
Hmsc 3.0: Getting started with Hmsc: univariate models
Gleb Tikhonov, Oystein H. Opedal, Nerea Abrego, Aleksi Lehikoinen, Melinda M. J. de

Jonge, Jari Oksanen & Otso Ovaskainen
17 September 2019

Introduction

The Hierarchical Modelling of Species Communities (HMSC) framework is a statistical framework for analysis
of multivariate data, typically from species communities. Here, we demonstrate how to get started with
Hmsc-R. While HMSC is primarily meant for multivariate data, this vignette illustrates the basics with
univariate models.

To get Hmsc-R in use, you need to first install it [https://github.com/hmsc-r/HMSC] and then load it.

library(Hmsc)
library(MASS)

We set the random number seed to make the results presented here reproducible.

set.seed(1)

Linear model

As the first case study, we use HMSC to fit a univariate linear model. To relate the results to something
that we expect the reader to be familiar with, we also apply the basic lm function to the same data and
compare the results.

Generating simulated data

For illustrative purposes, we use simulated data for which we know the parameter values.

n = 50
x = rnorm(n)
alpha = 0
beta = 1
sigma = 1
L = alpha + beta*x
y = L + rnorm(n, sd = sigma)
plot(x, y, las=1)

Here n is the number of data points, x is a continuous covariate, alpha and beta are the true parameters
for intercept and slope, L is the linear predictor, and y is the response variable. We note that the data
are simulated by the standard linear model with normally distributed residuals, yi = α + βxi + εi, where
εi ∼ N(0, σ2).

1

https://github.com/hmsc-r/HMSC

−2 −1 0 1

−3

−2

−1

0

1

2

3

4

x

y

Figure 1: Scatterplot of simulated data.

Fitting models and looking at parameter estimates

The standard way to analyse these kinds of data with maximum likelihood inference is to use the lm function:

df = data.frame(x,y)
m.lm = lm(y ~ x, data=df)
summary(m.lm)

##
Call:
lm(formula = y ~ x, data = df)
##
Residuals:
Min 1Q Median 3Q Max
-1.92760 -0.66898 -0.00225 0.48768 2.34858
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1219 0.1394 0.875 0.386
x 0.9545 0.1681 5.679 7.73e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.9781 on 48 degrees of freedom
Multiple R-squared: 0.4019, Adjusted R-squared: 0.3894
F-statistic: 32.25 on 1 and 48 DF, p-value: 7.726e-07

We note that, as expected, the parameter estimates roughly correspond to the values we assumed for the
intercept (α = 0) and slope (β = 1) when generating the data.

To conduct the analogous analyses with HMSC, we first construct the model as

2

Y = as.matrix(y)
XData = data.frame(x = x)
m = Hmsc(Y = Y, XData = XData, XFormula = ~x)

While the lm function constructs the model and fits it at the same time, the Hmsc function only constructs
the model object. To fit the HMSC model with Bayesian inference, we use the sampleMcmc function. When
calling sampleMcmc, we need to decide how many chains to sample (nChains), how many samples to obtain
per chain (samples), how long transient (also called burn-in) to include (transient), and how frequently
we wish to see the progress of the MCMC sampling (verbose). MCMC sampling can take a lot of time, so
we have included two options below. By setting test.run = TRUE, the entire .Rmd version of the vignette
can be run quickly, but the parameter estimates will not be reliable. However, that does not matter if the
aim of running the vignette is e.g. to get familiar with the syntax of HMSC-R, to examine the structure of
the constructed objects and the inputs and outputs of the functions. When setting test.run = FALSE, a
much larger amount of MCMC sampling is conducted, and running the .Rmd version of the vignette will
reproduce the results shown in the .pdf version of the vignette.

nChains = 2
test.run = FALSE
if (test.run){

#with this option, the vignette runs fast but results are not reliable
thin = 1
samples = 10
transient = 5
verbose = 5

} else {
#with this option, the vignette evaluates slow but it reproduces the results of the
#.pdf version
thin = 5
samples = 1000
transient = 500*thin
verbose = 500*thin

}

We are now ready to call sampleMcmc and thus estimate the model parameters.

m = sampleMcmc(m, thin = thin, samples = samples, transient = transient,
nChains = nChains, verbose = verbose)

[1] "Setting updater$GammaEta=FALSE due to absence of random effects included to the model"
[1] "Computing chain 1"
[1] "Chain 1, iteration 2500 of 7500, (transient)"
[1] "Chain 1, iteration 5000 of 7500, (sampling)"
[1] "Chain 1, iteration 7500 of 7500, (sampling)"
[1] "Computing chain 2"
[1] "Chain 2, iteration 2500 of 7500, (transient)"
[1] "Chain 2, iteration 5000 of 7500, (sampling)"
[1] "Chain 2, iteration 7500 of 7500, (sampling)"

As briefly explained above, the parameters (thin, samples, transient, nChains) control how the posterior
distribution is sampled with the MCMC method. We will return to this issue soon. But the main thing is
that now the model object m also includes estimated parameters, in the same way as the object m.lm includes
the parameters estimated by the lm function.

3

To look at the parameter estimates, we extract the posterior distribution from the model object and convert
it into a coda object.

mpost = convertToCodaObject(m)
summary(mpost$Beta)

##
Iterations = 2505:7500
Thinning interval = 5
Number of chains = 2
Sample size per chain = 1000
##
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
##
Mean SD Naive SE Time-series SE
B[(Intercept) (C1), sp1 (S1)] 0.1174 0.1496 0.003345 0.003345
B[x (C2), sp1 (S1)] 0.9400 0.1896 0.004239 0.004240
##
2. Quantiles for each variable:
##
2.5% 25% 50% 75% 97.5%
B[(Intercept) (C1), sp1 (S1)] -0.1672 0.01677 0.1157 0.2143 0.4138
B[x (C2), sp1 (S1)] 0.5684 0.81220 0.9355 1.0630 1.3107

To assess model fit in terms of R2, we apply the evaluateModelFit function to the posterior predictive
distribution computed by the function computePredictedValues.

preds = computePredictedValues(m)
evaluateModelFit(hM=m, predY=preds)

$RMSE
[1] 0.9584505
##
$R2
[1] 0.4018712

We note that the parameter estimates and R2 given by HMSC are highly consistent with those given by the lm
function. We note, however, that the two approaches are not identical as lm applies the maximum likelihood
framework (and thus e.g. yields confidence intervals) whereas HMSC applies the Bayesian framework (and
thus e.g. assumes prior distributions and yields credible intervals).

Model fit can be evaluated in many ways. The second measure of model fit returned here by the
evaluateModelFit function is RMSE, i.e. the root-mean-square error.

Checking MCMC diagnostics

Let us now return to the parameters that guide posterior sampling in the MCMC algorithm. We first plot
the trace plots of the β-parameters.

4

plot(mpost$Beta)

The black and red lines show the (nChains=2) independent MCMC chains. Both chains start from iteration
2501, as by setting transient=2500 we have chosen to ignore iterations before that as a possible transient.
The chains have run in total 7500 iterations each, as we selected to obtain 1000 samples, and we have
recorded every 5:th step (thin=5) of the iterations.

If running the ‘test.run = FALSE’ version of the vignette, the trace-plots look essentially as good as they
can ever look like. First of all, the two chains yield essentially identical results. Second, the chains mix very
well, i.e. they go fast up and down without any apparent autocorrelation. Third, they seem to have reached
a stationary distribution, as e.g. the first half of the recorded iterations looks statistically identical to the
second half of the recorded iterations.

We may also evaluate MCMC convergence more quantitatively in terms of effective sample sizes and potential
scale reduction factors.

effectiveSize(mpost$Beta)

B[(Intercept) (C1), sp1 (S1)] B[x (C2), sp1 (S1)]
2000 2000

gelman.diag(mpost$Beta,multivariate=FALSE)$psrf

Point est. Upper C.I.
B[(Intercept) (C1), sp1 (S1)] 1.0007252 1.006255
B[x (C2), sp1 (S1)] 0.9995414 1.000305

We observe that the effective sample sizes are very close to the theoretical value of the actual number of
samples, which is 2000 (1000 per chain). This indicates that there is very little autocorrelation among
consecutive samples. The potential scale reduction factors are very close to one, which indicates that two
chains gave consistent results, as suggested by visual inspection of the trace plots.

In summary, the MCMC diagnostics did not indicate any problems with MCMC convergence. This means
that the posterior sample is likely to be representative of the true posterior distribution, and thus the inference
from the model can be trusted. If the MCMC convergence would have indicated problems, we should have
refitted the model using different parameters. If the trace-plots would have suggested the presence of a
transient (the early iterations would have looked different from the later iterations), we should have increased
the amount of transient iterations to be discarded. If the chains would have shown autocorrelations and/or
differed from each other, we should have increased the number of iterations. This can be done by increasing
either the number of samples, or by keeping the number of samples fixed but increasing thinning. We
recommend the latter, as increasing the number of samples can make the model objects very big and lead
to computationally expensive post-processing. If one needs to run a million iterations, we recommend doing
so by samples=1000 and thin=1000 rather than samples=1000000 and thin=1. In our view, 1000 samples
are typically sufficient to evaluate e.g. posterior means and credible intervals with sufficient accuracy.

Checking the assumptions of the linear model

When applying the linear model, it is a good practice to examine if the assumptions of the linear model are
upheld. In the context of the lm function, this can be done e.g. by constructing the following diagnostic
plots.

5

3000 4000 5000 6000 7000

−
0.

2
0.

2
0.

4
0.

6

Iterations

Trace of B[(Intercept) (C1), sp1 (S1)]

−0.4 0.0 0.2 0.4 0.6 0.8
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

Density of B[(Intercept) (C1), sp1 (S1)]

N = 1000 Bandwidth = 0.03417

3000 4000 5000 6000 7000

0.
2

0.
6

1.
0

1.
4

Iterations

Trace of B[x (C2), sp1 (S1)]

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

Density of B[x (C2), sp1 (S1)]

N = 1000 Bandwidth = 0.04338

Figure 2: Posterior trace plots of Beta parameters.

6

Histogram of nres.lm

nres.lm

F
re

qu
en

cy

−2 −1 0 1 2 3

0

2

4

6

8

10

12

−2 −1 0 1

−2

−1

0

1

2

preds.lm
nr

es
.lm

Figure 3: Residuals of the linear model fitted with the lm() function, shown as a histogram and as a function
of the fitted values.

nres.lm = rstandard(m.lm)
preds.lm = fitted.values(m.lm)
par(mfrow=c(1,2))
hist(nres.lm, las = 1)
plot(preds.lm,nres.lm, las = 1)
abline(a=0,b=0)

The first plot shows that the residuals conform well to the assumption of normality, and the second plot
shows that the residuals are homoscedastic. This is not surprising, as the data were simulated from the
linear model.

Structural model assumptions can be checked with HMSC basically in the same way as with the standard
linear model. However, while for models fitted with the lm function simply typing plot(m.lm) would provide
many diagnostic plots “automatically”, with HMSC there is no such built-in functionality. This is because
typical applications of HMSC relate to much more complex models where it is not straightforward to decide
what a “standard” diagnostic plot should be. To generate diagnostic plots with HMSC, we first summarize
the posterior predictive distribution into posterior mean and then extract and standardize the residuals.

preds.mean = apply(preds, FUN=mean, MARGIN=1)
nres = scale(y-preds.mean)
par(mfrow=c(1,2))
hist(nres, las = 1)
plot(preds.mean,nres, las = 1)
abline(a=0,b=0)

These diagnostic plots are essentially identical to those obtained for the linear model fitted with the lm
function. This is to be expected, as we observed earlier that the parameter estimates (and hence the fitted
values and residuals) were consistent between the two approaches.

7

Histogram of nres

nres

F
re

qu
en

cy

−2 −1 0 1 2

0

2

4

6

8

10

12

−2.0 −1.0 0.0 1.0

−2

−1

0

1

2

preds.mean
nr

es
Figure 4: Residuals of the linear model fitted with HMSC, shown as a histogram and as a function of the
fitted values.

Generalized linear models

Above, we have fitted a linear model with normally distributed residuals. As this has been set as the default
option for HMSC, we defined our model above simply as

m = Hmsc(Y=Y, XData=XData, XFormula=~x)

whereas the full version that makes the assumption of normality transparent would be

m = Hmsc(Y=Y, XData=XData, XFormula=~x, distr = "normal")

In addition to the normal distribution, HMSC-R 3.0 allows three other types of link functions and error
distributions: probit model for presence-absence data, and Poisson and lognormal Poisson models for count
data. We note that while also many other kinds of link functions and error distributions can be quite
straightforwardly implemented in the univariate framework, this is not the case for HMSC due to its multi-
variate and hierarchical nature. Thus, implementing other kinds of link functions and error distributions is
a challenge for the future.

Probit model for presence-absence data

A common case with community ecology data is that of presence-absence data, meaning that the response
variable is either 0 (the species is absent) or 1 (the species is present). In HMSC-R, such data can be
modelled with probit regression. For those readers not familiar with probit regression, we note that it is
similar to logistic regression, it just applies a slightly different link-function (probit instead of logit). We
next repeat the above exercise but do so for data that conform to the assumptions of probit regression.

8

−2 −1 0 1

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Figure 5: Scatterplot of simulated binary data.

y = 1*(L+ rnorm(n, sd = 1)>0)
plot(x,y, las = 1)

Y=as.matrix(y)
m = Hmsc(Y=Y, XData=XData, XFormula=~x, distr="probit")
verbose = 0
m = sampleMcmc(m, thin = thin, samples = samples, transient = transient,

nChains = nChains, verbose = verbose)

[1] "Setting updater$GammaEta=FALSE due to absence of random effects included to the model"
[1] "Computing chain 1"
[1] "Computing chain 2"

mpost = convertToCodaObject(m)
summary(mpost$Beta)

##
Iterations = 2505:7500
Thinning interval = 5
Number of chains = 2
Sample size per chain = 1000
##
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
##
Mean SD Naive SE Time-series SE
B[(Intercept) (C1), sp1 (S1)] -0.07529 0.2110 0.004719 0.004928
B[x (C2), sp1 (S1)] 1.38426 0.3511 0.007851 0.009873
##
2. Quantiles for each variable:

9

##
2.5% 25% 50% 75% 97.5%
B[(Intercept) (C1), sp1 (S1)] -0.4899 -0.2168 -0.08244 0.07224 0.3362
B[x (C2), sp1 (S1)] 0.7441 1.1419 1.36635 1.60725 2.1332

effectiveSize(mpost$Beta)

B[(Intercept) (C1), sp1 (S1)] B[x (C2), sp1 (S1)]
1843.548 1266.925

gelman.diag(mpost$Beta, multivariate=FALSE)$psrf

Point est. Upper C.I.
B[(Intercept) (C1), sp1 (S1)] 1.004030 1.018935
B[x (C2), sp1 (S1)] 1.001723 1.010665

preds = computePredictedValues(m)
evaluateModelFit(hM=m, predY=preds)

$RMSE
[1] 0.3893062
##
$AUC
[1] 0.8486312
##
$TjurR2
[1] 0.3695085

We note that we have now set verbose = 0 to suppress the output on progress of MCMC sampling. Generally
we recommend the user not to set verbose = 0 to see that MCMC sampling is moving as it should and to
be able to estimate how long it will take before the sampling finishes. We have suppressed the output just
to make the vignette a bit more compact.

Compared to the case of the linear model, we observe that the effective sample size is somewhat smaller
(achieving MCMC convergence is generally more challenging in non-normal models), and the parameter
estimates include more uncertainty (0/1 data are less informative than normally distributed data). We
further note that instead of the R2 of the linear model, model fit is now evaluated in terms of AUC and Tjur
R2.

Poisson model for count data

Another common case with community ecology data is that the response variable is a non-negative integer
0,1,2,3,. . . , representing the count of individuals. In HMSC-R, such data can be modelled with Poisson
regression. We next repeat the above exercise but do so for data that conform the assumptions of Poisson
regression.

y = rpois(n, lambda = exp(L))
plot(x,y,las=1)

10

−2 −1 0 1

0

1

2

3

4

5

x

y

Figure 6: Scatterplot of simulated count data.

Y=as.matrix(y)
m = Hmsc(Y=Y, XData=XData, XFormula=~x, distr="poisson")
m = sampleMcmc(m, thin = thin, samples = samples, transient = transient,

nChains = nChains, verbose = verbose)

[1] "Setting updater$GammaEta=FALSE due to absence of random effects included to the model"
[1] "Computing chain 1"
[1] "Computing chain 2"

mpost = convertToCodaObject(m)
summary(mpost$Beta)

##
Iterations = 2505:7500
Thinning interval = 5
Number of chains = 2
Sample size per chain = 1000
##
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
##
Mean SD Naive SE Time-series SE
B[(Intercept) (C1), sp1 (S1)] -0.1097 0.1719 0.003843 0.03395
B[x (C2), sp1 (S1)] 0.8916 0.1590 0.003556 0.02213
##
2. Quantiles for each variable:
##
2.5% 25% 50% 75% 97.5%
B[(Intercept) (C1), sp1 (S1)] -0.4734 -0.2048 -0.1035 0.008984 0.1892
B[x (C2), sp1 (S1)] 0.6058 0.7882 0.8794 0.989642 1.2329

11

effectiveSize(mpost$Beta)

B[(Intercept) (C1), sp1 (S1)] B[x (C2), sp1 (S1)]
24.98361 53.37282

gelman.diag(mpost$Beta, multivariate=FALSE)$psrf

Point est. Upper C.I.
B[(Intercept) (C1), sp1 (S1)] 1.201294 1.699221
B[x (C2), sp1 (S1)] 1.288832 1.992065

preds = computePredictedValues(m, expected = FALSE)
evaluateModelFit(hM=m, predY=preds)

$RMSE
[1] 1.131371
##
$SR2
[1] 0.3186353
##
$O.AUC
[1] 0.7700535
##
$O.TjurR2
[1] 0.2043422
##
$O.RMSE
[1] 0.4245995
##
$C.SR2
[1] 0.2301828
##
$C.RMSE
[1] 1.181248

In this case, the MCMC diagnostics are much worse than for the probit model. Unfortunately, achieving
MCMC convergence for a Poisson model in the HMSC context is highly challenging. To get an unbiased
sample from the posterior and results that can be fully trusted, one should increase the thinning and thus
run the model longer.

For the Poisson model, many kinds of measures of model fit are given. The measure SR2 can be viewed
as a pseudo-R2. Whereas the R2 of a linear model can be computed as the squared Pearson correlation
between predicted and true values, we have computed SR2 as the squared Spearman correlation between
observed and predicted values. As the Poisson model predicts counts, it can be used to separate whether
a species is present (count>0) or absent (count=0). For evaluating how well species occurrences (indicated
by O.) are predicted, the same measures (AUC and Tjur R2) can be computed as for the probit model. It
is also of interest to examine how well the model is able to predict abundance variation in cases where
the species is present, and thus ignoring absences. This is done with the measures indicated by C., where
C refers to “conditional on presence”. Note that here we have generated the predictions with the option
expected = FALSE. In this case, the predictions are not expected values (e.g. on average we expect to see
2.3 individuals), but a posterior predictive distribution of data, i.e., actual counts 0,1,2,3,. . . that include
the Poisson sampling error. We have selected expected = FALSE so that presence-absences can be inferred
from the predictions, enabling us to compute also the O.and C. variants of measures of model fit.

12

−2 −1 0 1

0

10

20

30

40

50

x

y

Figure 7: Scatterplot of simulated lognormal count data.

Lognormal Poisson model for count data

The Poisson model is often not a good model for ecological count data as it does not allow sufficient amount
of variation around the expectation. To allow for more variation, HMSC-R includes the possibility to fit
a lognormal Poisson model. We note that another standard option would be to fit the Negative Binomial
model, but this model is not included currently in HMSC-R. We next repeat the above exercise but do so
for data that conform to the assumptions of lognormal Poisson regression.

y = rpois(n, lambda = exp(L+rnorm(n, sd=2)))
plot(x,y, las = 1)

Y=as.matrix(y)
m = Hmsc(Y=Y, XData=XData, XFormula=~x, distr="lognormal poisson")
m = sampleMcmc(m, thin = thin, samples = samples, transient = transient,

nChains = nChains, verbose = verbose)

[1] "Setting updater$GammaEta=FALSE due to absence of random effects included to the model"
[1] "Computing chain 1"
[1] "Computing chain 2"

mpost = convertToCodaObject(m)
summary(mpost$Beta)

##
Iterations = 2505:7500
Thinning interval = 5
Number of chains = 2
Sample size per chain = 1000
##
1. Empirical mean and standard deviation for each variable,

13

plus standard error of the mean:
##
Mean SD Naive SE Time-series SE
B[(Intercept) (C1), sp1 (S1)] -0.2412 0.3443 0.007698 0.03092
B[x (C2), sp1 (S1)] 0.2687 0.3638 0.008135 0.01247
##
2. Quantiles for each variable:
##
2.5% 25% 50% 75% 97.5%
B[(Intercept) (C1), sp1 (S1)] -0.9140 -0.46409 -0.2272 -0.008389 0.4236
B[x (C2), sp1 (S1)] -0.4621 0.02857 0.2624 0.502694 1.0094

effectiveSize(mpost$Beta)

B[(Intercept) (C1), sp1 (S1)] B[x (C2), sp1 (S1)]
128.5780 865.1112

gelman.diag(mpost$Beta, multivariate=FALSE)$psrf

Point est. Upper C.I.
B[(Intercept) (C1), sp1 (S1)] 1.037644 1.143579
B[x (C2), sp1 (S1)] 1.008206 1.041867

preds = computePredictedValues(m, expected = FALSE)
evaluateModelFit(hM=m, predY=preds)

$RMSE
[1] 9.633276
##
$SR2
[1] -0.03059761
##
$O.AUC
[1] 0.5194805
##
$O.TjurR2
[1] -7.792208e-05
##
$O.RMSE
[1] 0.4980243
##
$C.SR2
[1] -0.06697178
##
$C.RMSE
[1] 12.54679

We note that the MCCM mixing for the lognormal Poisson model is again much worse that for the normal
model. As illustrated above, the same types of output can be given for the lognormal Poisson model as for
the standard Poisson model.

14

Hurdle models

Ecological count data are often dominated by zeros, i.e. they are zero-inflated. One standard model that
can be fitted to such data is the Zero-Inflated Poisson model. While HMSC-R 3.0 does not include this or
other zero-inflated models, we note that it is always possible to apply the closely-related Hurdle approach.
In the Hurdle model, one analyses separately occurrence data 1*(Y>0) and abundance conditional on pres-
ence Y[Y==0] = NA. We note that these two aspects of the data (occurrence and abundance conditional on
presence) are statistically independent of each other, and thus it is interesting to compare results obtained
for them, e.g. to see if variation in occurrence and variation in abundance are explained by the same envi-
ronmental covariates. In HMSC-R 3.0, occurrence data are analysed by the probit model, whereas the best
model for abundance (conditional on presence) depends on the type of the data.

How to select the best model?

When fitting generalized linear models in the maximum likelihood framework, a common way of comparing
models is to use AIC or some other information criteria. For example, in the case of count data, AIC could
be used to compare the Poisson model, the Negative Binomial model, and the Zero-Inflated Poisson model.
In the case of HMSC-R, model selection is recommended to be conducted through evaluating predictive
performance through cross-validation. We illustrate cross-validation strategies below in the context of mixed
models.

Mixed models: fixed and random effects

We next turn to mixed models, i.e. models with both fixed and random effects. For simplicity, we consider
here linear models only, even if similar analyses could be done with probit, Poisson or lognormal Poisson
models.

Hierarchical structure: sampling units within plots

We first consider a hierarchical study design in which 100 sampling units belonging to a discrete set of np=10
plots. We assume that the plots have an additive effect to the response variable, i.e. we consider a random
intercept model.

n = 100
x = rnorm(n)
alpha = 0
beta = 1
sigma = 1
L = alpha + beta*x
np = 10
sigma.plot = 1
sample.id = 1:n
plot.id = sample(1:np, n, replace = TRUE)
ap = rnorm(np, sd = sigma.plot)
a = ap[plot.id]
y = L + a + rnorm(n, sd = sigma)
plot.id = as.factor(plot.id)
plot(x,y,col = plot.id, las = 1)

15

−2 −1 0 1 2

−2

0

2

4

6

x

y

Figure 8: Scatterplot of simulated data originating from ten plots, as indicated by colors.

XData = data.frame(x = x)
Y = as.matrix(y)

In the maximum likelihood framework, one option for fitting a mixed model would be to apply the lmer
function as lmer(y~x+(1|plot.id),data=da). Fitting a similar model with HMSC can be done as follows.

studyDesign = data.frame(sample = as.factor(sample.id), plot = as.factor(plot.id))
rL = HmscRandomLevel(units = studyDesign$plot)
m = Hmsc(Y=Y, XData=XData, XFormula=~x,

studyDesign=studyDesign, ranLevels=list("plot"=rL))
m = sampleMcmc(m, thin = thin, samples = samples, transient = transient,

nChains = nChains, verbose = verbose)

[1] "Computing chain 1"
[1] "Computing chain 2"

Here we have included two new input parameters. First, studyDesign defines the nature of the study design,
here the individual sampling units and the plots to which the sampling units belong. Second, ranLevels
includes a list of those aspects of the study design to which a random effect will be included, here the plot.
The random effect object rL was created with the function HmscRandomLevel assuming the default options
for latent variables. We note that in typical applications of HMSC, the data are multivariate, and the latent
factor approach is used to reduce dimensionality of residual association matrices by having a smaller number
of latent factors than the number of species. As we assume a univariate model, it is not necessary to have
more than one latent variable, and in general it is not necessary to have more latent variables than there
are speciess. This is because having the same number of latent variables as species is sufficient to generate a
full rank species association matrix. For this reason, when calling Hmsc, the default option is to reduce the
maximal number of factors to be at most the number of species, and thus in the univariate case the above
script fixes the number of the underlying latent factors to one.

Let us now evaluate model fit as we have done above.

16

preds = computePredictedValues(m)
MF = evaluateModelFit(hM=m, predY=preds)
MF$R2

[1] 0.7366229

Here, we have predicted the same data that were used to fit the model, and thus R2 measures explanatory
power rather than predictive power. If we would add more predictors, we could make R2 approach one even
if the predictors would represent just random noise, a phenomenon known as overfitting. For this reason,
the predictive power of the model should be evaluated more critically by cross-validation.

Examples of cross-validation strategies

To apply cross-validation, we first divide the samples randomly into a number of groups (‘folds’). For
example, we may apply two-fold cross-validation across the samples by making the following partition

partition = createPartition(m, nfolds = 2, column = "sample")
partition

[1] 1 2 2 2 2 1 1 2 2 1 1 2 1 1 2 2 2 2 1 1 1 2 1 2 2 2 1 2 2 2 2 1 2 1 2
[36] 1 1 1 1 2 1 2 1 2 2 1 2 2 1 2 2 1 1 2 1 2 1 1 2 1 2 1 1 1 1 1 1 2 1 2
[71] 1 2 2 2 2 1 1 1 1 1 2 2 1 2 2 2 1 2 1 2 1 2 1 1 1 2 1 2 2 1

The idea of cross-validation is that when making predictions for a particular fold, data from that fold is not
used for parameter estimation. Model fitting and predictions are made separately for each fold, so that in
the end a prediction is obtained for each sampling unit.

preds = computePredictedValues(m, partition = partition)

[1] "Cross-validation, fold 1 out of 2"
[1] "Computing chain 1"
[1] "Computing chain 2"
[1] "Cross-validation, fold 2 out of 2"
[1] "Computing chain 1"
[1] "Computing chain 2"

MF = evaluateModelFit(hM = m, predY = preds)
MF$R2

[1] 0.6721216

As expected, the cross-validation-based predictive R2 is lower than the explanatory R2.

Performing the two-fold cross-validation required fitting the model twice, and more generally performing
k-fold cross-validation requires fitting the model k times, which can become computationally intensive. For
this reason, we have applied here two-fold cross-validation rather than e.g. leave-one-out cross-validation.
Increasing the number of folds means that more data are available for fitting the model, which can be
expected to lead to greater predictive performance. For this reason, the predictive power estimated by
two-fold cross-validation is likely to underestimate the true predictive power of the full model fitted to all
data.

17

Cross-validation can be performed in many ways, and how exactly it should be performed depends on which
aspect of predictive power one wishes to measure. To illustrate, let us partition the plots rather than the
sampling units into different folds.

partition = createPartition(m, nfolds = 2, column = "plot")
t(cbind(plot.id, partition)[1:15,])

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
plot.id 2 6 5 9 3 10 2 10 2 7 3 3
partition 1 1 2 2 2 1 1 1 1 2 2 2
[,13] [,14] [,15]
plot.id 5 7 8
partition 2 2 1

As seen by examining the correspondence between plots and the partition (shown here for the first 15
sampling units), now all sampling units belonging to a particular plot have been included in the same fold.

preds = computePredictedValues(m, partition=partition)

[1] "Cross-validation, fold 1 out of 2"
[1] "Computing chain 1"
[1] "Computing chain 2"
[1] "Cross-validation, fold 2 out of 2"
[1] "Computing chain 1"
[1] "Computing chain 2"

MF = evaluateModelFit(hM = m, predY = preds)
MF$R2

[1] 0.4253829

The predictive power of the model is lower when assigning entire plots rather than individual sampling units
into different cross-validation folds. This is because the prediction task is now more difficult: when making a
prediction for a particular sampling unit, the model was fitted without training data from any other sampling
units in the same plot. Thus the model has no possibility to estimate the actual random effect for the focal
plot, and thus its predictive power is based solely on the fixed effects.

Spatial structure: including coordinates of sampling units

We next consider spatial data by assuming that each sampling unit is associated with two-dimensional
spatial coordinates. We generate the data by assuming spatially structured residuals with an exponentially
decreasing spatial covariance function.

sigma.spatial = 2
alpha.spatial = 0.5
sample.id = rep(NA,n)
for (i in 1:n){

sample.id[i] = paste0("location_",as.character(i))
}
sample.id = as.factor(sample.id)

18

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

xycoords[, 1]

xy
co

or
ds

[,
2]

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

xycoords[, 1]

xy
co

or
ds

[,
2]

Figure 9: Plots of simulated spatially structured data.

xycoords = matrix(runif(2*n), ncol=2)
rownames(xycoords) = sample.id
colnames(xycoords) = c("x-coordinate","y-coordinate")
a = mvrnorm(mu=rep(0,n),

Sigma = sigma.spatial^2*exp(-as.matrix(dist(xycoords))/alpha.spatial))
y = L + a + rnorm(n, sd = sigma)
Y=as.matrix(y)
colfunc = colorRampPalette(c("cyan", "red"))
ncols = 100
cols = colfunc(100)
par(mfrow=c(1,2))
for (i in 1:2){

if (i==1) value = x
if (i==2) value = y
value = value-min(value)
value = 1+(ncols-1)*value/max(value)
plot(xycoords[,1],xycoords[,2],col=cols[value],pch=16,main=c("x","y")[i])

}

The spatial structure is visible in the data as nearby sampling units have similar responses y, even if the
predictor x is not (due to our assumptions) spatially autocorrelated.

To fit a spatially explicit model with HMSC, we construct the random effect using the ‘sData’ input argument.

studyDesign = data.frame(sample = sample.id)
rL = HmscRandomLevel(sData = xycoords)
m = Hmsc(Y=Y, XData=XData, XFormula=~x,

studyDesign=studyDesign, ranLevels=list("sample"=rL))

Model fitting and evaluation of explanatory and predictive power can be done as before.

19

m = sampleMcmc(m, thin = thin, samples = samples, transient = transient,
nChains = nChains, verbose = verbose)

[1] "Computing chain 1"
[1] "Computing chain 2"

preds = computePredictedValues(m)
MF = evaluateModelFit(hM=m, predY=preds)
MF$R2

[1] 0.9138229

partition = createPartition(m, nfolds = 2, column = "sample")
preds = computePredictedValues(m, partition=partition)

[1] "Cross-validation, fold 1 out of 2"
[1] "Computing chain 1"
[1] "Computing chain 2"
[1] "Cross-validation, fold 2 out of 2"
[1] "Computing chain 1"
[1] "Computing chain 2"

MF = evaluateModelFit(hM=m, predY=preds)
MF$R2

[1] 0.558986

As the model includes a spatially structured random effect, its predictive power is based on both the fixed
and the random effects. Concerning the latter, the model can utilize observed data from nearby sampling
units included in model fitting when predicting the response for a focal sampling unit that is not included
in model fitting.

The estimated spatial scale of the estimated random effect is given by the parameter Alpha[[1]], for which
we show the MCMC trace plot.

mpost = convertToCodaObject(m)
plot(mpost$Alpha[[1]])

summary(mpost$Alpha[[1]])

##
Iterations = 2505:7500
Thinning interval = 5
Number of chains = 2
Sample size per chain = 1000
##
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
##
Mean SD Naive SE Time-series SE

20

3000 5000 7000

0.
2

0.
6

1.
0

1.
4

Iterations

Trace of Alpha1[factor1]

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Density of Alpha1[factor1]

N = 1000 Bandwidth = 0.07135

Figure 10: Posterior trace plot of the spatial scale parameter.

0.586057 0.307808 0.006883 0.021926
##
2. Quantiles for each variable:
##
2.5% 25% 50% 75% 97.5%
0.1924 0.3435 0.4947 0.7695 1.3054

For comparison, let us fit a non-spatial model to the same data.

m = Hmsc(Y=Y, XData=XData, XFormula=~x)
m = sampleMcmc(m, thin = thin, samples = samples, transient = transient,

nChains = nChains, verbose = verbose)

[1] "Setting updater$GammaEta=FALSE due to absence of random effects included to the model"
[1] "Computing chain 1"
[1] "Computing chain 2"

preds = computePredictedValues(m)
MF = evaluateModelFit(hM=m, predY=preds)
MF$R2

[1] 0.213372

preds = computePredictedValues(m, partition=partition)

[1] "Cross-validation, fold 1 out of 2"
[1] "Setting updater$GammaEta=FALSE due to absence of random effects included to the model"

21

[1] "Computing chain 1"
[1] "Computing chain 2"
[1] "Cross-validation, fold 2 out of 2"
[1] "Setting updater$GammaEta=FALSE due to absence of random effects included to the model"
[1] "Computing chain 1"
[1] "Computing chain 2"

MF = evaluateModelFit(hM=m, predY=preds)
MF$R2

[1] 0.2013524

We observe that both the explanatory and the predictive power is lower than for the model with a spatial
random effect.

22

	Introduction
	Linear model
	Generating simulated data
	Fitting models and looking at parameter estimates
	Checking MCMC diagnostics
	Checking the assumptions of the linear model

	Generalized linear models
	Probit model for presence-absence data
	Poisson model for count data
	Lognormal Poisson model for count data
	Hurdle models
	How to select the best model?

	Mixed models: fixed and random effects
	Hierarchical structure: sampling units within plots
	Examples of cross-validation strategies

	Spatial structure: including coordinates of sampling units

