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Abstract

FRK is an R software package for spatial/spatio-temporal modelling and prediction with large datasets.
It facilitates optimal spatial prediction (kriging) on the most commonly used manifolds (in Euclidean
space and on the surface of the sphere), for both spatial and spatio-temporal fields. It differs from ex-
isting packages for spatial modelling and prediction by avoiding stationary and isotropic covariance and
variogram models, instead constructing a spatial random effects (SRE) model on a discretised spatial
domain. The discrete element is known as a basic areal unit (BAU), whose introduction in the software
leads to several practical advantages. The software can be used to (i) integrate multiple observations
with different supports with relative ease; (ii) obtain exact predictions at millions of prediction locations
with the use of sparse linear algebraic techniques (without conditional simulation); and (iii) distinguish
between measurement error and fine-scale variation at the resolution of the BAU, thereby allowing for
improved uncertainty quantification when compared to related packages. The temporal component is
included by adding another dimension. A key component of the SRE model is the specification of spatial
or spatio-temporal basis functions; they can be generated automatically or by the user. The package
also offers automatic BAU construction, an Expectation Maximisation (EM) algorithm for parameter
estimation, and functionality for prediction over any user-specified polygons or BAUs. Use of the package
is illustrated on several large spatial and spatio-temporal datasets.
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1 Introduction

Fixed Rank Kriging (FRK) is a spatial/spatio-temporal modelling and prediction framework that is scaleable,
works well with large datasets, and can change spatial support easily. FRK hinges on the use of a spatial
random effects (SRE) model, in which a spatially correlated mean-zero random process is decomposed
using a linear combination of spatial basis functions with random weights plus a term that captures the
random process’ fine-scale variation. Dimensionality reduction through a relatively small number of basis
functions ensures computationally efficient prediction, while the reconstructed spatial process is, in general,
non-stationary. The SRE model has a spatial covariance function that is always nonnegative-definite, and,
because any (possibly non-orthogonal) basis functions can be used, it can be constructed so as to approximate
standard families of covariance functions |[Kang and Cressie| 2011]. For a detailed treatment of FRK, see
Cressie and Johannesson| [2006} 2008|, |Shi and Cressie| [2007], and [Nguyen et al.[ [2012].

There are numerous R packages available for modelling and prediction with spatial or spatio-temporal
dataﬂ although relatively few of these make use of a model with spatial basis functions. However, a few
variants of FRK have been developed to date, and the one that comes closest to the present software is
LatticeKrig [Nychka et al., [2015]. LatticeKrig uses Wendland basis functions (that have compact support)
to decompose the spatially correlated process, and it also has a Markov assumption to construct a precision
matrix (the matrix K~' in Section to describe the dependence between the coefficients of these basis
functions. It does not cater for what we term fine-scale-process variation, and instead the finest scale of the
process is limited to the finest resolution of the basis functions used. However, this scale can be relatively fine
due to the computationally motivated sparsity imposed on K~'. LatticeKrig’s underlying model makes use
of sparse precision matrices constructed using Gaussian Markov random field (GMRF) assumptions, which
results in efficient computations and the potential use of a large number (> 10,000) of basis functions.

The package INLA is a general-purpose package for model fitting and prediction. When using INLA
for spatial and spatio-temporal modelling, the prevalent approach is to assume that basis functions are
triangular ‘tent’ functions and that the coefficients are normally distributed with a sparse precision matrix,
such that the covariance function of the resulting Gaussian process is approximately a spatial covariance
function from the Matérn class [see|Lindgren and Ruel 2015, for details on software implementation]. INLA’s
approach thus shares many of the features of LatticeKrig. A key advantage of INLA is that once the spatial
or spatio-temporal model is constructed, one has access to all the approximate-inference machinery and
likelihood models available within the package.

Kang and Cressie| [2011] develop Bayesian FRK; they keep the spatial basis functions fixed and put a
prior distribution on K. The predictive-process approach of [Banerjee et al.| [2008] can also be seen as a
type of Bayesian FRK, where the basis functions are constructed from the postulated covariance function
of the spatial random effects and hence depend on parameters [see Katzfuss and Hammerling}, 2017, for an
equivalence argument]. An R package that implements predictive processes is spBayes |Finley et al.l [2007].
It allows for multivariate spatial or spatio-temporal processes, and Bayesian inference is carried out using
Markov chain Monte Carlo (MCMC), thus allowing for a variety of likelihood models. Because the implied
basis functions are constructed based on a parametric covariance model, a prior distribution on parameters
reults in new basis functions generated at each MCMC iteration. Since this can slow down the computation,
the number of knots used in predictive processes needs to be small.

Our software package FRK differs from spatial prediction packages currently available by constructing an
SRE model on a discretised domain, where the discrete element is known as a basic areal unit [BAU; see, e.g.,
Nguyen et al.| 2012]. Reverting to discretised spatial processes might appear to be counter-intuitive, given
all the theory and efficient approaches available for continuous-domain processes. However, BAUs allow one
to easily combine multiple observations with different supports, which is common when working with, for
example, remote sensing datasets. Further, the consideration of a discrete element allows one to distinguish
between measurement error and fine-scale variation at the resolution of the discrete element which leads to
better uncertainty quantification. The BAUs need to be ‘small,” in the sense that they should be able to
reconstruct the (undiscretised) process with minimal error, but FRK implements functions to predict over
any arbitrary user-defined polygons.

In the standard “flavour” of FRK [Cressie and Johannesson, [2008], which we term vanilla FRK (FRK-
V), there is an explicit reliance on multi-resolution basis functions to give complex non-stationary spatial

Isee https://cran.r-project.org/web/views/Spatial.html,
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patterns at the cost of not imposing any structure on K, the covariance matrix of the basis function weights.
This can result in identifiability issues and hence can result in over-fitting the data when K is estimated
using standard likelihood methods [e.g., Nguyen et al., |2014], especially in regions of data paucity. Therefore,
in FRK we also implement a model (FRK-M) where a parametric structure is imposed on K [e.g., |Stein,
2008l Nychka et al., |2015]. The main aim of the package FRK is to facilitate spatial and spatio-temporal
analysis and prediction for large datasets, where multiple observatons come with different spatial supports.
We see that in ‘big data’ scenarios, lack of consideration of fine-scale variation may lead to over-confident
predictions, irrespective of the number of basis functions adopted.

In this vignette we illustrate how to use FRK on spatial and spatio-temporal datasets with differing
supports and on different manifolds. In Section [2| we first present the model, the estimation approach and
the prediction equations. In Sections [3| and [4] we consider examples of spatial and spatio-temporal data,
respectively. In Section 5 we discuss some additional functionality (e.g., modelling of anisotropic fields) and
in Section 6 we discuss package limitations and opportunities for further development.

2 OQOutline of Fixed Rank Kriging: Modelling, estimation and pre-
diction

In this section we present the theory behind the operations in FRK. In Section we introduce the SRE
model, in Section [2:2] we discuss the EM algorithm for parameter estimation, and in Section [2.3] we present
the prediction equations.

2.1 The SRE model

Denote the spatial process of interest as {Y'(s) : s € D}, where s indexes the location of Y (s) in our domain
of interest D. In what follows, we assume that D is a spatial domain but extensions to spatio-temporal
domains are natural within the framework (Section . Consider the classical spatial statistical model,

Y(s) =t(s) T+ v(s) +£(s); seD,

where, for s € D, t(s) is a vector of spatially referenced covariates, a is a vector of regression coefficients,
v(s) is a small-scale, spatially correlated random effect, and £(s) is a fine-scale random effect that is ‘almost’
spatially uncorrelated. It is natural to let E(v(-)) = E(£(+)) = 0. Define A(-) = v(-)+&(+), so that E(A(+)) = 0.
It is the structure of the process v(-) in terms of a linear combination of a fixed number of spatial basis
functions that defines the SRE model for A(-):

As) =Y uls)m+E&(s); seD,
=1

where 7 = (1,...,m,)" is an r-variate random vector, and ¢(-) = (¢1(-),...,¢,(-))" is an r-dimensional
vector of pre-specified spatial basis functions. Sometimes, ¢(-) contains basis functions of multiple resolutions
(e.g., wavelets), they may or may not be orthogonal, and they may or may not have compact support. The
basis functions chosen should be able to adequately reconstruct realisations of Y'(+); an empirical spectral-
based approach that can ensure this is discussed in [Zammit-Mangion et al.| [2012].

In order to cater for different observation supports {B;} (defined below), it is convenient to assume a
discretised domain of interest D = {A; C D :4 =1,..., N} that is made up of N small, non-overlapping
basic areal units or BAUs [Nguyen et al.,|2012], and D = Uf\il A;. The set D of BAUs is a discretisation,
or ‘tiling,” of the original domain D, and typically N > r. The process {Y (s) : s € D} is then averaged over
the BAUs, giving the vector Y = (Y; :i=1,...,N)T, where

1
Y; = / Y(s)ds; i=1,...,N, (1)
[Ail Ja,

and N is the number of BAUs. At this BAU level,

Y =t a+v +&, (2)



where fori =1,..., N, t; = ﬁ fAi t(s)ds, v; = th fAi v(s)ds, and &; is specified below. The SRE model

specifies that the small-scale random variation is v(-) = ¢(-) "7, and hence in terms of the discretisation

onto D€,
1 T
Ui:(|A'|/A qb(s)ds) n;, i=1,...,N,

so that v = Sm, where S is the N x r matrix defined as follows:

SE(M}Z_/Ai¢>(s)ds:i:1,...,N>T. (3)

In FRK, we assume that 7 is an r-dimensional Gaussian vector with mean zero and r X r covariance
matrix K, and estimation of K is based on likelihood methods; we denote this variant of FRK as FRK-V
(where recall that ‘V’ stands for ‘vanilla’). If some structure is imposed on var(n) in terms of parameters
9, then K = K, () and 9 needs to be estimated; we denote this variant as FRK-M (where recall that ‘M’
stands for ‘model’). Frequently, the resolution of the BAUs is sufficiently fine, and the basis functions are
sufficiently smooth, so that S can be approximated:

S~ (¢(s;):i=1,...,N)", (4)

where {s; : i = 1,...,N} are the centroids of the BAUs. Since small BAUs are always assumed, this
approximation is used throughout FRK.

In FRK, we do not directly model £(s), since we are only interested in its discretised version. Rather, we
assume that §; = ﬁ / 4, € (s)ds has a Gaussian distribution with mean zero and variance

var(&;) = 0Zve.i,
where 02 is a parameter to be estimated, and the weights {v¢1,...,ve n} are known and represent het-
eroscedasticity. These weights are typically generated from domain knowledge; they may, for example,
correspond to topographical features such as terrain roughness |[Zammit-Mangion et al., [2015]. Since we
specified £(+) to be ‘almost’ spatially uncorrelated, it is reasonable to assume that the variables representing
the discretised fine-scale variation, {&; : ¢ = 1,..., N}, are uncorrelated. From , we can write

Y = Ta+ Sn + &, (5)

where T = (t; : i = 1,...,N)T, & = (& : i = 1,...,N)", and var(§) = ong, for known Vg =
diag(\@l, v ,V&N).

We now assume that the hidden (or latent) process, Y (+), is observed with m footprints (possibly over-
lapping) spanning one or more BAUs, where typically m > r (note that both m > N and N > m are
possible). We thus define the observation domain as DO = {Uice; Ai : j = 1,...,m}, where ¢; is a non-
empty set in 2{5N} the power set of {1,..., N}, and m = |D?|. For illustration, consider the simple
case of the discretised domain being made up of three BAUs. Then D% = {A;, Ay, A3} and, for example,
D9 = {By, By}, where B; = A; U Ay (i.e., ¢ = {1,2}) and By = A3 (i.e., co = {3}). Catering for different
footprints is important for remote sensing applications in which satellite-instrument footprints can widely
differ [e.g., Zammit-Mangion et al., 2015].

Each B; € DO is either a BAU or a union of BAUs. Measurement of Y is imperfect: We define the
measurement process as noisy measurements of the process averaged over the footprints

N N

1 Yiwg; 1 04W;;j

Z; = Z(Bj) = 7217\;1 =) 4 7217\;1 ) e BjeDO, (6)
D izt Wij D im1 Wij

where the weights,

U}”:|AZ‘]I(AZCB]), i=1,....,N; j=1,...,m; BjGDO,



depend on the areas of the BAUs, and I(+) is the indicator function. Currently, in FRK, BAUs of equal area
are assumed, but we give (6)) in its most general form. The random quantities {6;} and {¢;} capture the
imperfections of the measurement. Better known is the measurement-error component ¢;, which is assumed
to be mean-zero Gaussian distributed. The component §; captures any bias in the measurement at the
BAU level, which has the interpretation of an intra-BAU systematic error. These systematic errors are
BAU-specific, that is, the {J;} are uncorrelated with mean zero and variance

var(d;) = 0?\}571-,

where 02 is a parameter to be estimated, and {vs1,...,vsn} represent known heteroscedasticity.

We assume that Y and § are independent. We also assume that the observations are conditionally
independent, when conditioned on Y and §. Equivalently, we assume that the measurement errors {¢; : j =
1,...,m} are independent with var(e;) = o2v, ;.

We represent the data as Z = (Z; : j = 1,...,m)". Then, since each element in D? is the union of
subsets of D, one can construct a matrix

CzE( i :¢=1,...,N;j=1,---’m>v

N
Dl Wiy
such that
Z=CzY+Cz6+e,
where the three components are independent, € = (¢; : j = 1,...,m)T, and var(e) = ¥, = 02V, =
o2diag(ve1,. .., Ve,m) is an m x m diagonal covariance matrix. The matrix X, is assumed known from the

properties of the measurement. If it is not known, V. is fixed to I and o2 is estimated using variogram
techniques [Kang et all [2009]. Notice that the rows of the matrix Cz sum to 1.
It will be convenient to re-write

Z=Tza+Szn+&;+6z7+e¢, (7)

where Tz = CzT, Sz = CzS, €7 = Cz¢, 6 Cz9, var(éz) = U?V&Z = U?CZVgc;, var(dz) =
02Vsz = 02C4zV;CJ, and where Vs = diag(vs 1,...,vsn) is known. Then, recalling that E(n) = 0 and
E(¢z) =E(6z) =E(e) = 0,
E(Z) = Tza,
var(Z) = SzKS} + 02CzVC} + 0}C;V;C} + V..

In practice, it is not always possible for each B; to include entire BAUs. For simplicity, in FRK we assume
that the observation footprint overlaps a BAU if and only if the BAU centroid lies within the footprint.
Frequently, point-referenced data is included in Z. In this case, each data point is attributed to a specific
BAU and it is possible to have multiple observations of the process defined on the same BAU.

We collect the unknown parameters in the set 8 = {a,ag,ag,K} for FRK-V and 60, = {a,og,og,ﬂ}
for FRK-M for which K = K, (1#); their estimation is the subject of Section If the parameters in 0 or
0, are known, an inversion that uses the Sherman—Woodbury identity [Henderson and Searle, [1981] allows
spatial prediction at any BAU in DY. Estimates of @ are substituted into these spatial predictors to yield
FRK-V. Similarly, estimates of 8, substituted into the spatial-prediction equations yield FRK-M.

In FRK, we allow the prediction set D to be as flexible as D?; specifically, D C {Ujez, A; : k =
1,...,Np}, where ¢ is a non-empty set in 2{1L,--N} and Np is the number of prediction areas. We can
thus predict both at the individual BAU level or averages over an area spanning multiple BAUs, and these
prediction regions may overlap. This is an important change-of-support feature of FRK. We provide the
FRK equations in Section [2:3]

2.2 Parameter estimation using an EM algorithm

In all its generality, parameter estimation with the model of Section is problematic due to confounding
between d and €. In FRK, the user thus needs to choose between modelling the intra-BAU systematic errors



(in which case O'g is fixed to 0) or the process’ fine-scale variation (in which case o7 is fixed to 0). We
describe below the estimation procedure for the latter case; due to symmetry, the estimation equations of
the former case can be simply obtained by replacing the subscript ¢ with §. However, which case is chosen
by the user has a considerable impact on the prediction equations for Y (Section . Recall that the
measurement-error covariance matrix X, is assumed known from measurement characteristics, or estimated
using variogram techniques prior to estimating the remaining parameters described below. For conciseness,
in this section we use 8 to denote the parameters in both FRK-V and FRK-M, only distinguishing when
necessary.

We carry out parameter estimation using an expectation maximisation (EM) algorithm [similar to Katz-
fuss and Cressie), 2011} Nguyen et al.l 2014] with @ as our model. Define the complete-data likelihood
L.(0) =[n,Z | 0] (with £z integrated out), where [ - | denotes the probability distribution of its argument.
The EM algorithm proceeds by first computing the conditional expectation (conditional on the data) of the
complete-data log-likelihood at the current parameter estimates (the E-step) and, second, maximising this
function with respect to the parameters (the M-step). In mathematical notation, in the E-step the function

QO ]6V)=E(InL.(6) | Z,00),
is found for some current estimate 8(). In the M-step, the updated parameter estimates

0+ = argmax Q(0 | 8Y),
2]

are found.

The E-step boils down to finding the conditional distribution of 7 at the current parameter estimates.
One can use standard results in Gaussian conditioning [e.g., |Rasmussen and Williams|, 2006, Appendix A]
to show from the joint distribution, [n, Z | 8], that

n 2,69 ~ Gau(p), =),

where

u) ==(s; (DY) - (- Tza),

B0 = (s; (D(Zl))_l S+ (Km)‘l)l ’

where D(Zl) = (0?)(Z)Vg,z + 3., and where K is defined below.
The update for « is

o+l — (T; (D(Zl+1)>—1 Tz)

In FRK-V, the update for KUY g

-1

T, (Dg“)) B (z - szug“) . (8)

(I+1) _ s (@ n,, 0"
K - 25}) + M%)uﬁ,)
while in FRK-M, where recall that K = K, (1), the update is

)

1_9(Z+1) — argénaxln |Ko(’l9)71| —tr (Ko(ﬂ)71 (2571) + M%Z)H%Z)T)> ’

which is numerically optimised using the function optim with 9 as the initial vector.
The update for 0‘? requires the solution to

tr((Ze + (Ug)(Hl)VE,Z)ilVf,Z) = tr((Xc + (02)(“1)‘75,2)71\/5,2(26 + (Ug)(lH)Vg,Z)*lQ)a 9)
where

Q=5,208] +8,uPu" ST —28,u(Z — Tza)T 4 (Z - Tza+V)(Z - TzaNT. (10)



The solution to @7 namely (02)(“‘1), is found numerically using uniroot after is substituted into .

Then a(*Y is found by substituting (02)(”1) into (8). Computational simplifications are possible when
V¢ z and X, are diagonal, since then only the diagonal of €2 needs to be computed. Further simplifications
are possible when V¢ 7 and X, are proportional to the identity matrix, with constants of proportionality v;

and 9, respectively. In this case,
1 [/tr(2
e L (50 )
ga! m

where recall that m is the dimension of the data vector Z and a“t1) is, in this special case, the ordinary-
least-squares estimate given ug,l) (see ) These simplifications are used by FRK whenever possible.
Convergence of the EM algorithm is assessed using the (incomplete-data) log-likelihood function at each

iteration,
1 1
In [z la® KO, (ag)@} - —% In2r — SIn ‘2(2”‘ - 5(Z=T2a") (2)) 1 (Z - Tzal),

where
=% =s,K"s} + DY,

and recall that D(Zl) = (J?)(l)Vg, 7z +32.. Efficient computation of the log-likelihood is facilitated through the
use of the Sherman—Morrison—Woodbury matrix identity and a matrix-determinant lemma [e.g., Henderson
and Searlel [1981]. Specifically, the operations

(5) "= (o8) "~ (o) "o [(x0) " 5T (00) "] 52 (o)

=9 - ’(K(l))l +s;(pP)"

9

SZ\ K[ [pY

ensure that we only deal with vectors of length m and matrices of size r x r, where typically the fixed rank
r < m, the dataset size.

2.3 Prediction

The prediction task is to make inference on the hidden Y-process over a set of prediction regions DF.
Consider the process {Yp(By) : k = 1,...,Np}, which is derived from the Y process and, similar to the
observations, is constructed using the BAUs {A; : i =1,..., N}. Here, Np is the number of areas at which
spatial prediction takes place, and is equal to |[DF|. Then,

N -
~ o Y;wik: ~
Vo = Vp(By) = 250 ) e pP,
i1 Wik
where the weights are

Wix = |Ai|[I(A; € By); i=1,...,N; k=1,...,Np; B,eDF.

Define Yp = (Ypr : k= 1,...,Np)T. Then, since each element in D is the union of subsets of D¢,
one can construct a matrix,

Cp=|—t—ti=1,...,Nik=1,...,Np |, (11)
> i=1 Wik
the rows of which sum to 1, such that

Yp=CpY =Tpa+Spn+&p,

where Tp = CpT, Sp = CpS, £p = Cp€ and var(€p) = O'EVé"p = JECPVgc;. As with the observations,
the prediction regions {Bk} may overlap. In practice, it may not always be possible for each By, to include



entire BAUs. In this case, we assume that a prediction region contains a BAU if and only if the BAU centroid
lies within the region.

Let I* denote the EM iteration number at which convergence is deemed to have been reached. The final
estimates are then

iy = u%l*), f]n = 2571*), a=a’), K=K, &\g = (U?)(l*), and 52 = (02)).

Recall from Section 2.2] that the user needs to attribute fine-scale variation at the BAU level to either the
measurement process or the hidden process Y. This leads to the following two cases.

Case 1: ag = 0 and estimate 0. The prediction vector Y p and covariance matrix 3y, |z, corresponding
to the first two moments from the predictive distribution [Yp | Z] when O'g =0, are

Yp=E(Yp |2) = Tpa + Spiy,
Sypz=var(Yp |Z) = SpinS;.

Under the assumptions taken, [Yp | Z] is a Gau(?p,EyP‘ z) distribution. Note that all calculations are
made after substituting in the EM-estimated parameters, and that /0\(% is present in the estimated parameters.

Case 2: 07 = 0 and estimate ag (Default). To cater for arbitrary observation and prediction support,
we predict Yp by first carrying out prediction over the full vector Y, that is, at the BAU level, and then
transforming linearly to obtain Yp through the use of the matrix Cp. It is easy to see that if Y is an
optimal (squared-error-loss matrix criterion) predictor of Y, then AY is an optimal predictor of AY, where
A is any matrix with N columns.

Let W= (n",£")T and IT = (S,I). Then can be re-written as Y = Ta + IIW, and

~

Y =E(Y | Z) = Ta +OW,
Syiz =var(Y | Z) = ISy IIT, (12)

for
W=3,1'C.sYZ - Ta),
Sy = (T CLE 10+ A1)

and the block-diagonal matrix A = bdiag(K, GZV¢), where bdiag(-) returns a block diagonal matrix of its
matrix arguments. Note that all calculations are made after substituting in the EM-estimated parameters.
For both Cases 1 and 2 it follows that Yp =E(Yp | Z) = CpY and

Syp 1z = var(Yp | Z) = CpEyzCp. (13)

Note that for Case 2 we need to obtain predictions for €p which, unlike those for 1, are not a by-product
of the EM algorithm of Sparse-matrix operations are used to facilitate the computation of when
possible.

3 Fixed Rank Kriging on R? or S?

In this part of the vignette we apply FRK to the case when we have spatial data, either on the plane or
on the surface of a sphere. For 2D data on the plane, we consider the meuse data, which can be found in
the package sp. For data on the sphere we will use readings taken between May 01 2003 and May 03 2003
(inclusive) by the Atmospheric InfraRed Sounder (AIRS) on board the Aqua satellite [e.g., (Chahine et al.
2006). For spatial modelling of the data we need to load the following packages



library(sp)
library(ggplot2)
library(dplyr)
library (FRK)

and, to keep the document tidy, we will set the progress package option to FALSE. Parallelisation is frequently
used in FRK, but for the purposes of this document we will set the parallel option to 0 as well.

opts_FRK$set ("progress" ,FALSE)
opts_FRK$set ("parallel",OL)

In this vignette we go through the ‘expert’ way of using FRK. There is also a simple way through the
command FRK which serves as a wrapper for, and masks, several of the steps below; see help (FRK) for details.
Usage of FRK is only recommended once the steps below are understood.

3.1 The meuse dataset

The meuse dataset contains readings of heavy-metal abundance in a region of The Netherlands along the
river Meuse. For more details on the dataset see the vignette titled ‘gstat’ in the package gstat. The aim of
this vignette is to analyse the spatial distribution of zinc-concentration from spatially sparse readings using
FRK.

Step 1: We first load the meuse data:

data(meuse)
print(class(meuse))

## [1] "data.frame"

The meuse data is of class data.frame. However, FRK needs all spatial objects to be of class SpatialPointsDataFrame
or SpatialPolygonsDataFrame, depending on whether the dataset is point-referenced of area-referenced.

The meuse data is point referenced, and we therefore cast it into a SpatialPointsDataFrame by applying

the coordinates function as follows:

coordinates(meuse) = “x+y

Step 2: Based on the data we now generate BAUs. For this, we can use the helper function auto_BAUs:

set.seed (1)

GridBAUsl <- auto_BAUs(manifold = plane(),
cellsize = c(100,100),
type = "grid",
data = meuse,
convex=-0.05,
nonconvex_hull=FALSE)

The auto_BAUs function takes several arguments (see help(auto_BAUs) for details). Above, we instruct the
helper function to construct BAUs on the plane, centred around the data meuse with each BAU of size
100 x 100 (with units in m since the data is supplied with x-y coordinates in m). The type="grid" input
instructs that we want a rectangular grid and not a hexagonal lattice (use "hex" for a hexagonal lattice),
and convex=-0.05 is a specific parameter controlling the buffer-width of the spatial-domain boundary. The
name ‘convex’ was chosen as it is also used to control the buffer in case a non-convex hull is desired by setting
nonconvex_hull=TRUE (see INLA::inla.nonconvex.hull for more details and note that INLA needs to be
installed for this option to be set). For the ith BAU, we also need to attribute the element v; that describes
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Figure 1: (a) Locations of the meuse data. (b) BAUs for Fixed Rank Kriging with the meuse dataset.

the hetereoscedascity of the fine-scale variation for that BAU. As described in Section this component
encompasses all process variation that occurs at the BAU scale and only needs to be known up to a constant
of proportionality, ag or 02 (depending on the chosen model); this constant is estimated using maximum
likelihood with SRE.fit using the EM algorithm of Section [2.2] Typically, geographic features such as
altitude are appropriate, but in this case we will just set this parameter to unity. It is important that this
field is labelled ‘fs’:

GridBAUs1$fs <- 1

The data and BAUs are illustrated using the plot function in Fig.

Step 3: FRK decomposes the spatial process as a sum of basis functions that may either be user-specified
(see Section [5.3]) or constructed using helper functions. To create spatial basis functions we use the helper
function auto_basis as follows:

G <- auto_basis(manifold = plane(),
data=meuse,
nres = 2,
type = "Gaussian",
regular = 1)

The argument nres = 3 indicates how many resolutions we wish, while type = "Gaussian" indicates that
the basis set we want is composed of Gaussian functions. Other built-in functions that can be used are
"exp" (the exponential covariance function), "bisquare" (the bisquare function), and "Matern32" (the
Matérn covariance function with smoothness parameter equal to 1.5). The argument regular indicates that
we want to place the basis functions regularly in the domain. Usually better results can be achieved by
placing them irregularly in the domain. For this functionality the mesher in the package INLA is used and
thus INLA needs to be installed when regular = 0. The basis can be visualised using show_basis, see

Fig. 2

show_basis(G) +
coord_fixed() +
xlab("Easting (m)") +
ylab("Northing (m)")
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Figure 2: Basis functions automatically generated for the meuse dataset with 2 resolutions. The interpre-
tation of the circles change with the domain and basis. For Gaussian functions on the plane, each circle is
centred at the basis function centre, and has a radius equal to 1o. Type help(auto_basis) for details.

## Note: show_basis assumes spherical distance functions when plotting

Step 4: With the BAUs and the basis functions specified, we can construct the SRE model. For fixed
effects, we just use an intercept; if we wish to use covariates, one must make sure that they are also specified
at the BAU level (and hence attributed to GridBAUs1). The fixed effects are supplied in a usual R formula,
which we store in £:

f <- log(zinc) ~ 1

The Spatial Random Effects model is then constructed using the function SRE, which essentially bins the
data in the BAUs, constructs all the matrices required for estimation, and provides initial guesses for the
quantities that need to be estimated.

S <- SRE(f = f,
data = list(meuse),
BAUs = GridBAUs1,
basis = G,
est_error = TRUE,
average_in_BAU = FALSE)

## Loading required mamespace: gstat

The function SRE takes as arguments the formula; the data (as a list that can include additional datasets);
the BAUs; the basis functions; a flag; est_error; and a flag average_in BAU. The flag est_error indicates
whether we wish to attempt to estimate the measurement-error variance 3. = 21 or not using variogram
methods [Kang et al.| 2009]. Currently, est_error = TRUE is only allowed with spatial data. When not set,
the dataset needs to also contain a field std, the standard deviation of the measurement error.

In practice, several datasets (such as the meuse dataset) are point-referenced. Since FRK is built on the
concept of a Basic Areal Unit, the smallest footprint of an observation has to be equal to that of a BAU.
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Figure 3: Convergence of the EM algorithm when using FRK with the meuse dataset.

If multiple point-referenced observations fall within the same BAU, then these are assumed to be readings
of the same random variable (hence, the fine-scale variation is not a nugget in the classical sense). When
multiple data points can fall into the same BAU, the matrix V7 is not diagonal; this increases computational
time considerably. For large point-referenced datasets, such as the AIRS dataset considered in Section (3.2
one can use the argument average_in BAU = TRUE to indicate that one wishes to summarise the data at
the BAU level. When this flag is set, all data falling into one BAU is averaged; the measurement error of
the averaged data point is then taken to be the average measurement error of the individual data points
(i.e., measurement error is assumed to be perfectly correlated within the BAU). Consequently, the dataset
is thinned; this can be used to obtain quick results prior to a more detailed analysis.

Step 5: The SRE model is fitted using the function SRE.fit. Maximum likelihood is carried out using
the EM algorithm of Section 2:2] which is assumed to have converged either when n_EM is exceeded, or
when the likelihood across subsequent steps does not change by more than tol. In this example, the EM
algorithm would converge in 30 iterations but we limit the maximum number of iterations to 5 to minimise
compilation-time of this vignette; see Fig.

S <- SRE.fit(SRE_model = 8§,
n_EM = 10,
tol = 0.01,
print_1ik=TRUE)

## Maximum EM iterations reached
Step 6: Finally, we predict at all the BAUs with the fitted model. This is done using the function predict.
The argument obs_fs dictates whether we attribute the fine-scale variation to the process model or the

observation model (in which case it takes the role of systematicerror). Below, we allocate it to the process
model.
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GridBAUsl <- predict(S, obs_fs = FALSE)

The object GridBAUs1 now contains the prediction vector and the square of the prediction standard error
at the BAU level in the fields mu and var, respectively. These can be plotted using the standard plotting
commands, such as those in sp or ggplot2. To use the latter, we first need to convert the Spatial object to
a data frame as follows:

BAUs_df <- as(GridBAUsl,"data.frame")
The function SpatialPolygonsDataFrame_to_df takes as argument the BAUs and the variables we wish to

extract from the BAUs. Now ggplot2 can be used to plot the observations, the predictions, and the standard
errors; for example, the following code yields the plots in Fig. [

gl <- ggplot() + # Use a plain theme
geom_tile(data=BAUs_df , # Draw BAUs
aes(x,y,fill=mu), # Colour <-> Mean
colour="light grey") + # Border is light grey

scale_fill_distiller(palette="Spectral", # Spectral palette
name="pred.") + # legend mame

geom_point (data=data.frame (meuse), # Plot data
aes(x,y,fill=log(zinc)), # Colour <-> log(zinc)
colour="black", # point outer colour
pch=21, size=3) + # size of point

coord_fixed() + # fiz aspect ratio

xlab("Easting (m)") + ylab("Northing (m)") + # azes labels

theme_bw ()

g2 <- ggplot() + # Similar to above but with s.e.

geom_tile(data=BAUs_df,
aes(x,y,fill=sqrt(var)),
colour="light grey") +
scale_fill_distiller(palette="BrBG",
name = "s.e.",
guide = guide_legend(title="se")) +
coord_fixed() +
xlab("Easting (m)") + ylab("Northing (m)") + theme_bw()

Now, assume that we wish to predict over regions encompassing several BAUs such that the matrix Cp
containes multiple non-zeros per row. Then we need to set the newdata argument in the function auto_BAUs.
First, we create this larger regionalisation as follows
Pred_regions <- auto_BAUs(manifold = plane(), # model on the 2D plane
c(600,600), # choose a large grid stize
type = "grid", # use a grid (not hezx)
data = meuse, # the dataset on which to center cells

#
#

cellsize

convex=-0.05, border buffer factor
nonconvex_hull=FALSE) convex hull
and carry out prediction on the larger polygons:

Pred_regions <- predict(S, newdata = Pred_regions) # prediction polygons

The prediction and its standard error can be visualised as before. These plots are shown in Fig. [5|
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Figure 4: Inference at the BAU level using FRK with the meuse dataset. (a) FRK prediction. (b) FRK
prediction standard error.

Point-level data and predictions

In many cases, the user has one data object or data frame containing both observations and predictio