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CHAPTER 7

Density Estimation: Erupting Geysers
and Star Clusters

7.1 Introduction

7.2 Density Estimation

7.3 Analysis Using R

7.3.1 A Parametric Density Estimate for the Old Faithful Data

R> logL <- function(param, x) {
+ d1 <- dnorm(x, mean = param[2], sd = param[3])
+ d2 <- dnorm(x, mean = param[4], sd = param[5])
+ -sum(log(param[1] * d1 + (1 - param[1]) * d2))
+ }
R> startparam <- c(p = 0.5, mu1 = 50, sd1 = 3, mu2 = 80, sd2 = 3)
R> opp <- optim(startparam, logL, x = faithful$waiting,
+ method = "L-BFGS-B",
+ lower = c(0.01, rep(1, 4)),
+ upper = c(0.99, rep(200, 4)))
R> opp

$par
p mu1 sd1 mu2 sd2

0.360891 54.612122 5.872379 80.093415 5.867289

$value
[1] 1034.002

$counts
function gradient

55 55

$convergence
[1] 0

Of course, optimising the appropriate likelihood ‘by hand’ is not very conve-
nient. In fact, (at least) two packages offer high-level functionality for esti-
mating mixture models. The first one is package mclust (Fraley et al., 2006)
implementing the methodology described in Fraley and Raftery (2002). Here,
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4 DENSITY ESTIMATION
1 R> data("faithful", package = "datasets")
2 R> x <- faithful$waiting
3 R> layout(matrix(1:3, ncol = 3))
4 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",
5 + probability = TRUE, main = "Gaussian kernel",
6 + border = "gray")
7 R> lines(density(x, width = 12), lwd = 2)
8 R> rug(x)
9 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",

10 + probability = TRUE, main = "Rectangular kernel",
11 + border = "gray")
12 R> lines(density(x, width = 12, window = "rectangular"), lwd = 2)
13 R> rug(x)
14 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",
15 + probability = TRUE, main = "Triangular kernel",
16 + border = "gray")
17 R> lines(density(x, width = 12, window = "triangular"), lwd = 2)
18 R> rug(x)
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Figure 7.1 Density estimates of the geyser eruption data imposed on a histogram
of the data.



ANALYSIS USING R 5
R> library("KernSmooth")
R> data("CYGOB1", package = "HSAUR")
R> CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik))
R> contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat,
+ xlab = "log surface temperature",
+ ylab = "log light intensity")
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Figure 7.2 A contour plot of the bivariate density estimate of the CYGOB1 data,
i.e., a two-dimensional graphical display for a three-dimensional
problem.



6 DENSITY ESTIMATION
R> persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat,
+ xlab = "log surface temperature",
+ ylab = "log light intensity",
+ zlab = "estimated density",
+ theta = -35, axes = TRUE, box = TRUE)
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Figure 7.3 The bivariate density estimate of the CYGOB1 data, here shown in a
three-dimensional fashion using the persp function.

a Bayesian information criterion (BIC) is applied to choose the form of the
mixture model:
R> library("mclust")
R> mc <- Mclust(faithful$waiting)
R> mc

best model: E with 2 components

and the estimated means are
R> mc$parameters$mean
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1 2
54.61911 80.09384

with estimated standard deviation (found to be equal within both groups)

R> sqrt(mc$parameters$variance$sigmasq)

[1] 5.86848

The proportion is p̂ = 0.36. The second package is called flexmix whose func-
tionality is described by Leisch (2004). A mixture of two normals can be fitted
using

R> library("flexmix")
R> fl <- flexmix(waiting ~ 1, data = faithful, k = 2)

with p̂ = 0.36 and estimated parameters

R> parameters(fl, component = 1)

Comp.1
coef.(Intercept) 54.628701
sigma 5.895234

R> parameters(fl, component = 2)

Comp.2
coef.(Intercept) 80.098582
sigma 5.871749

We can get standard errors for the five parameter estimates by using a boot-
strap approach (see Efron and Tibshirani, 1993). The original data are slightly
perturbed by drawing n out of n observations with replacement and those ar-
tificial replications of the original data are called bootstrap samples. Now, we
can fit the mixture for each bootstrap sample and assess the variability of
the estimates, for example using confidence intervals. Some suitable R code
based on the Mclust function follows. First, we define a function that, for a
bootstrap sample indx, fits a two-component mixture model and returns p̂
and the estimated means (note that we need to make sure that we always get
an estimate of p, not 1− p):

R> library("boot")
R> fit <- function(x, indx) {
+ a <- Mclust(x[indx], minG = 2, maxG = 2)$parameters
+ if (a$pro[1] < 0.5)
+ return(c(p = a$pro[1], mu1 = a$mean[1],
+ mu2 = a$mean[2]))
+ return(c(p = 1 - a$pro[1], mu1 = a$mean[2],
+ mu2 = a$mean[1]))
+ }

The function fit can now be fed into the boot function (Canty and Ripley,
2006) for bootstrapping (here 1000 bootstrap samples are drawn)

R> bootpara <- boot(faithful$waiting, fit, R = 1000)
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R> opar <- as.list(opp$par)
R> rx <- seq(from = 40, to = 110, by = 0.1)
R> d1 <- dnorm(rx, mean = opar$mu1, sd = opar$sd1)
R> d2 <- dnorm(rx, mean = opar$mu2, sd = opar$sd2)
R> f <- opar$p * d1 + (1 - opar$p) * d2
R> hist(x, probability = TRUE, xlab = "Waiting times (in min.)",
+ border = "gray", xlim = range(rx), ylim = c(0, 0.06),
+ main = "")
R> lines(rx, f, lwd = 2)
R> lines(rx, dnorm(rx, mean = mean(x), sd = sd(x)), lty = 2,
+ lwd = 2)
R> legend(50, 0.06, lty = 1:2, bty = "n",
+ legend = c("Fitted two-component mixture density",
+ "Fitted single normal density"))
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Figure 7.4 Fitted normal density and two-component normal mixture for geyser
eruption data.
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We assess the variability of our estimates p̂ by means of adjusted bootstrap
percentile (BCa) confidence intervals, which for p̂ can be obtained from
R> boot.ci(bootpara, type = "bca", index = 1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = bootpara, type = "bca", index = 1)

Intervals :
Level BCa
95% ( 0.3041, 0.4233 )
Calculations and Intervals on Original Scale

We see that there is a reasonable variability in the mixture model, however,
the means in the two components are rather stable, as can be seen from
R> boot.ci(bootpara, type = "bca", index = 2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = bootpara, type = "bca", index = 2)

Intervals :
Level BCa
95% (53.42, 56.07 )
Calculations and Intervals on Original Scale

for µ̂1 and for µ̂2 from
R> boot.ci(bootpara, type = "bca", index = 3)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = bootpara, type = "bca", index = 3)

Intervals :
Level BCa
95% (79.05, 81.01 )
Calculations and Intervals on Original Scale

Finally, we show a graphical representation of both the bootstrap distribu-
tion of the mean estimates and the corresponding confidence intervals. For
convenience, we define a function for plotting, namely
R> bootplot <- function(b, index, main = "") {
+ dens <- density(b$t[,index])
+ ci <- boot.ci(b, type = "bca", index = index)$bca[4:5]
+ est <- b$t0[index]
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R> layout(matrix(1:2, ncol = 2))
R> bootplot(bootpara, 2, main = expression(mu[1]))
R> bootplot(bootpara, 3, main = expression(mu[2]))
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Figure 7.5 Bootstrap distribution and confidence intervals for the mean estimates
of a two-component mixture for the geyser data.

+ plot(dens, main = main)
+ y <- max(dens$y) / 10
+ segments(ci[1], y, ci[2], y, lty = 2)
+ points(ci[1], y, pch = "(")
+ points(ci[2], y, pch = ")")
+ points(est, y, pch = 19)
+ }

The element t of an object created by boot contains the bootstrap replications
of our estimates, i.e., the values computed by fit for each of the 1000 boot-
strap samples of the geyser data. First, we plot a simple density estimate and
then construct a line representing the confidence interval. We apply this func-
tion to the bootstrap distributions of our estimates µ̂1 and µ̂2 in Figure 7.5.
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