within
the interval [60%, 70%], or in the case of LMC or MALA, in the interval [50%, 65%], where
57.4% is optimal. Tuning ε and L, however, is very difficult. The trajectory length, εL must
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also be considered. The ε vector is output in the list component CovarDHis, though it is not
the diagonal of a covariance matrix.

Suggestions for tuning ε and L are found in Neal (2011). When ε is too large, the algorithm
becomes unstable and suffers from a low acceptance rate. When ε is too small, the algorithm
takes too many small steps and is inefficient. When L is too large, trajectory lengths (εL)
result in double-back behavior and become computationally self-defeating. When L is too
small, more random-walk behavior occurs and mixing becomes slower.

If a user is new to tuning HMC algorithms, then good advice may be to leave L = 1 and
begin with small values for ε, say 0.1 or smaller. It is easy to experience problems when
inexperienced, but HMC is a rewarding algorithm once proficiency is acquired. As can be
expected, the adaptive extension, AHMC, will also be easier, since ε is adapted and does not
require tuning.

Partial derivatives are required, and hence the parameters must be differentiable everywhere
the algorithm explores. Partial derivatives are approximated with the partial function.
This is computationally intensive, and computational expense increases with the number of
parameters. For K parameters and L leapfrog steps, there are L + 2KL evaluations of the
model specification function per iteration.

The Demonic Suggestion section of the output of Consort treats HMC (when L > 1) differ-
ently than most other algorithms. For example, after updating a model with HMC, Laplace’s
Demon will not suggest a different number of iterations and thinning, but instead may sug-
gest a new value of L after taking autocorrelation in the chains into account. As L increases,
the speed per iteration decreases due to more calculations, and a higher value of L is not
necessarily desirable. Laplace’s Demon attempts suggestions in an effort to give independent
samples consistent with the latest specification of the user for iterations.

Since HMC requires the approximation of partial derivatives, it is slower per iteration than
most algorithms, and much slower in higher dimensions. Tuned well, HMC is an excellent
algorithm, but tuning can be very difficult. The AHMC algorithm (described above) is an
adaptive version of HML in which ε is adapted based on recent history of acceptance and
rejection.

Metropolis-within-Gibbs

Metropolis-within-Gibbs (MWG) is a hybrid algorithm, combining Metropolis-Hastings and
Gibbs sampling, and was suggested in Tierney (1994). Also referred to as Metropolis within
Gibbs or Metropolis-in-Gibbs, it is a componentwise algorithm in which the model specifica-
tion function is evaluated a number of times equal to the number of parameters, per iteration.
The order of the parameters for updating is randomized each iteration (random-scan MWG),
as opposed to sequential updating (deterministic-scan MWG). MWG often uses blocks, but
in LaplacesDemon, all blocks have dimension 1, meaning that each parameter is updated in
turn. If parameters were grouped into blocks, then they would undesirably share a proposal
standard deviation. MWG runs most efficiently when the acceptance rate of each parameter
is 0.44, which is the optimal acceptance rate of a target distribution that is univariate and
Gaussian.

The advantage of MWG over RWM is that it is more efficient with information per iteration,
so convergence is faster in iterations. The disadvantage of MWG is that it is more time-
consuming due to the evaluation of the model specification function for each parameter per



Byron Hall 33

iteration. As the number of parameters increases, and especially as model complexity in-
creases, the run-time per iteration decreases. Since fewer iterations are completed in a given
time-interval, the possible amount of thinning is also at a disadvantage. MWG may be used
for simple models with few parameters, but is not recommended here for large and complex
models.

Robust Adaptive Metropolis

The AM and AMM algorithms adapt the scale of the proposal distribution to attain a the-
oretical acceptance rate. However, these algorithms are unable to adapt to the shape of the
target distribution. The Robust Adaptive Metropolis (RAM) algorithm estimates the shape
of the target distribution and simultaneously coerces the acceptance rate (Vihola 2011). If
the acceptance probability, α, is less (or greater) than an acceptance rate target, α∗, then the
proposal distribution is shrunk (or expanded). Matrix S is computed as a rank one Cholesky
update. Therefore, the algorithm is computationally efficient up to a relatively high dimen-
sion. The AM and AMM algorithms require a burn-in period prior to adaptation, so that
these algorithms can adapt to the sample covariance. The RAM algorithm does not require a
burn-in period prior to adaptation. The RAM algorithm allows the user the option of using
the traditional normally-distributed proposals, or t-distributed proposals for heavier-tailed
target densities. Unlike AM and AMM, RAM can cope with targets having arbitrarily heavy
tails, and handles multimodal targets better than AM. The user is still assumed to know and
specify the target acceptance rate.

This version of RAM does not force positive-definiteness of the variance-covariance matrix,
and adapts only when it is positive-definite. Alternative versions exist elsewhere that force
positive-definiteness, but in testing here, it seems better to allow it to adapt only when it is
positive-definite without coercion.

RAM is slow when Periodicity=1 (where it performs best), and does not seem to perform
well when Periodicity is ≥ 100. A general recommendation is Periodicity=10.

In testing the RAM algorithm, it has not been observed to obtain its acceptance rate goal
and some wild fluctuations have been observed in the proposal variance after many iterations
in some cases. In some models it does well, nonetheless it cannot be recommended as a first
choice for a generalized algorithm.

The advantages of RAM over AMM are that RAM does not require a burn-in period before
it can begin to adapt, RAM is more likely to better handle multimodal or heavy-tailed tar-
gets, RAM also adapts to the shape of the target distributions, and attempts to coerce the
acceptance rate. The advantages of RAM over AMWG are that RAM takes correlations into
account, and is much faster to update each iteration. The disadvantage of RAM compared to
AMWG is that more information must be learned in the covariance matrix to adapt properly
(see AMWG for more), and frequent adaptation may be desirable, but slow. If RAM is used
for adaptation, then the final, non-adaptive algorithm should be RWM.

Sequential Adaptive Metropolis-within-Gibbs

The Sequential Adaptive Metropolis-within-Gibbs (SAMWG) algorithm is for state-space
models (SSMs), including dynamic linear models (DLMs). It is identical to the AMWG algo-
rithm, except with regard to the order of updating parameters (and here, sequential does not
refer to deterministic-scan). Parameters are grouped into two blocks: static and dynamic. At
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each iteration, static parameters are updated first, followed by dynamic parameters, which
are updated sequentially through the time-periods of the model. The order of the static pa-
rameters is randomly selected at each iteration, and if there are multiple dynamic parameters
for each time-period, then the order of the dynamic parameters is also randomly selected.
The argument Dyn receives a T × K matrix of T time-periods and K dynamic parameters.
The SAMWG algorithm is adapted from Geweke and Tanizaki (2001) for LaplacesDemon.
The SAMWG is a single-site update algorithm that is more efficient in terms of iterations,
though convergence can be slow with high intercorrelations in the state vector (Fearnhead
2011). If SAMWG is used for adaptation, then the final, non-adaptive algorithm should be
SMWG.

Sequential Metropolis-within-Gibbs

The Sequential Metropolis-within-Gibbs (SMWG) algorithm is the non-adaptive version of
the SAMWG algorithm, and is used for final sampling of state-space models (SSMs).

Tempered Hamiltonian Monte Carlo

The Tempered Hamiltonian Monte Carlo (THMC) algorithm is an extension of the HMC
algorithm to include another algorithm specification: Temperature. The Temperature must
be positive. When greater than 1, the algorithm should explore more diffuse distributions,
and may be helpful with multimodal distributions.

There are a variety of ways to include tempering in HMC, and this algorithm, named here
as THMC, uses “tempered trajectory”, as described by Neal (2011). When L > 1 and during
the first half of the leapfrog steps, the momentum is increased (heated) by multiplying it by√
T , where T is Temperature, each leapfrog step. In the last half of the leapfrog steps, the

momentum decreases (is cooled down) by dividing it by
√
T . The momentum is largest in the

middle of the leapfrog steps, where mode-switching behavior becomes most likely to occur.
This preserves the trajectory, εL.

As with HMC, THMC is a difficult algorithm to tune. Since THMC is non-adaptive, it is
sufficient as a final algorithm.

t-walk

The t-walk (twalk) algorithm of Christen and Fox (2010) is a general-purpose algorithm that
requires no tuning, is scale-invariant, is technically non-adaptive (but self-adjusting), and can
sample from target distributions with arbitrary scale and correlation structures. A random
subset of one of two vectors is moved around the state-space to influence one of two chains,
per iteration.

In this implementation, the user specifies initial values for two chains, Initial.Values (as per
usual) and SIV, which stands for secondary initial values. The secondary vector of initial values
may be left to its default, NULL, in which case it is generated with the GIV function. However, it
is recommended that the user specify SIV to be similar to, but unique from, Initial.Values,
especially in complex models where GIV may have difficulty finding suitable values, or may
arrive at very distant values. The secondary initial values are used for a second chain, which
is merely used here to help the first chain, and its results are not reported. In the “Examples”
vignette, there are three examples for which the t-walk algorithm cannot function, no matter
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how initial values are specified: Discrete Choice Multivariate Probit, Multivariate Probit,
and Multivariate Binary Probit. The reason is because a Z matrix with binary elements
is calculated as parameters, and it will never be achieved that Initial.Values and SIV

remain unique after passing through the Model specification function. The t-walk algorithm
is applicable only with continuous parameters.

The authors have provided the t-walk algorithm in R code as well as other languages. It is
called the “t-walk” for “traverse” or “thoughtful” walk, as opposed to RWM. Where adaptive
algorithms are designed to adapt to the scale and correlation structure of target distributions,
the t-walk is invariant to this structure. The step-size and direction continuously “adjust”
to the local structure. Since it is technically non-adaptive, it may also be used as a final
algorithm. The t-walk uses one of four proposal distributions or ‘moves’ per iteration, with
the following probabilities: traverse (p=0.4918), walk (p=0.4918), hop (p=0.0082), and blow
(p=0.0082).

The t-walk has four specification arguments, three of which are tuning parameters. The
authors recommend using the default values. The first specification argument is SIV, and was
explained previously. The n1 specification argument affects the size of the subset of each set of
points to adjust, and relates to the number of parameters. For example, if n1 = 4 and a model
has J = 100 parameters, then there is a p(0.04) = 4/100 probability that a point is moved that
affects each parameter, though this affects only one of two chains per iteration. Put another
way, there is a 40% chance that each parameter changes each iteration, and a 50% chance
each iteration that the observed chain is selected. The traverse specification argument, at,
affects the traverse move, which helps when some parameters are highly correlated, and the
correlation structure may change through the state-space. The traverse move is associated
with an acceptance rate that decreases as the number of parameters increases, and is the
reason that n1 is used to select a subset of parameters each iteration. Finally, the walk
specification argument, aw, affects the walk move. The authors recommend keeping these
specification arguments in n1 ∈ [2, 20], at ∈ [2, 10], and aw ∈ [0.3, 2]. The hop and blow
moves do not have specifications, but help with multimodality, ensure irreducibility, and
prevent the two chains from collapsing together. The hop move is centered on the primary
chain, and the blow move is centered on the secondary chain.

Testing in LaplacesDemon with the default specifications suggests the t-walk is very promising,
but due to the subset of proposals, it is important to note that the reported acceptance rate
indicates the proportion of iterations in which moves were accepted, but that only a subset
of parameters changed, and each only one chain is selected each iteration. Therefore, a user
who updates a high-dimensional model should find that parameter values change much less
frequently, and this requires more iterations.

The main advantage of t-walk, like the MWG family, over multivariate adaptive algorithms
such as AMM and RAM is that t-walk does not adapt to a proposal covariance matrix, which
can be limiting in random-access memory (RAM) and other respects in large dimensions,
making t-walk suitable for truly high-dimensional exploration. Other advantages are that t-
walk is invariant to all but the most extreme correlation structures, does not need to burn-in
before adapting since it technically is non-adaptive (though it ‘adjusts’ continuously), and
continuous adjustment is an advantage, so Periodicity does not need to be specified. The
advantage of t-walk over single-component algorithms such as the MWG family, is that the
model specification does not have to be evaluated a number of times equal to the number
of parameters in each iteration, allowing the t-walk algorithm to iterate significantly faster
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in high dimension. The disadvantage of t-walk, compared to these algorithms, is that more
iterations are required because only a subset of parameters can change at each iteration
(though it still updates twice the number of parameters per iteration, on average, than the
MWG family).

The t-walk algorithm seems best suited for high-dimensional problems, especially initial ex-
ploration. With enough iterations and thinning, the t-walk has produced excellent results in
testing, and it has been subjected to an extreme test here on a model with 8,000 parame-
ters. Due to limitations in computer memory (RAM), the model was updated several times
for 30,000 iterations, and the thinned results were appended together. Convergence was not
pursued.

Updating Sequential Adaptive Metropolis-within-Gibbs

The Updating Sequential Adaptive Metropolis-within-Gibbs (USAMWG) is for state-space
models (SSMs), including dynamic linear models (DLMs). After a model is fit with SAMWG
and SMWG, and information is later obtained regarding the first future state predicted by
the model, the USAMWG algorithm may be applied to update the model given the new
information. In SSM terminology, updating is filtering and predicting. The Begin argument
tells the sampler to begin updating at a specified time-period. This is more efficient than
re-estimating the entire model each time new information is obtained.

Updating Sequential Metropolis-within-Gibbs

The Updating Sequential Metropolis-within-Gibbs (USMWG) algorithm is the non-adaptive
version of the USAMWG algorithm, and is used for final sampling when updating state-space
models (SSMs).

Sampler Selection

The optimal sampler differs for each problem, and it is recommended that the Juxtapose

function is used to help select the least inefficient MCMC algorithm. Nonetheless, some
general observations here may be helpful to a user attempting to select the most appropriate
sampler for a given model. Suggestions in this section have been reached by attempting to
compare all samplers on most models in the accompanying“Examples”vignette. Comparisons
consisted of

� diminishing adaptation, if applicable

� how many iterations it took the sampler to seem to converge

� how many minutes it took the sampler to seem to converge

� how quickly the sampler improved in the beginning

� Juxtapose results based on integrated autocorrelation time (IAT)

� mixing of the chains

� whether or not the sampler arrived at the correct solution
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When the user is ready to select a general-purpose sampler, the best place to begin, in general,
is with the t-walk algorithm. It is “self-adjusting” but non-adaptive, so it does not need to
be followed up with a non-adaptive algorithm, and therefore, diminishing adaptation is not
a concern. Although the t-walk algorithm requires more iterations than other algorithms, it
iterates quickly despite its complexity. The t-walk algorithm improves more in the beginning
than other samplers (and so does AMWG, and its relatives), which is a practical concern in
applied settings. When updated with parallel chains, the t-walk is also more consistent than
many other algorithms such as AMM or RAM; parallel t-walk chains tend to lock onto the
correct solution quickly and in unison, while AMM or RAM (or many more algorithms) tend
to wander separately until enough samples have been taken, since correct adaptation requires
solving a covariance matrix. The t-walk algorithm does not need to dedicate an initial burn-in
period to non-adaptivity (and this attractive property is shared by RAM and the AMWG
family). A strong advantage of t-walk is that it is invariant to all but the most extreme
correlation structures, and that a proposal covariance matrix is not used. Single-component
algorithms such as the AMWG family do not use a proposal covariance matrix either, but
these single-component algorithms are not invariant to correlation structures. A disadvantage
of the t-walk is that, since it updates a randomly-selected subset at each iteration, the mixing
of the chains appears worse as the number of parameters increases, until a large number of
iterations and thinning is used. It is also difficult to consider the t-walk acceptance rate,
because only a subset is selected for updating at each iteration, and only one of two chains.
Considering everything above, as well as all other algorithms, the t-walk is the best general
place to start, usually having a higher number of Indepedent (thinned) Samples per Minute
(ISM), as indicated in the Juxtapose function. Now, special cases are considered.

In models with small dimensions, arbitrarily less than a couple hundred, and in general cases,
the AMM algorithm performs best. In all tests to date, AMM is an improvement over AM
and DRAM. The reason that AMM is less applicable in larger dimensions, say with thousands
of parameters, is because it must solve the proposal covariance matrix, and the number of
roughly half of its elements increases faster than the number of parameters. In models with
small dimensions, AMM converges faster in minutes than other algorithms, though it requires
more iterations than the AMWG family, and less than t-walk.

In models with large dimensions, from hundreds to thousands, there are two contenders:
the AMWG family, and t-walk. The AMWG algorithm often has faster improvement and
convergence in iterations, though this comes at the cost of time per iteration. The t-walk
algorithm iterates much faster, but only a subset of parameters is considered. Consequently,
many chains do not move for numerous iterations, and more iterations and thinning are
required. A disadvantage of t-walk in large dimensions is that significantly more random-
access memory (RAM) is required to complete more iterations. However, an advantage of
t-walk is that, provided the necessary RAM is available, it is invariant to all but the most
correlated structures, where the AMWG family is not.

In models with highly-correlated parameters, algorithms with multivariate proposals such
as AMM or RAM are probably best, though t-walk also performs well in all but the most
extreme cases. Single-component algorithms such as the AMWG family do not explicitly take
correlated parameters into account, but try to use a random-scan ordering of parameters to
improve. In models with small dimensions, as above, AMM is recommended. In models with
large dimensions, t-walk is recommended.

State-space models (SSMs), or dynamic linear models (DLMs), are a special consideration.
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The LaplacesDemon package has algorithms in the AMWG family specifically for SSMs,
such as SAMWG, SMWG, USAMWG, and USMWG. Recommendations vary with model
dimension and the correlation of parameters. If correlation is not problematic, then SAMWG
is recommended. If correlation is problematic, then AMM is recommended for models with
small dimensions, and t-walk is recommended for models with large dimensions.

Models with multimodal marginal posterior distributions are potentially troublesome for any
numerical approximation algorithm, though MCMC may be better suited in general. The
recommended strategy here is to use parallel13 RAM chains specified with the t-distribution.
If the dimension is too large for a proposal covariance matrix to be practical, then parallel
t-walk chains are recommended. Another alternative algorithm is THMC, though tuning
is difficult. Parallel chains increase the chances that different chains may settle on different
modes, and it is hoped that t-distributed proposals assist a chain in mode-switching behavior,
rather than becoming confined only to one mode. Although parallel chains may be helpful in
finding multiple modes, when the chains are combined with the Combine function for inference,
each mode probably is not represented in a proportion correct for the distribution.

Regardless of the model or algorithm, parallel chains are recommended in general, provided
the user has multiple CPUs and enough random-access memory (RAM). However, it is best
to begin with a single chain, until the user is confident in the model specification. Parallel
chains produce more posterior samples upon convergence than single chains in roughly the
same amount of time, and may facilitate the discovery of multimodal marginal posterior
distributions that would otherwise have been overlooked.

The Demonic Suggestion section of output from the Consort function also attempts to help
the user to select a sampler. There are exceptions to each of these suggestions above. In some
cases, a particular algorithm will fail to update for a given example. Hopefully this section
assists the user in selecting a sampler.

Afterward

Once the model is updated with the LaplacesDemon function, the Geweke.Diagnostic func-
tion of Geweke (1992) is iteratively applied to successively smaller tail-sections of the thinned
samples to assess stationarity (or lack of trend). When all parameters are estimated as sta-
tionary beyond a given iteration, the previous iterations are suggested to be considered as
burn-in and discarded. The number of thinned samples is divided into cumulative 10% groups,
and the Geweke.Diagnostic function is applied by beginning with each cumulative group.

The importance of Monte Carlo Standard Error (MCSE) is debated (Gelman et˜al. 2004;
Jones, Haran, Caffo, and Neath 2006). It is included in posterior summaries of LaplacesDemon,
and is one of five main criteria as a stopping rule to appease Laplace’s Demon. MCSE has been
shown to be a better stopping rule than MCMC diagnostics (Jones et˜al. 2006). Laplace’s
Demon provides a MCSE function that allows three methods of estimation: sample variance,
batch means (Jones et˜al. 2006), and Geyer’s method (Geyer 1992).

The user is encouraged to explore MCMC diagnostics (also called convergence diagnostics).
The LaplacesDemon package offers a Cumulative Sample Function (CSF), Effective Sam-
ple Size (ESS), Gelman.Diagnostic, Geweke.Diagnostic, Integrated Autocorrelation Time
(IAT), the Kolmogorov-Smirnov test (KS.Diagnostic), Monte Carlo Standard Error (MCSE),
and both the plot and PosteriorChecks functions include multiple diagnostics.

13Parallel chains are enabled with the LaplacesDemon.hpc function.
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13. Software Comparisons

To the best of my knowledge, there currently is no other software that provides a complete
Bayesian environment. However, there is now a wide variety of software to perform MCMC for
Bayesian inference. Perhaps the most common is BUGS, which is an acronym for Bayesian
Using Gibbs Sampling (Lunn, Spiegelhalter, Thomas, and Best 2009). BUGS has several
versions. A popular variant is JAGS, which is an acronym for Just Another Gibbs Sampler
(Plummer 2003). The only other comparisons made here are with some R packages (AMCMC,
mcmc, MCMCpack), and SAS. Many other R packages use MCMC, but are not intended
as general-purpose MCMC software. Hopefully, there are not any general-purpose MCMC
packages in R have been overlooked here.

WinBUGS has been the most common version of BUGS, though it is no longer developed.
BUGS is an intelligent MCMC engine that is capable of numerous MCMC algorithms, but
prefers Gibbs sampling. According to its user manual (Spiegelhalter et˜al. 2003), WinBUGS
1.4 uses Gibbs sampling with full conditionals that are continuous, conjugate, and standard.
For full conditionals that are log-concave and non-standard, derivative-free Adaptive Rejection
Sampling (ARS) is used. Slice sampling is selected for non-log-concave densities on a restricted
range, and tunes itself adaptively for 500 iterations. Seemingly as a last resort, an adaptive
MCMC algorithm is used for non-conjugate, continuous, full conditionals with an unrestricted
range. The standard deviation of the Gaussian proposal distribution is tuned over the first
4,000 iterations to obtain an acceptance rate between 20% and 40%. Samples from the
tuning phases of both Slice sampling and adaptive MCMC are ignored in the calculation of
all summary statistics, although they appear in trace-plots.

The current version of BUGS, OpenBUGS, allows the user to specify an MCMC algorithm
from a long list for each parameter (Lunn et˜al. 2009). This is a step forward, overcoming
what is perceived here as an over-reliance on Gibbs sampling14. However, if the user does not
customize the selection of the MCMC sampler, then Gibbs sampling will be selected for full
conditionals that are continuous, conjugate, and standard, just as with WinBUGS.

Based on years of almost daily experience with WinBUGS and JAGS, which are excellent
software packages for Bayesian inference, Gibbs sampling is selected too often in these auto-
matic, MCMC engines. An advantage of Gibbs sampling is that the proposals are accepted
with probability 1, so convergence “may” be faster (or it may not, when considering algorith-
mic efficiency, such as in the Juxtapose function), whereas the RWM algorithm backtracks
due to its random-walk behavior. Unfortunately, Gibbs sampling is not as generalizable, be-
cause it can function only when certain conjugate distributional forms are known a priori
(Gilks and Roberts 1996). Moreover, Gibbs sampling was avoided for Laplace’s Demon be-
cause it doesn’t perform well with correlated variables or parameters, which usually exist,
and I have been bitten by that bug many times.

The BUGS and JAGS families of MCMC software are excellent. BUGS is capable of several
things that Laplace’s Demon is not. BUGS allows the user to specify the model graphically
as a directed acyclic graph (DAG) in Doodle BUGS. BUGS has other algorithms not yet in
Laplace’s Demon, such as reversible-jump. Many journal articles and textbooks in several

14To quote Geyer (2011), “many naive users still have a preference for Gibbs updates that is entirely unwar-
ranted. If I had a nickel for every time someone had asked for help with slowly converging MCMC and the
answer had been to stop using Gibbs, I would be rich”.
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fields have been published that use BUGS, and many include example code15.

Advantages of LaplacesDemon over JAGS and WinBUGS (not much experience with Open-
BUGS) are: Bayes factors, comparison of algorithmic inefficiency, confidence in results (corre-
lations do not cause trouble like in Gibbs), elicitation, enivornment is part of R for data manip-
ulation and posterior analysis, estimation of random-access memory (RAM) usage, examples
in documentation are more plentiful, faster with large data sets (when model specification
avoids loops), Importance (Variable and Parameter), Laplace Approximation, log-posterior
is available, likelihood-free estimation, marginal likelihood calculated automatically, modes
(functions for multimodality), missing values do not require initial values (unless predicting
predictors with missing predictors), model specification gives the user complete control on how
everything is calculated (including the log-likelihood, posterior, etc., and “tricks” do not have
to be used), more MCMC algorithms, posterior predictive checks and discrepancy statistics,
predict function for posterior predictive checks or scoring new data sets, suggested code is
provided at the end of each run, trap errors do not exist or occur, and weights can be applied
easily (such as weighting records in the likelihood).

The MCMC algorithms in Laplace’s Demon are generalizable, and generally robust to cor-
relation between variables or parameters. With larger data sets, there is no comparison:
Laplace’s Demon will deliver a converged model long before BUGS or JAGS. When corre-
lations are high, almost any algorithm in Laplace’s Demon will perform much better than
Gibbs sampling.

At the time this article was written, the AMCMC package in R is unavailable on CRAN, but
may be downloaded from the author’s website16. This download is best suited for a Linux,
Mac, or UNIX operating system, because it requires the gcc C compiler, which is unavailable
in Windows. It performs adaptive Metropolis-within-Gibbs (Roberts and Rosenthal 2009;
Rosenthal 2007), and uses C language, which results in significantly faster sampling, but only
when the model specification function is also programmed in C. This algorithm is included
in LaplacesDemon, where it is referred to as AMWG, for Adaptive Metropolis-within-Gibbs.
The algorithm is excellent, except it is associated with long run-times per iteration for large
and complex models.

Also in R, the mcmc package (Geyer 2010) offers RWM with multivariate Gaussian proposals
and allows batching, as well as a simulated tempering algorithm, but it does not have any
adaptive algorithms.

The MCMCpack package (Martin, Quinn, and Park 2012) in R takes a canned-function
approach to MCMC, which is convenient if the user needs the specific form provided, but is
otherwise not generalizable. Each canned function has a MCMC algorithm that is specialized
to it, though details seem not to be documented, so the user does not know exactly how the
model is updated. General-purpose RWM is included, but adaptive algorithms are not. It
also offers the option of Laplace Approximation to optimize initial values.

In SAS 9.2 (SAS Institute Inc. 2008), an experimental procedure called PROC MCMC has been
introduced. It is undeniably a rip-off of BUGS (including its syntax), though OpenBUGS is
much more powerful, tested, and generalizable. Since SAS is proprietary, the user cannot see
or manipulate the source code, and should expect much more from it than OpenBUGS or any
open-source software, given the absurd price.

15The first published journal article to use LaplacesDemon is Gallo, Miller, and Fender (2012).
16AMCMC is available from J. S. Rosenthal’s website at http://www.probability.ca/amcmc/

http://www.probability.ca/amcmc/
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14. Large Data Sets and Speed

An advantage of Laplace’s Demon compared to other MCMC software is that the model is
specified in a way that takes advantage of R’s vectorization. BUGS and JAGS, for example,
require models to be specified so that each record of data is processed one by one inside a
‘for loop’, which significantly slows updating with larger data sets. In contrast, Laplace’s
Demon avoids ‘for loops’ and apply functions wherever possible17. For example, a data set of
100,000 rows and 16 columns (the dependent variable, a column vector of 1’s for the intercept,
and 14 predictors) was updated 1,000 times with the AMM algorithm (Adaptive=500 and
Periodicity=100), and the initial value for each β set to 0.1 to bypass Laplace Approxima-
tion. This took 0.35 minutes with Laplace’s Demon, according to a simple, linear regression18.
It was nowhere near convergence, but updating the same model with the same data for 1,000
iterations took 15.02 minutes in JAGS 3.1.0.

However, the speed with which an iteration is estimated is not a good, overall criterion of
performance. For applied purposes, Laplace’s Demon asserts that the best performance is
measured in MCMC algorithmic inefficiency with the Juxtapose function, using integrated
autocorrelation time (IAT). To use this for this comparison, however, would require updating
both models to convergence, and so run-time is reported instead.

For example, a Gibbs sampling algorithm with uncorrelated target distributions should con-
verge in far fewer iterations than an algorithm based on random-walk behavior, such as many
(but not all) algorithms in Laplace’s Demon. Depending on circumstances, Laplace’s Demon
should handle larger data sets better, and it may estimate each iteration faster, but it may
also take more iterations to converge19.

A lower-level language such as C can be much faster for MCMC, but only when the model
specification function is vectorized, which is currently not the case, citing examples such as
BUGS, JAGS, and SAS. That style of software is fast only with small sample sizes. Com-
putationally, the future of MCMC algorithms should be in vectorizing model specifications
in lower-level languages. And here’s the trick: software developers must make it feasible for
an ordinary user to specify a model with vast flexibility when unfamiliar with the lower-level
language. Until that day arrives, Laplace’s Demon currently leads the way in general-purpose
Bayesian inference for users not specialized in vectorization with lower-level languages.

15. Conclusion

The LaplacesDemon package is a significant contribution toward Bayesian inference in R. In

17However, when ‘for loops’ or apply functions must be used, Laplace’s Demon is typically slower than
BUGS.

18These updates were performed on a 2010 System76 Pangolin Performance laptop with 64-bit Debian Linux
and 8GB RAM.

19To continue this example, JAGS may be guessed to take 20,000 iterations or 5.01 hours, and LaplacesDemon

may take 400,000 iterations or 2.33 hours, and also have less autocorrelation in the chains due to more thinning.
The slowest adaptive algorithm in Laplace’s Demon is AMWG, which updated in 5.04 minutes, and should
finish around 50,000 iterations or 4.2 hours. As sample size increases and when for loops are controlled,
Laplace’s Demon doesn’t just outperform, but embarrasses the looping-style model specification approach of
BUGS and its derivatives to the point of absurdity. Increase data size to a million records, and Laplace’s
Demon completes 1,000 iterations in around 15 minutes, while JAGS is estimated to take over 10 days! This
is what is meant by absurdity. So much for C or lower-level languages in that style of programming model
specification functions!
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turn, contributions toward the development of Laplace’s Demon are welcome. Please send
an email to statisticat@gmail.com with constructive criticism, reports of software bugs, or
offers to contribute to Laplace’s Demon.
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