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1 Introduction

The methods described here are based on Wakefield (2009). We first give notation for the
k allele case. Let p;; be the frequency of genotype A;A;, and n;; be the observed count,
1,7 =1,....,k,5 > i. Under independence of sampling the likelihood is multinomial:
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where n = (ny1,n12, ..., k) and p = (p11, P12, ---, Prx) are k(k + 1)/2-dimensional vectors
and n = Zﬁj::l.,jzi . Un‘der Hardy—Weinberg Equilibrium (HWE) p; = p?, i =1,...,k and
Pij = 2pip;, 1, = 1,...,k, 1 # J.

We can parameterize the saturated model as p; = p? + p; iz Difijs Dij = 2pipi(1 — fij) so
that we have introduced a set of fixation indices f;; (Weir 1996); f;; = 0 for all 7 # j recovers
the HWE model. Under the HWE model the genotype frequencies arise as the product of
the constituent allele frequencies, i.e. as p; = p?, p;; = 2p;p;. Hence with HWE we have just
k parameters, the allele frequencies, py, ..., p.

We may examine posterior distributions of f;; to discover the reasons for departure from
HWE; a positive/negative f;; indicates a deficiency/excess of heterozygotes of type A;A;.
The fixation indices are on awkward ranges: 1 — ﬁpj < fij <1 (so that the lower bound
can extend below —1 which is not true for the model with a single f, see below), which can
produce difficulties for frequentist inference.

An interesting sub-model corresponds to f;; = f, and is known as the inbreeding model

since all pairs of alleles frequencies are assumed to be equally perturbed. Under this model:
pi = pi +pi(L = pi)f, pij = 2pipj(1 — f), and fuin = 722 < f < 1 where pyy is the
minimum of the allele frequencies. Under HWE the multinomial likelihood (1) takes the

form
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2 Methods

For Bayesian estimation we can specify conjugate Dirichlet priors under the null and under
the saturated alternative that is parameterized in terms of the genotype frequencies. For
k > 2 the single f model cannot be examined under a conjugate analysis, and even in the
k = 2 case we cannot carry out a conjugate analysis if we wish to specify a prior for f
directly. The prior we use for the single f model is of the form

m(p, f) = 7(p) x 7(fIp)

where 7( f|p) allow us to specify a prior that gives finim, < f < 1. We choose to reparameterize
as A = log[(f — fmin)/(1 — f)] and assume A ~ N(uy,0,). We specify two quantiles of f,
with associated probabilities, and then numerically solve for the prior parameters puy,o.
For small k& we choose a rejection algorithm for obtaining samples from the posterior, using
samples from the prior. For larger values of k£ this algorithm becomes inefficient and we use
MCMC and WinBUGS. The simplest way to see if the rejection algorithm is feasible is to run
the algorithm and see how long it takes!

For testing, the calculation of Bayes factors under conjugate priors is straightforward. For
the non-conjugate models we use importance sampling, with the proposal taken as either
the prior (for small k), or a normal distribution based on moments from an MCMC run.
Wakefield (2009) contains details of all of the above.

3 Illustration: Estimation

We illustrate using the four allele data previously analyzed by a number of authors (Guo
and Thompson 1992; Wakefield 2009). The data are given in Table 1.

A0 3 5 3
Ao 1 18 7
As 1 5
A4 2
Al AQ A3 A4

Table 1: Data on four alleles.

We first illustrate the use of the function DirichSampHWE which can be used to simulate
samples from the prior or from the posterior when the prior is Dirichlet (so that we have a
conjugate analysis) under the HWE model.



We first simulate under the from the Dir(1,1,1,1) prior under the HWE model. Figure 1
gives histogram representations of the (marginal) posteriors of the four allele frequencies —
these are theoretically identical, but differ due to sampling variability.

library (HWEBayes)

# Four allele example

bvecO <- c(1,1,1,1)

nvecO <- rep(0,10)

# First sample from the prior under the null
priorsampHO <- DirichSampHWE(nvecO,bvec0,nsim=1000)

par (mfrow=c(2,2))

hist (priorsampHO$pvec[,1],xlab=expression(p[1]),main="")
hist (priorsampHO$pvec[,2],xlab=expression(p[2]) ,main="")
hist (priorsampHO$pvec[,3],xlab=expression(p[3]),main="")
hist (priorsampHO$pvec[,4],xlab=expression(p[4]) ,main="")
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Figure 1: Samples from the prior Dir(1,1,1,1) under HWE.

We next obtain samples, again using DirichSampHWE, from the posterior. The function
HWEmodelsMLE obtains the MLEs under the HWE, single f and saturated models. In Figure
2 we give histograms of the posteriors of the allele frequencies, along with the MLEs (p; =
0.12,p; = 0.33,p; = 0.33,p; = 0.21). As expected for this prior (which contains little
information for estimation, relative to the data), the MLEs are close to the center of the
posteriors. Notice the way the data are input: nii, n12, n13, N14, Moo, Nog, Nog, N33, N34, Nas.



data(DiabRecess)

nvec <- DiabRecess

postsampHO <- DirichSampHWE (nvec,bvecO,nsim=1000)

MLE4 <- HWEmodelsMLE(nvec)

par (mfrow=c(2,2))

hist (postsampHO$pvec[,1],xlab=expression(p[1]) ,main="")
abline (v=MLE4$ghat[1],col="red")

hist (postsampHO$pvec[,2],xlab=expression(p[2]) ,main="")
abline (v=MLE4$qhat [2] ,col="red")

hist (postsampHO$pvec[,3],xlab=expression(p[3]) ,main="")
abline(v=MLE4$ghat [3],col="red")

hist (postsampHO$pvec[,4],xlab=expression(p[4]) ,main="")
abline (v=MLE4$qhat [4],col="red")
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Figure 2: Posterior samples under HWE and a Dir(1,1,1,1) prior. MLEs are shown as vertical
red lines.

We now turn to estimation under the saturated alternative, via the function DirichSampSat.
We first simulate from the prior Dir(1,1,1,1,1,1,1,1,1) and display a number of summaries in
Figure 3. Specifically, for illustration, we give pi1, pi2, poo, p1, p2 and fis.

bvecl <- rep(1,10)
nvecl <- rep(0,10)



priorsampHlsat <- DirichSampSat(nvec=nvecl,bvecl,nsim=1000)

par (mfrow=c(2,3))
hist(priorsampHlsat$pvec[,1],xlab=expression(p[11]) ,main="")
hist(priorsampHlsat$pvecl[,2],xlab=expression(p[12]) ,main="")
hist(priorsampHlsat$pvec[,3],xlab=expression(p[22]) ,main="")
hist(priorsampHlsat$pmargl,1],xlab=expression(p[1]) ,main="")
hist(priorsampHlsat$pmargl,2],xlab=expression(p[2]) ,main="")
hist(priorsampHlsat$fixind[,2,1],xlab=expression(f[12]),main="")
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Figure 3: Prior samples under the saturated model and a Dir(1,1,1,1,1,1,1,1,1) prior.

The posterior samples are obtained in similar fashion with the DirichSampSat function.
Figure 4 gives various summaries, again with the MLEs indicated.

# Sample from the saturated posterior for the 4 allele data
postsampHlsat <- DirichSampSat(nvec,bvecl,nsim=1000)

par (mfrow=c(2,3))
hist(postsampHisat$pvec[,1],xlab=expression(p[11]) ,main="")

abline (v=MLE4$phat[1,1],col="red")

hist (postsampHlsat$pvec[,2],xlab=expression(p[12]) ,main="")

abline (v=MLE4$phat[1,2],col="red")

hist (postsampHlsat$pvec[,3],xlab=expression(p[22]) ,main="",x1im=c(0,.3))
abline (v=MLE4$phat[2,2],col="red")



hist (postsampHisat$pmargl[,1],xlab=expression(p[1]) ,main="")
abline(v=MLE4$qghat[1],col="red")

hist (postsampHisat$pmarg[,2],xlab=expression(p[2]) ,main="")
abline (v=MLE4$qghat [2],col="red")
hist(postsampHlsat$fixind[,2,1],xlab=expression(f[12]) ,main="")
abline(v=MLE4$fixind[1,2],col="red")
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Figure 4: Posterior samples under the saturated model and a Dir(1,1,1,1,1,1,1,1,1) prior.
MLESs are shown as vertical red lines.

We now carry out the single f example. We specify the 50% and 95% points of the prior for
f as 0 and 0.26, and then numerically find p) and o). Next we sample from the posterior

using a rejection algorithm and in Figure 5 plot the resultant posteriors for pi, ps, p3, p4 and
f, along with the MLEs.

# Single f example

bvec <- c(1,1,1,1)

# Find the parameters for the prior for f

init <- c(-3,log(1.1)) # Good starting values needed

lampr <- LambdaOptim(nsim=10000,bvec=bvec,f1=0,£2=0.26,p1=0.5,p2=0.95,init)

nsim <- 100

postsampfl <- SinglefReject(nsim,bvec,lambdamu=lampr$lambdamu,
lambdasd=lampr$lambdasd,nvec)



par (mfrow=c(2,3))
hist(postsampfi1$psampl[,1],xlab=expression(p[1]) ,main="")
abline (v=MLE4$fqhat[1],col="red")
hist(postsampfl$psampl[,2],xlab=expression(p[2]) ,main="")
abline(v=MLE4$fghat [2],col="red")

hist (postsampfi$psampl[,3],xlab=expression(p[3]) ,main="")
abline (v=MLE4$fqhat [3],col="red")
hist(postsampfi$psampl[,4],xlab=expression(p[4]) ,main="")
abline(v=MLE4$fghat [4],col="red")
hist(postsampfi$fsamp,xlab="£f",main="")

abline (v=MLE4$fsingle,col="red")
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Figure 5: Posterior samples under the single f model. MLEs are shown as vertical red lines.

4 Illustration: Hypothesis Testing

We now consider the previous example but move from estimation to hypothesis testing, using
Bayes factors:

Pr(n|Hy)

Pr(n|H,)



A Bayes factor above (below) 1 indicates that the data are more (less) likely under the null
than the alternative. Under conjugate Dirichlet priors the required normalizing constants
are available in closed form. The following code evaluates the normalizing constant under
the null (PrnHO) and under the saturated alternative (PrnH1sat), to give the Bayes factor
(BFHOH1sat). Here Pr(n| HWE ) = 1.39 x 10~ and Pr(n| saturated) = 1.88 x 107 to
give a Bayes factor of 0.074. Hence the data are 1/0.074 = 13.5 times more likely under the
saturated alternative than the null. For the single f model we obtain 1.4 x 1071° (from the
use of the singlefreject function above) so that the data are 10 times more likely than
under the null, bit slightly less likely than under the saturated model.

PrnHO <- DirichNormHWE(nvec,bvecO)
PrnHlsat <- DirichNormSat(nvec,bvecl)
BFHOH1sat <- PrnHO/PrnHlsat

We now evaluate the normalizing constant under the single f model using importance sam-
pling. There are two possibilities for proposals, either using a normal distribution with
user-specified moments, or from the prior. Note that the prior proposal estimate is far more
variable, and so more samples are needed. When I ran the code I obtained an estimate of the
normalizing constant of 1.31 x 10710 (1.29 x 10719, 1.33 x 10~'Y) using the normal proposal,
and 1.31 x 1071% (9.79 x 10711,1.35 x 1071%) using the prior proposal. Hence the data are
slightly less likely to have come from the single f model than the saturated model, but there
is little difference.

alpha <- rep(1,4)

# First simulate from a normal proposal using mean vector and covariance

# matrix from a WinBUGS run

gmu <- c(-0.4633092,0.3391625,0.3397936,-3.5438008)

gsigma <- matrix(c(

0.07937341,0.02819656,0.02766583,0.04607996,

0.02819656,0.07091320,0.04023827,0.01657028,

0.02766583,0.04023827,0.07042278,0.01752266,

0.04607996,0.01657028,0.01752266,0.57273683) ,nrow=4,ncol=4)

estl <- HWEImportSamp(nsim=5000,nvec,ischoice=1,lambdamu=lampr$lambdamu,
lambdasd=lampr$lambdasd,alpha=alpha,gmu,gsigma)

# Now let’s evaluate using the prior

est2 <- HWEImportSamp(nsim=20000,nvec,ischoice=2,lambdamu=lampr$lambdamu,
lambdasd=lampr$lambdasd,alpha=alpha,gmu,gsigma)



5 Discussion

Testing for HWE is routinely carried out in controls in genome-wide association studies, as a
quality control method. In this context SNP data are the norm with 100s of thousands SNPs
being examined. A Bayes factor may be calculated to examine the evidence for departures
from HWE. In Wakefield (2009) the function HWEDirichBF2 was used to calculate the Bayes
factors, with conjugate Dirichlet priors under the null and alternative, with parameters (1,1)
and (1,1,1), respectively.

WinBUGS code to carry out estimation for the single f model may be found at

http://faculty.washington.edu/jonno/software.html
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