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1 Introduction

The EpiModel package provides tools for building, solving, and plotting mathematical mod-
els of infectious disease in R. The goals of the package are twofold. The first goal is to provide
tools for comparative epidemic modeling in multiple frameworks for pedagogical purposes.
The key here is comparative — the package has been designed to facilitate the understanding
and exploration of different modeling approaches: stochastic versus deterministic, compart-
mental versus individual-based versus network-based.

The second goal is to support the development and extension these tools using the pack-
age’s core modeling and utility functions for research. EpiModel is built on top of powerful
software tools that provide access to a much wider range of functionality than in reviewed
in this tutorial. Due to the open source platform of R, researchers can address scientific ques-
tions not currently supported by extending the EpiModel code to use these more advanced
tools.

EpiModel currently supports modeling for three different model classes (deterministic
compartmental models, individual contact models, and stochastic network models), each
with three types of disease state trajectories (SI, SIR, and SIS).

This vignette provides a general tutorial on the core functionality in EpiModel. There are
several other sources of guidance within the package. Smaller, HTML-based vignettes cover
specific topics for specialized or utility functions. Help files for nearly all functions provide
concrete examples of how the functions are used. A good place to start is the listing of all
help files for EpiModel and the primary help file for the package.

help(package = "EpiModel")
7EpiModel
browseVignettes(package = "EpiModel")

Additionally, EpiModel depends heavily on the work of the deSolve package for solving
deterministic models and the Statnet suite of R software for network models. Reviewing
the documentation of those packages is strongly recommended for users who are planning
to use EpiModel for research.

Version 0.95 Caveat The current version of EpiModel is v0.95, which indicates that some
fundamental design elements to the user interface have not been settled. Therefore, we must
note that any code developed using this version of EpiModel is not guaranteed to work
with the v1.0 and following versions. With the v1.0 and following, the major user-interface
elements (e.g., function argument structures) will be designed to be stable over time; some

minor elements may change, but with the goal of backwards compatibility.

2 Deterministic Compartmental Models

Deterministic compartmental models solve differential equations representing an analytic

epidemic system in continuous time. The models are deterministic because their solutions
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are fixed mathematical functions of the input parameters and initial conditions, with no
stochastic variability in the disease and demographic transition processes. The models are
compartmental because they divide the population into groups representing discrete disease
states (susceptible versus infected), and further on demographic, biological, and behavioral
traits that influence disease transmission. In contrast to the stochastic models presented
below, individuals within the population are not discretely represented.

2.1 A Basic SI Model

Starting with the basic Susceptible-Infected (SI) disease model in which there is random

mixing within the population, the size of each compartment over time is represented by the

equations:
das
a -
dl
FTi AS (1)

where A is the force of infection and represents % B is the probability of transmission per
contact, ¢ is the rate of contact per person per unit time, I is the number infected at time f and
and N is the population size at time ¢ (we drop the ¢ subscript from the differential equations
as it is implicit throughout). Therefore, the force of infection is the hazard of per person per
unit time of becoming infected.

Because “contact” may be ambiguously defined in the modeling literature, we use the
word act to represent the activity (e.g., face-to-face talking or sexual intercourse) by which
disease may be transmitted. The force of infection is multiplied by the current state sizes of
the S to solve the differential equation yielding the rate of change for the compartment.

To construct a deterministic model in EpiModel, we use the epiDCM function. This cur-
rently provides functionality for several model types with homogeneous and heterogeneous
mixing in the population. Many of the arguments for epiDCM are set by default, so we start at
the most basic with a population of 501, with just one person infected at ty. The trans.rate
argument sets the transmission probability per act, and act.rate sets the acts per person
per unit time.

mod <- epiDCM(type = "SI", s.num = 500, i.num = 1,
trans.rate = 0.2, act.rate = 0.25, nsteps = 500)

We have stored all the model output in our object mod. The options for analyzing the
results are aligned across all the model classes and types, with minimal variation. Printing
the model object (simply typing the object into the R console) provides basic information
on the model, including model parameters and output available for plotting and statistical
analysis.
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mod

EpiModel Object

Model class: epiDCM

Simulation Summary
Model type: SI

No. rumns: 1

No. time steps: 500
No. groups: 1

Model Parameters
trans.rate = 0.2

act.rate = 0.25

Model Output
Compartments: s.num i.num

Flows: si.flow

The output shows that two compartments and one flow are available. In EpiModel, re-
gardless of the model class, compartments are those discrete disease states and flows are
the transitions between states and, when demographic processes are introduced, transitions
in and out of the population. The i.num compartment is the size of the I compartment at
each of the solved time steps. The endogenous disease flow names represent the starting
and ending state. For example, the si.flow is the number of people moving from S to [
at each time step. In epidemiological terms, i.num and si.flow are disease prevalence and
incidence. One may extract these values directly by using the dollar operator, although later

we introduce the as.data.frame method for easier extraction.
head (mod$i.num)

[1] 1.000 1.051 1.105 1.161 1.221 1.283

head (mod$si.flow)

[1] 0.04990 0.05245 0.05513 0.05794 0.06089 0.06400

Next, to plot the results of the model we use the generic plot function, which by default
plots all the model compartment state prevalences (state size / population size) over time.

There are many plotting options that we will explore in detail later.
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plot (mod)
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After examining the plot, we would like to know the size of each compartment at a spe-

cific time. That is available with the generic summary function, with the user inputting the

time of interest. At t150, 22.5% of the population have become infected, and the incidence at

that time is 4.37 new infections.

summary (mod, time =

EpiModel Summary

150)

Model class: epiDCM

Simulation Summary

Model type: SI

No. rumns: 1

No. time steps: 500
No. groups: 1

Model Statistics

Time: 150 Run: 1

Suscept. 112.845
Infect. 388.155
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Total 501.000 1.000
S ->1 4.371 NA

2.2 SIR Model with Demography

In a Susceptible-Infectious-Recovered (SIR) model, infected individuals recover from disease
into a life-long recovered state; they are never again susceptible to disease. In this section, we
model an SIR disease by adding to our basic SI model a recovery process. We also introduce
demographic processes so that persons may enter and exit the population through births
and deaths. The model is represented by the following system of differential equations:

ds

dl

FTi AS —vI —u;l

dR

E = 'VI - ‘urR (2)

where f is the birth rate, y are the mortality rates specific for each compartment, and v is the
recovery rate. In an SIR model, the recovery rate is the reciprocal of the average duration
of disease infectiousness, and likewise the reciprocal of the death rates are the average life
expectancy for persons in those compartments.

Solving InEpiModel, introducing these new transition processes into the model is straight-
forward. Most importantly, it is necessary to set type="SIR". Next one sets the recovery
rate, birth rate, and state-specific death rates as below. The model is solved through 500 time
steps, but here we also specify dt=0.5 to obtain model results in fractional time units (e.g.,
results are available for t1, t15, o, ..., t499.5, t500)-

mod <- epiDCM(type = "SIR", s.num = 1000, i.num = 1, r.num = O,
trans.rate = 0.2, act.rate = 1, rec.rate = 1/20,
b.rate = 1/95, ds.rate = 1/100, di.rate = 1/80,
dr.rate = 1/100, nsteps = 500, dt = 0.5)

In words, our model parameters imply that the birth rate is slightly higher than the
underlying death rates, and that there is disease-induced mortality because the di.rate is
larger than the other two death rates.

Plotting Next we plot the results of the model with several plot arguments set to non-
default values. The par options set general plotting options, and here two side-by-side plots
are set. In the left plot, the popfrac=FALSE argument plots the compartment size (rather than
prevalence) and alpha increases the transparency of the lines for better visualization.
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By default, the plot function will plot the prevalences for all compartments in the model,
but in the right plot we override that using the y argument to specify that disease incidence
(the si.flow element of the model object) should be plotted. Also by default in any plots
with a “flow” output, the absolute number will be plotted (i.e., popfrac=FALSE by default).

par(mar = ¢(3.2,3,2,1), mgp = c(2,1,0), mfrow = c(1,2))
plot(mod, popfrac = FALSE, alpha = 0.5,
lwd = 4, main = "Compartment Sizes")

plot(mod, y = "si.flow", lwd = 4, col = "firebrick",

main = "Disease Incidence", leg = "n")
Compartment Sizes Disease Incidence
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Finally, it is also possible to specify a single line color, a vector of colors, or a color palette
(more on that next) using the col argument, and the legend options are set using the leg

argument.

Summaries In Section 2.1, we obtained time-specific model values using the summary func-
tion. It is also possible to obtain that information graphically with the comp.plot function.
This plot provides a standard state-flow diagram that is typically presented in the epidemi-

ological literature.

par (mfrow = c(1,1))
comp.plot(mod, time = 50, digits = 1)
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SIR Model Diagram

time=50 | run=1

b.flow=10.7
si.flow=33 irflow=15.4
Susceptible Infected Recovered
n=545.6 n=308.2 n=164.4
ds.flow=5.5 di.flow=3.9 dr.flow=1.6

The plot shows the three state sizes and flows at t5. This plot is also built into the summary
function through the comp.plot argument to that function (see the help pages for the class-
specific summary functions). Currently these plots are limited to one-group models only,
but this functionality will be expanded in future releases.

2.3 SIS Model with Sensitivity Analyses

It is often of scientific interest to know how model outputs (e.g., disease prevalence and
incidence) vary with starting parameter values. A key design feature of epiDCM class mod-
els is to run these type of sensitivity analyses with minimal programming to facilitate the
exploration of model counterfactuals.

In this Section, we illustrate an example for a Susceptible-Infected-Susceptible (SIS) dis-
ease, an example of which is a curable bacterial sexually transmitted infection like gonorrhea.
For ease of presentation, we model this in a closed population (no demography), but those
processes may be added to this base model in the same way as the SIR model in Section 2.2.

The SIS model is represented by the following system of differential equations:

ds

i —AS+vl

dl

ST AS — vl (3)

where the v parameter now represents “recovery” back into the susceptible state (no one
achieves life-long immunity from disease). The force of infection and recovery equations are
mirrors of one another, since individuals flow back and forth between states over time.

In EpiModel, running an SIS model requires specifying type="SIS" and supplying a
rec.rate parameter, just as with an SIR model. To conduct a sensitivity analysis, we en-
ter the parameter to be varied as a vector of values rather than a scalar (a single value). Here,
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we vary the act.rate parameter from 0.25 to 0.50 acts acts per person per unit time in in-
crements of 0.05 acts. Therefore, this sensitivity analysis will run 6 models to investigate
epidemic trajectories given a changing act.rate but holding all other parameters constant.

mod <- epiDCM(type = "SIS", s.num = 500, i.num = 1,
trans.rate = 0.2, act.rate = seq(0.25, 0.5, 0.05),
rec.rate = 1/50, nsteps = 350)

When we print the model output, it is clear that a sensitivity model has been run because

the output indicates 6 runs, with the appropriate range of values for the act . rate parameter.

mod

EpiModel Object

Model class: epiDCM

Simulation Summary
Model type: SIS

No. runs: 6

No. time steps: 350
No. groups: 1

Model Parameters
trans.rate = 0.2
.25 0.3 0.35 0.4 0.45 0.5
.02

act.rate =

o O

rec.rate =

Model Output
Compartments: s.num i.num

Flows: si.flow is.flow

Extracting Output In Section 2.1, we demonstrated how to extract model output using the
dollar sign syntax. In a sensitivity analysis mode, the output of each compartment or flow
(e.g., mod$s .num) is not a vector of values but a data frame with columns for each model run
and rows for each time step. To extract all the compartment or flow values across runs, we
still use the dollar sign syntax. But to extract all the model output for all compartments and
flows from a specific run, we can use the generic as.data.frame function.
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Below we extract primary model output from the fifth model run for the first five time
steps. The run-specific data frame may also be saved out to its own object for further analy-

S1S.

head(as.data.frame(mod, run = 5))

time s.num i.num si.flow is.flow num
1 1 500.0 1.000 0.08982 0.02000 501
2 2 499.9 1.072 0.09630 0.02145 501
3 3 499.9 1.150 0.10325 0.02300 501
4 4 499.8 1.233 0.11069 0.02466 501
5 5 499.7 1.322 0.11867 0.02644 501
6 6 499.6 1.418 0.12722 0.02835 501

Plotting For plotting a sensitivity analysis, EpiModel features specialized tools to highlight
the range of values across model runs. Below is a two-panel plot of disease prevalence and
incidence across all 6 models. By default, plotting a sensitivity model will show the disease
prevalence over time: the proportion of persons infected in each model run at each time step.

par (mfrow = c(1,2), mar = c(3.2,3,2.5,1))
plot(mod, alpha = 1, main = "Disease Prevalence")

plot(mod, y = "si.flow", col = "Greens", alpha = 0.8,

main = "Disease Incidence")
Disease Prevalence Disease Incidence
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EpiModel uses a robust color palette system to set the range of colors across the models in
order to easily differentiate lines. The underlying framework is the RColorBrewer package,
which provides access to visually distinct color palettes used in geographic mapping. The
default color palette is featured for the prevalence plot, but any palette in display.brewer.all()
may be set using the col argument, as with the incidence plot.
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The color argument also accepts vectors of colors as well. For example, the following are
also acceptable color specifications for a sensitivity analysis plot. It is also possible to set
run-specific line types in a similar fashion using the 1ty argument.

plot(mod, col = "black")
plot(mod, col = 1:6)
plot(mod, col

C("black", "red", "blue", "green", "purple", upinkn))
rainbow(6))

plot(mod, col

Varying Multiple Parameters It is also possible to vary multiple parameters simultane-
ously. The only limitation is that the number of model runs implied must be equal across all
varying parameters. For example, if one specifies act . rate as a vector of length six, and one
is also interested in simultaneously varying the transmission probability, the length of that
trans.rate vector must also be six. Below is an example showing those two parameters
simultaneously varied, although the results are not shown.

In total, six models are requested in this sensitivity analysis. There are three different act
rates, and for each act rate, there are two different transmission probabilities to model. The
varying act and transmission parameters will then be evaluated in that order, with the first
model having act.rate=0.2 and trans.rate=0.1, and the last model having act.rate=0.6

and trans.rate=0.2.

act.rates <- ¢c(0.2, 0.2, 0.4, 0.4, 0.6, 0.6)

trans.rates <- c(0.1, 0.2, 0.1, 0.2, 0.1, 0.2)

mod <- epiDCM(type = "SIS", s.num = 500, i.num = 1,
trans.rate = trans.rates, act.rate = act.rates,

rec.rate=1/50, nsteps = 350)

2.4 Two-Group SI Model with Vital Dynamics

EpiModel also includes heterogeneous two-group models, which break the random mixing
patterns implied by one-group models. These two-group models are available for all three
model classes, but for network models we call them two-mode (or bipartite models) in accor-
dance with network science terminology (see Section 4.2).

In the two-group models as they are currently structured, mixing between groups is
purely heterogeneous: one group only has contacts with the other group; there are no within-
group contacts. This framework would be appropriate for epidemic modeling on a purely
heterosexual partnership structure, with the simplifying assumption of no same-sex con-
tacts. More flexible assortative mixing, in which mixing occurs imperfectly across groups,
is currently possible for network models (see Section 4.1) but not yet for deterministic and
individual contact models (that functionality will be added in future versions).
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Mathematical Structure We build upon the basic SI model featured in Section 2.1. The
model now includes four compartments, two disease states x two groups, requiring the
following set of four differential equations. The equation variables are subscripted by group
number; in epiDCM one must specify group-specific parameters for the force of infection,
birth rate, and death rates.

dsgl
dt = *)\glsgl +fg1Ng1 - ,”s,glsgl
dl,
Ti = Ag15g1 — Higiln1
ng2
ar _)\g2sg2 +fg2Ng2 - Fs,gZSgZ
dlgz
e Ag2Ser — Migolen “4)

The critical heterogeneous mixing component is actually embedded within the group-specific
A transmission rates. The formula for the two lambdas that specifies mixing is:

I

2
A]ITlxalxi
g g g Ng

I
Aed = Top X gy X —o— 5
g2 = Tg2 X g Ngi @)

In words, the force of infection for group one is the product of the group one transmission
probability per act, the group one act rate per unit time, and the probability that an infected
is selected among the possible group 2 contacts. The difference with the one-group model is
that group-specific T and a parameters are allowed.

The probability of coming into contact with an infected person is not based on the preva-
lence of all infected persons, but only those of the opposite group. The group-specific T
parameter is the probability of a transmission occurring to that group member (e.g., Tg1 is the
probability that a member of group one is infected given contact with a member of group

two).

Balancing Act Another important point concerns the act rate parameter, «. In the formulas
for the group-specific A above, it was implied that each group may have its own act rate.
However, in practice with these purely heterogeneous mixing models, the act rate of one
group has a specific mathematical relationship with the act rate of the other group:

ag1Ng1 = agoNeo (6)

The number of acts per unit time for each group is the act rate times the group size. The total
number of acts in one group in this purely heterogeneous mixing model must equal the total
number of acts in the other. To accomplish we use act rate “balancing”. This is particularly
important in an open population model since the group population sizes change over time.
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There are a variety of ways to accomplish this balancing, but we implement a basic
method currently in EpiModel. One specifies an « parameter for either group one or group
two, and also that this is the group the other group’s a should be balanced on. For example,
if one specifies a 41, then the act rate for group one is fixed at that value and the rate for group
two is derived over time by rearranging the equation above as follows:

DC]N]
Xg2 = 88 )

Ngo
It is mathematically possible to implement more flexible balancing that averages two act
rates or deals with changes in other ways, but the balancing is currently limited in EpiModel
to the above formulation.

Parameterizing Groups With the epiDCM function, it is simple to add another group to
the model. The first step is to specify that groups=2, and then set the group-specific initial
state sizes and model parameters. The names of the parameters for the first group has not
changed: the sizes and parameters specific to group one are those without the g2 suffix.

An important use of two-group models is to allow for some biological or behavioral dis-
tinctions between groups that differentially impacts disease transmission. In the model be-
low, we specify that the transmission probability for group one is four times as high as that
of group two. This could represent a four-fold higher risk of infection for females (group 1)
than for males (group 2).

We enforce the act rate balancing as noted above, by specifying an act rate for group one
only and also using the balance = "gi" argument. Needing to specify which group’s act
rate trumps in this argument is redundant, since it is implied by the group that has an act
rate, but future versions of EpiModel will use this argument to allow the user to specify how
balancing should occur.

mod <- epiDCM(type = "SI", groups = 2,
s.num = 500, i.num = 1,
s.num.g2 = 500, i.num.g2 = O,
trans.rate = 0.4, trans.rate.g2 = 0.1,
act.rate = 0.25, balance = "gl",
b.rate = 1/100, b.rate.g2 = NA,
ds.rate = 1/100, ds.rate.g2 = 1/100,
di.rate = 1/50, di.rate.g2 = 1/50,
nsteps = 500)

Note also how the group-specific birth rates are input. Because these purely heteroge-
neous mixing models are ideal for heterosexual disease transmission in which groups are
sexes, we can represent group one as females and group two as males. In this case, the birth
rate into a population is not a function of the total population size but that of the female
group. Therefore, one may specify a birth rate for females only, and set the group two birth
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rate to NA. If so this is done, new births are evenly allocated between the two groups based
on the size of group one and the rate specified by b.rate.

Solving the model, we print to show its contents. The number of compartments and
flows available to plot and analyze has now doubled. Here again, the group one outcomes
are those without the g2 suffix.

mod

EpiModel Object

Model class: epiDCM

Simulation Summary
Model type: SI

No. rumns: 1

No. time steps: 500
No. groups: 2

Model Parameters
trans.rate = 0.4
act.rate = 0.25
b.rate = 0.01
ds.rate = 0.01
di.rate = 0.02
trans.rate.g2 = 0.1
b.rate.g2 = NA
ds.rate.g2 = 0.01
di.rate.g2 = 0.02

Model Output

Compartments: s.num s.num.g2 i.num i.num.g2

Flows: si.flow si.flow.g2 b.flow b.flow.g2 ds.flow
ds.flow.g2 di.flow di.flow.g2

The default plot shows the prevalence of all four compartments in the model. Note
that two-group models with sensitivity analyses begin to visually overwhelm the plotting
of compartments. One should freely deviate from the default plotting options to specify
which specific compartments or flows and from which model runs should be represented.
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plot (mod)
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2.5 Graphical Interface for epiDCM

To help introduce DCM models primarily for teaching purposes, we have included in EpiModel
a web browser-based graphical user interface (GUI). The GUI is based on the shiny package
that enables the creation of interactive data analysis tools from within R. To run the GUI,
simply type the following into the console. This will open a browser window. Parameter
values and initial state sizes may be changed. Output includes plots, data summaries, and
raw data to extract.

gui.epiDCM()

The GUI is currently limited to one-group homogeneous mixing models only but may be
expanded to include more complex mixing structures in a forthcoming release.

3 Individual Contact Models

In this Section, we outline the framework for the class of models called individual contact
models. These models are intended to be stochastic analogs of the deterministic compart-
mental models featured in Section 2 and solved with the epiDCM function. The main differ-
ences between the two model classes are as follows.

1. Rates are stochastic: these are stochastic models in which nearly all of the rates govern-
ing transitions between states are now random draws from distributions summarized
by those rates. This will be explained in detail in the examples below.
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2. Time is discrete: The epiICM class models are in discrete time, in contrast to the con-
tinuous time of the epiDCM. In the former, everything within a time step happens in a
series of processes, since there is no instantaneous occurrence of events independent
of others, as is possible in deterministic models. This has the potential to introduce
bias or artificiality into the disease process if the unit for the time step is large (e.g., a
month) since the transitions that might occur within that time step cannot necessarily
be considered independent. In general, caution is needed when simulating any discrete-
time model with long unit time steps or large rate parameters, given the potential for

competing risks within each step.

3. Units are individuals: epiICM models simulate disease spread over a simulated pop-
ulation of individually identifiable elements; in contrast, epiDCM treats the population
as an aggregate whole which is infinitely divisible, with individual elements in this
population neither identifiable nor accessible for modeling purposes. The implications
of this are relatively minor if the stochastic simulations occur on a sufficiently large
population, but there are some critical modeling considerations of individual-based

simulations that will be reviewed in the examples below.

A major goal of EpiModel is to facilitate comparisons across different model classes, so
the interface and functionality of the stochastic models in epiICM is very similar to epiDCM.
The syntax and argument names for all of the shared parameters and initial state sizes are the
same. One difference between the two functions is the way sensitivity analyses are handled:
epiICM will not run multiple models across varying parameters because each model with a
given parameter set is typically run many times to quantify the stochasticity in the model.
Therefore sensitivity analyses would need to be run from separate epiICM function calls.

3.1 SI Model Stochasticity

We introduce epiICM by using the same model parameterization as the deterministic SI
model in Section 2.1, with one person infected, an average activity or contact rate of 0.25
per time step, and a transmission probability of 0.2 per act. We simulate this model 10 times

over 300 time steps.

mod <- epiICM(type = "SI", s.num = 500, i.num = 1,
trans.rate = 0.2, act.rate = 0.25,

nsims = 10, nsteps = 300)

By default, the function prints the model progress (although that is suppressed here):
stochastic simulation models generally take longer to run than the deterministic models,
especially for larger populations and longer time ranges, because transition processes must
be simulated for each individual at each time step.

The model results may be printed, summarized, and plotted in very similar a fashion
to the epiDCM models. Printing the ICM model object shows the number of simulations for

which there are results.
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mod

EpiModel Object

Model class: epilICM

Simulation Summary
Model type: SI
No. simulations: 10
No. time steps: 300
No. groups: 1

Model Parameters
trans.rate = 0.2
act.rate = 0.25

Model Output
Compartments: s.num i.num

Flows: si.flow

In contrast to epiDCM, the summary function now does not take a run argument (used only
for sensitivity analyses anyway). Instead, the output summarizes the mean and standard
deviation of model results at the requested time step across all simulations. Here, we request
those summaries at time step 125; the output shows the compartment and flow averages
across those 10 simulations.

summary (mod, time = 125)

EpiModel Summary

Model class: epilICM

Simulation Details
Model type: SI

No. simulations: 10
No. time steps: 300
No. groups: 1
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Model Statistics

Time: 125

mean sd perc
Suscept. 286.3 119.647 0.571
Infect. 214.7 119.647 0.429
Total 501.0 0.000 1.000
S >1I 5.2 2.573 NA

Summary statistic values like means and standard deviations may be of primary interest
for analysis and plotting, so the generic as.data.frame function for epiICM objects allows
for this. As described in the function help page (see 7as.data.frame.epilICM), the output
choices are for the time-specific means, standard deviations, and individual simulation val-

ues.

head(as.data.frame(mod, out='mean'))

time s.num i.num si.flow num

1 1 500.0 1.0 0.0 501
2 2 500.0 1.0 0.0 501
3 3 500.0 1.0 0.0 501
4 4 499.9 1.1 0.1 501
5 5 499.8 1.2 0.1 501
6 6 499.7 1.3 0.1 501

Plotting Plotting stochastic model results requires thinking through what summary mea-
sures best represent the model. In some models, it may be sufficient to plot the simulation
means, but in others visualizing the individual simulations is necessary.

The generic plotting function for epiICM objects generates these visual outputs simply
but robustly. Standard plotting output includes individual simulation lines, means of those
simulations, and simulation quantiles. Plotting the model object with no options will show
the mean and inter-quartile range for all compartment sizes in the model for one-group
models, and the mean lines for two-group models.

Each of the elements may be toggled on or off using the plotting arguments listed in
?plot.epiICM. Here, we add the individual simulation lines to the default plot using sim.lines
and then color those lines with sim.col.

plot(mod, sim.lines = TRUE, sim.col = c("steelblue", "firebrick"))
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Note that we use the RColorBrewer color palette system to generate the default colors but
these plots, but the colors are closely approximated by the built-in R standard colors steelblue
for blue, firebrick for red, and seagreen for green.

3.2 SIR Stochastic-Deterministic Comparison

One methodological question for comparative mathematical modeling is how model results
vary with model structure while fixing parameters. EpiModel allows for easy comparison
between model classes using the same parameters. In this Section, we show how to compare
a deterministic with a stochastic SIR model in an open population (i.e., with demography).
First, the deterministic model is run with the following parameters.

det <- epiDCM(type = "SIR", s.num = 1000, i.num = 100,
trans.rate = 0.2, act.rate = 0.8, rec.rate = 1/50,
b.rate = 1/100, ds.rate = 1/100, di.rate = 1/90,
dr.rate = 1/100, nsteps = 300)

Note that we have a large number of infected at ¢y because with just one infected it usu-
ally takes discrete-time, individual-based models much longer to grow the epidemic. This
itself is an interesting property of individual-based, discrete-time stochastic models that may
better represent reality; but here, our goal is very close approximation by minimizing these
differences.

The epiICM model is simulated 10 times, with the same parameters as the deterministic
model. In this model, the contact, transmission with contact, recovery, birth, and death
processes are all governed by random draws from Poisson or binomial distributions with

parameters set by the rates specified here.
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sim <- epiICM(type = "SIR", s.num = 1000, i.num = 100,
trans.rate = 0.2, act.rate = 0.8, rec.rate = 1/50,
b.rate = 1/100, ds.rate = 1/100, di.rate = 1/90,
dr.rate = 1/100, nsteps = 300, nsims = 10)

As a third model, we change our ICM model to toggle off the stochastic elements of
the birth death processes. Instead of setting the number of new births and deaths in each
compartment at each time step as random draws from a Poisson distribution with rate pa-
rameters set by the arguments, these transition flows are calculated by rounding the product
of the rate and the state size.

sim2 <- epiICM(type = "SIR", s.num = 1000, i.num = 100,
trans.rate = 0.2, act.rate = 0.8, rec.rate = 1/50,
b.rate = 1/100, ds.rate = 1/100, di.rate = 1/90,
dr.rate = 1/100, nsteps = 300, nsims = 10,
b.rand = FALSE, d.rand = FALSE)

Comparing Means In our plot, the deterministic results are shown in the solid line, the
first stochastic results in the dashed line, and second stochastic results in the dotted line.
In this example, the three lines are generally consistent, which is as expected since we are
only visualizing the means, we have a sufficiently large population, and the demographic

transition rates are relatively low.

plot(det, alpha = 0.75, lwd = 4, main = "DCM and ICM Comparison")
plot(sim, gnts = FALSE, add = TRUE, mean.lty = c(2,2,2), leg = FALSE)
plot(sim2, gnts = FALSE, add = TRUE, mean.lty = c(3,3,3), leg = FALSE)
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Comparing Variance Note, however, that the variation in flows across simulations is vastly
different as a component of the stochastic process of mortality in the full stochastic model.
In the following side-by-side plots, we show the individual simulation lines for the out-
transition (mortality) from the infected state. In the full stochastic model, there is a relatively
wide range of numbers of infected deaths over time, whereas there is little variability in the

limited stochastic model.

par(mfrow = c(1,2), mar = ¢(3,3,2,1), mgp = c(2,1,0))
plot(sim, y = "di.flow", mean.line = FALSE,

sim.lines = TRUE, sim.alpha = 0.5,

ylim = c(0, max(sim$di.flow)),

main = "di.flow: Full Stochastic Model")
plot(sim2, y = "di.flow", mean.line = FALSE,

sim.lines = TRUE, sim.alpha = 0.5,

ylim = c(0, max(sim$di.flow)),

main = "di.flow: Limited Stochastic Model")
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For a time-specific analysis of variance, we can compare the standard deviations of the
two model results at time step 50 (about when the infected death incidence peaks) using the

data extraction through as.data.frame generic function:

icm.compare <- rbind(round(as.data.frame(sim, out = "sd")[50,], 2),
round(as.data.frame(sim2, out = "sd")[50,]1, 2))
row.names (icm.compare) <- c("full", "1lim")

icm.compare

time s.num i.num r.num si.flow ir.flow b.flow ds.flow di.flow
full 50 15.32 23.64 24.16 3.47 8.2 3.5 0.67 1.58
lim 50 9.20 19.68 19.39 4.69 3.65 0.0 0.32 0.32
dr.flow num
full 3.2 38.89
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lim 0.0 2.22

The minor variations in the birth and death flows at some time points because the com-
partment size at each time point is still a function of the random infection transition across

time.

3.3 Two-Group SIS Model with Demography

The last model type we feature for epiICM class models is a two-group Susceptible-Infected-
Susceptible (SIS) model in which there are two groups that mix purely heterogeneously. The
model is parameterized in much the same way as the deterministic two-group SIR model
featured in Section 2.4. There are the same act rate balancing considerations. One must also
specify group-specific recovery rates. In this model, we simulate a disease in which the first
group has twice the probability of infection, but recovers back into the susceptible state at
twice the rate as the second group. This might occur, for example, if first group differentially
had access to curative treatment for disease.

set.seed(12345)

sim <- epiICM(type = "SIS", groups = 2,
s.num = 500, i.num = 1,
s.num.g2 = 500, i.num.g2 = 1,
trans.rate = 0.2, trans.rate.g2 = 0.1,
act.rate = 0.5, balance = "gl",
rec.rate = 1/25, rec.rate.g2 = 1/50,
b.rate = 1/100, b.rate.g2 = NA,

1/100, ds.rate.g2 = 1/100,

di.rate = 1/90, di.rate.g2 = 1/90,

ds.rate
nsteps = 500, nsims = 10)

The plot shows a similar disease burden for both groups, with a disease prevalence of
around 16% in both groups at time step 400. But we see similar epidemic trajectories for
both groups because their transmission probabilities and recovery rates have balanced out:
both groups have an Ry = 2.5.

par (mfrow = c(1,1))
plot(sim)
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The default plotting options for two-group models will only show the simulation means,
so the additional summary information (quantiles and individual simulation lines) must be
toggled on as needed (see 7plot.epiICM for help).

This second plot shows that we must be careful to only look at the simulation means. In
this case, the mean lines are an average of normally occurring epidemics in 6 simulations and
extinct epidemics in 4 simulations. Model extinctions occur in this case because the recovery
rate in the first group is relatively short and there is only one person initially infected.

plot(sim, y = c("i.num", "i.num.g2"), mean.lwd=3,
sim.lines = TRUE, sim.col = c('steelblue', 'firebrick'),
main = "Disease Prevalence: Means and Individual Simulations",

leg = TRUE)
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Another useful diagnostic for this behavior is found in the summary function, where we
would find that at time step 400, the mean number infected is 114.5, and the standard devi-
ation around that mean is 99.4.

If this phenomenon of stochastic model extinction represents the underlying epidemic
process of interest in which there is one initial infected, these epiICM models have utility
per se. But if the number of initial infected is arbitrary (or unknown), the model extinctions
may be an artificiality to be removed: in that case, one may increase the total population size
(specifically the initial number infected) or reduce the size of the time step (and also, adjust

the denominators of the parameters with units of time in them).

4 Stochastic Network Models

Network models move beyond individual contact models by explicitly modeling phenom-
ena within and across partnership dyads (pairs of individuals who remain in contact) over
time. This enables partnerships to have duration in time, allowing for repeated acts with the
same person, specification of partnership formation and dissolution rates, control over the
temporal sequencing of multiple partnerships, and specification of network-level features.
As one dyad may now be connected to other dyads, this forms a partnership network.

Model Framework EpiModel uses exponential-family random graph models (ERGMs) to
estimate and simulate complete partnership networks based on patterns of density, degree,
assortivity, and other network features. Since epidemic models are dynamic, evolving sys-
tems, we use temporal ERGMs, in which partnership formation and dissolution are modeled
and simulated over time.

Dynamic network models may be estimated from several different types of empirical

data, including panel data on a complete network over time. For a description of these op-
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tions, please consult the help documentation and vignettes for the tergm and networkDynamic
packages. EpiModel currently has functionality only run network estimations with target
statistics for formation that may be estimated using so-called “egocentric network sam-
pling:” a random sample of the population is drawn, and those individuals are asked about
a complete or limited set of their partnerships within an interval. Network models may thus
be parameterized by inputting summary target statistics for the distribution of partnership
number at one point in time, assortivity in partner traits, and other dyadic and network-level
features. On top of this, an average of partnership duration is estimated from the data, and
used to govern partnership dissolution rates.

Model Processes EpiModel has the capacity to simulate disease epidemics over these part-
nership networks by integrating this statistical framework for networks with stochastic trans-
mission processes similar to those featured in the epiICM class disease models. Similar to
epiICM, these network models require specification of epidemic parameters that govern the
transmission, recovery, and other other transition processes of individual persons in discrete
time. The three model types currently supported are the same: SI, SIR, and SIS disease types.
These types will be expanded in future EpiModel releases.

In contrast to epiDCM and epiICM models, which solve or simulate the entire epidemic
system with one function, network models require multiple steps: 1) the partnership net-
work is parameterized, fit, and diagnosed; 2) a complete network is simulated based on
that model fit; and 3) the disease processes are simulated on top of the dynamic simulated

network.

Independent versus Dependent Models A key distinction for network models is whether
two dynamic processes, the partnership network dynamics and the disease transmission
dynamics, are treated as independent or dependent. Independent network models assume
no influence of the disease simulation on the structure of the temporal network, although the
structure of the temporal network most certainly impacts the disease. Dependent network
models allow for the disease process to influence the network. Examples include cases like
serosorting — where disease status influences partner selection — and demographic processes
(births, deaths, and migration) — where the partner selection process must adapt to changing
population size and composition.

Model Functions Network models in EpiModel thus involve two or three main functions

given the choice of independent or dependent model structure:

1. epiNet.est estimates the generative model for the dynamic partnership networks.
This function is a wrapper around the ergm and stergm functions in those similarly
named packages, with additional diagnostic tables and plots useful for dynamic epi-
demic models.

2. epiNet.simNet simulates networks given a model fit with epiNet.est. These network
simulations are used for network epidemic models in which there is no dependence
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between the network structure and the disease process (thus, the network structure
may be fully simulated ahead of the disease simulation).

3. epiNet.simTrans then runs the stochastic epidemic models, with a given network
model fit from epiNet.est or set of network simulations from epiNet .simNet, respec-
tively. For models involving dependence between the network structure and the dis-
ease trajectories (e.g., disease causes death, which dissolves partnerships), the direct
model fit is used and the network re-simulated at each time step.

We explain these processes in further detail with two network modeling tutorials, one
for an independent SIS model with one mode and one for a dependent SI model with two
modes.

4.1 Independent One-Mode SIS Model

In this section, we simulate a recoverable disease (e.g., a bacterial sexually transmitted in-
fection) over a one-mode network in which we assume the disease status does not influence
partnership structure. In the language of DCM models in Section 2 and ICM models in Sec-
tion 3, this is a one-group network in a closed population. In network terminology applied
to epidemic modeling, modes are essentially groups or categories of nodes that govern the
rules of mixing. One-mode networks allow for partnership mixing throughout the network,
whereas two-mode (or bipartite) networks restrict mixing to across modes (no within-group
partnerships are allowed).

41.1 Network Estimation and Diagnostics

The first step in any network model is to specify a network structure, including features
like size and compositional traits. Here, we construct an empty network of 100 nodes with
two races of equal node size.! The network.initialize function creates an object of class
network with 100 nodes and no edges (partnerships) between them. The next line creates a
vertex (node) attribute called “race”, which for simplicity has categories 0 and 1: there are
50 nodes of race 0 and 50 nodes of race 1.

nw <- network.initialize(n = 100, directed = FALSE)

nw %v% "race" <- rep(0:1, each = 50)

Model Parameters Next, we specify the partnership formation and dissolution model for-
mulas for the STERGM fit. The formation object is a right-hand side ERGM formula for
edge formation. The target.stats are the target statistics that are passed to the ERGM esti-
mation based on calculations from egocentric sampling of partnerships: there are an average

of 45 total partnerships at any point in time, 83.1% of those partnerships were of the same

1We have used very small networks that are simulated over a short number of time steps for computational effi-
ciency in building this tutorial vignette; in running your own models, it is suggested that you increase both as
necessary depending on your data and scientific questions.
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race, 36 nodes have no partners (a degree of zero), and 18 nodes have two or more ongo-
ing partnerships. The dissolution object specifies that the partnership dissolution is a fixed
(offset) parameter set below resulting in a homogeneous exponential dissolution model.

formation <- ~ edges + nodematch("race") + degree(0) + concurrent
target.stats <- c(45, 37.4, 36, 18)

dissolution <- ~ offset(edges)

The fixed dissolution coefficient is calculated based on the average duration of partner-
ships. Here, the average is indicated as 20 months. The dissolution.coefs function per-
forms the necessary log transformation of the duration vector given the dissolution model
specified above. See the additional EpiModel vignette for Network Utility Functions for more
information. In brief, the function provides the transformed coefficient here; a coefficient ad-
justed for exogeneous partnership dissolutions due to death is also possible but not used in
this closed-population model (therefore the crude and adjusted coefficients are the same).

duration <- 20
coef.diss <- dissolution.coefs(dissolution, duration)

coef.diss

Dissolution Coefficients

Dissolution Model: ~offset(edges)
Edge Duration: 20

Adjusted Coefficient: 2.944
Crude Coefficient: 2.944

Model Fit The epiNet.est function performs both the STERGM estimation and basic di-
agnostics for assessing the model fit. For this function, it is necessary to specify the base
network object, the formation and dissolution formulas, the target statistics, and dissolu-
tion coefficient. By default, the temporal model is estimated using an approximation of
a static ERGM to a STERGM fit using a correction to the formation coefficients that are
within the dissolution model. This so-called “Edges Dissolution” correction is often more
computationally efficient than the full STERGM fit, which may be requested by specifying
edapprox=FALSE.

estl <- epiNet.est(aw,
formation,
dissolution,
target.stats,

coef.diss)
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By default, the diagnostic statistics will be run, with the diagnostic network statistics set
as the formation formula. To request alternative network statistics, see the help file for the
stats.formula argument for the function. It will take any right-hand sided ERGM formu-

lation for summary statistics.

Model Diagnostics Printing the object will show the basic diagnostic summaries of av-
erage fit to the target statistics and dissolution coefficients. By default, the function will
simulate the complete network from the model fit one time for a series of 1000 time steps
(the time steps may be changed). Then, mean and standard deviations are calculated for the
time series simulation.

estl

EpiModel Object

Model class: epiNet.est
Esimation Method: ERGM with Edges Approximation

ERGM Model Form

Formation: ~edges + nodematch("race") + degree(0) + concurrent
Dissolution: ~offset(edges)

Constraints: ~

Formation Diagnostics

targets stats.means stats.sd

edges 45.0 46.11 6.852
nodematch.race 37.4 38.70 6.570
degree0 36.0 35.20 6.302
concurrent 18.0 19.26 5.493

Duration Diagnostics
target.dur sim.mean.dur sim.sd.dur
20.00 19.47 18.75

Plotting the object will show the time-varying target statistics for the formation fit over
time. On the x-axis is the 1000 time steps that the dynamic model has been run, and on
the y-axis are the target values for the formation summary statistics. For those model di-
agnostics with a matching target statistic (it is certainly possible to request diagnostics for
a network statistic that is not part of the formation model), a single dotted line shows the
values (compare these to the target.stats set above).
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By default, the plotting function tries to be smart about when to plot everything together
and when to separate into distinct plots, but these can also be controlled manually using the
plots.joined argument. Here we use separate plots for each of the four statistics, and only
request 100 time steps of summary statistics. The model may appear to show poor fit here,
but note that the time range is shorter and the y-axis scale is much narrower for each plot

compared to the joined plot above.

plot(estl, plots.joined = FALSE, dx.start = 100, dx.end = 200)
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4.1.2 Network Simulation

In an independent network epidemic model, the dynamic networks can be simulated first,
before running the disease transmission simulation. The epiNet.simNet function does just
that, with the input of the epiNet.est fitted model as above, the desired number of time
steps, and number of network simulations. Here, we run 10 network simulations based on

the fit above for 50 time steps.
nwsims <- epiNet.simNet(estl, nsteps = 50, nsims = 5)

Printing the object will show the structure of the network simulation output object, in-
cluding the number of simulations and time steps per simulation. Also included is infor-
mation on the base network object, which is the static network from which the dynamic
networks are simulated. This is helpful to see, for example, the overall network structure
and names of the vertex attributes.

nwsims

EpiModel Object

Model class: epiNet.simNet

NW Simulation Summary
No. simulations: 5

No. time steps: 50

Base Network Object

Network attributes:
vertices = 100
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 45

missing edges= 0O

non-missing edges= 45

Vertex attribute names:

race vertex.names

No edge attributes
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Plotting the network simulation now will show the results from each of the simula-
tions over time, with the same sort of formation statistic output as in the diagnostic plots
of the epiNet.est object. Note that simulating network multiple times and plotting the
network simulation output like this provides additional diagnostic tools on top of those in

epilNet.est.

plot(nwsims, plots.joined = FALSE)
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An additional plot is available for epiNet.simNet objects by specifying a duration plot.
Here, the average age of all partnerships up until time ¢t is shown for all times from 1 to
the number of time steps specified in the network simulation. In the model fit, we speci-
fied that the average duration should be 20 time steps (shown in the dotted line); since all
partnerships start at time 1 (actually, they are left-censored at this step), the average age of
partnerships at that time is 0. Over time, the average age should approximate the target
duration (it does if we were to run our simulation out longer).

plot(nwsims, type = "duration")
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4.1.3 Disease Simulation on the Network

The final step is for the disease transmission process to be simulated over the dynamic sim-
ulated networks. The disease simulation function is epiNet .simTrans.

For this tutorial, we model disease as a basic SIS epidemic process in which there is a
constant transmission probability given contact and a recovery rate given infection. The
sims.per.nw argument governs how many disease simulations per simulated partnership
network should be run. By default, one disease simulation per simulated network is con-
ducted. Since we run the simulation only for 50 time steps, we set the transmission proba-
bility to be quite high.

siml <- epilNet.simTrans(nwsims,
type = "SIS",
sims.per.nw = 1

trans.rate = 0.5,

act.rate S
rec.rate = 0.1,

i.num = 10)

In contrast to the act.rate parameter of epiDCM and epiICM, here the parameter means
the average number of acts within a partnership per unit time. It does not govern how
frequently new partnerships are formed, which is set by the dissolution coefficients in the
network model estimation stage. Therefore, the final transmission probability per partner-
ship per unit time is based on a simple function of the transmission probability per act and
number acts: 1 — ((1 — 7)%) where T is the trans.rate and « is the act . rate.

Also in contrast to the other model classes, we set the initial state sizes only for the in-
fected compartment, with i.num. The total population size thus the number of susceptibles



EpiModel v0.95 33

at baseline is calculated as a function of the network size that was set in the first step. The
initial infected state may be specified either as a deterministic or randomly generate number

or prevalence, or by a deterministic vector of specific nodes that are infected.

Summaries Similar to epiDCM and epiICM models, printing the object shows the basic
structure and output from the disease simulation model. Note that this shows all the avail-
able compartments and flows. Also available in network models are the networks and trans-

mission data frames, which we explain below.
siml

EpiModel Object

Model class: epiNet.simTrans

Simulation Summary
Model type: SIS
No. simulations: 5
No. time steps: 50
No. NW modes: 1

Model Output
Compartments: s.num i.num
Flows: si.flow is.flow
Networks: siml ... simb

Transmissions: siml ... simb

Similar to epiICM class models, epidemic statistics may be obtained using the summary
function. This summary shows the mean and standard deviation of simulations at time step
25, and also generates a compartment plot showing the same information at this time step

visually.

summary(siml, time = 25, comp.plot = TRUE)

EpiModel Summary

Model class: epiNet.simTrans

Simulation Details
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Model type: SIS
No. simulations: 5
No. time steps: 50
No. NW modes: 1

Model Statistics

Time: 25

mean sd perc
Suscept. 55.4 1.949 0.554
Infect. 44 .6 1.949 0.446
Total 100.0 0.000 1.000
S >1I 5.8 3.899 NA
I ->58 5.0 3.162 NA

SIS Model Diagram

Simulation means(sd) | time=25

si.flow=5.8

Susceptible

is.flow=5

Infected

n=55.4(1.949) n=44.6(1.949)

Extraction Similar to the epiICM class models, means, standard deviations, and individual

simulation run data is easily extracted using the as.data.frame function. The default as

before is to output the means, but here we show how to extract the model values from the

second simulation only.

head(as.data.frame(siml, out = 'vals', sim = 2)

time s.num i.num si.flow is.flow num
1 1 85 15 0 0 100

)
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2 2 79 21 7 1 100
3 3 73 27 10 4 100
4 4 67 33 2 100
5 5 64 36 3 100
6 6 62 38 3 100

The simulated networkDynamic objects with type-specific partnership and disease infec-
tion status information are stored under the network list in the main model object. They may
be extracted and stored to an external object for further analysis.?

( nwl <- siml$network$siml )

NetworkDynamic properties:
distinct change times: 52

maximal time range: -Inf to Inf

Includes optional net.obs.period attribute:
Network observation period info:
Number of observation spells: 2
Maximal range of observations: 1 to 51
Temporal mode: discrete
Time unit: step

Suggested time increment: 1

Network attributes:
vertices = 100
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
net.obs.period: (not shown)
total edges= 170
missing edges= 0

non-missing edges= 170

Vertex attribute names:

active race vertex.names

2Note that there are some intended redundancies in data built into network models to facilitate analysis and visu-
alization purposes. In running these models for research purposes, one should consider which information it is
necessary to store in the output object, as this may increase the computational efficacy for the simulations. See the
help file for epiNet.simTrans to see how to toggle these storage options.
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Edge attribute names:

active

A listing of the disease transmissions over time is available through the transmissions
data frame. The columns show the infection time, infecting partner, susceptible partner,
edge ID number, the time at which the infecting partner was him/herself infected, the as-
sociated trans.rate parameter, and final transmission probability that is a function of the

trans.rate and act.rate.

transl <- siml$trans$simi
head(transi, 10)

time inf sus infdeg susdeg inft trans.rates act.rates tprob

1 2 57 72 1 2 3 0.5 3 0.875
2 2 26 20 1 3 38 0.5 3 0.875
3 2 79 77 2 3 20 0.5 3 0.875
4 2 1 38 1 2 19 0.5 3 0.875
5 2 59 b4 1 1 45 0.5 3 0.875
6 3 20 11 3 1 1 0.5 3 0.875
7 3 77 88 3 1 1 0.5 3 0.875
8 3 20 34 3 2 1 0.5 3 0.875
9 3 77 73 3 1 1 0.5 3 0.875
10 3 1 38 1 2 20 0.5 3 0.875

Plotting There are two main ways to plot the results of this network disease model: the
standard line plots showing the epidemic trajectories similar to the individual contact model
plots (see Section 3), and static network plots showing a snapshot of the partnership network
with information on disease status.

By default, the plot shows disease trajectories (compartment sizes) over time. The plot-
ting function uses the same defaults for the stochastic model results as in epiICM class mod-
els, and therefore, the same arguments options apply. In a one-mode network model, the
default is to plot the mean and inter-quartile range of all compartments in the model for the

full length of the model was run.

plot(siml)
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To plot the means of disease incidence and new recoveries over time, it is necessary to
specify the outcomes of interest using the y argument, and also to set the population fraction
denominator to FALSE. The si.flow is the number of transitions from susceptible to infected
at that time, and the is.flow is the number of transitions back from infected to susceptible.

plot(siml, y = c("si.flow", "is.flow"), leg = TRUE)

Network SIS Model

= si.flow
= is.flow

12
|

10

Number

Time

Plotting the static network at different time steps and over different simulations can show
the patterns of partnership formation and disease spread over those partnerships. By de-
fault, the plot type is the compartment size line plots (type="sim"), but we set the network
plot by specifying type="network".
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Below, we plot two time points from the same simulation, at time steps 1 and 50. The
col.inf argument takes care of the color coding for easy plotting of the infected (in red)
versus negative (in blue). Note that the zeromarg argument sets the network plot margins

to zero by default for better visualization of dense networks, but must be toggled FALSE in

plots when a non-zero margin is needed to allow for plot titles.

par (mfrow = c(1,2), mar = c(0,0,2,0))

plot(siml, type = "network", at = 1, col.inf = TRUE,

zeromarg = FALSE, main = "Prevalence at ti1")

plot(siml, type = "network", at = 50, col.inf = TRUE,

zeromarg = FALSE, main = "Prevalence at t50")

Prevalence at t1

Given the stochasticity of the model, another interesting network plot would show the
variability in simulations at a specific time step. Here, we plot the two simulations with the
lowest and highest prevalence at time step 25. First, we have to find the simulation number
with the lowest and highest values of infecteds at that time, then those extract those values.

time <- 25

1sim <- which.min(sim1$i.num[time, ])

hsim <- which.max(siml1$i.num[time, 1)

lprev <- simi$i.num[time, lsim]

hprev <- siml$i.num[time, hsim]

par(mfrow = c(1,2), mar = ¢(0,0,2,0))

plot(siml, type = "network", at = 25, sim = lsim,
col.inf = TRUE, zeromarg = FALSE,

main = paste("Sim", lsim, ", prev=", lprev,

Prevalence at t50

sep=" u))
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plot(siml, type = "network", at = 25, sim = hsim,
col.inf = TRUE, zeromarg = FALSE,

main = paste("Sim", hsim, ", prev=", hprev, sep=""))
Sim3, prev=42 Sim2, prev=47

As this example shows, it is possible to extract, analyze, and plot many objects embedded
within the larger epiNet.simTrans object to investigate the epidemic trajectory over time
and at specific time points.

4.2 Dependent Bipartite SI Model

In the second network model example, we introduce dependence between the disease sim-
ulation and the network structure. The main forms of dependence currently implemented
in EpiModel are demographic transition processes for births and deaths. This is integrated
into network models similarly to the stochastic transition processes in epiICM class models,
in which the number of new births and deaths at each time step is determined as a random
draw from a Poisson distribution with the rate parameter set by the parameter arguments
in the model. These processes are handled in a specialized way in network models as nodes
and their associated edges have to be “activated” and “deactivated” over time to allow for
correct simulation of the partnership network. Other forms of network/disease dependence,
including the dependence between disease infection and probability of partnership forma-
tion (i.e., serosorting), will be added in future EpiModel releases.

Additionally in this example, we simulate an epidemic model here within a bipartite
network. Such a network may be used to represent purely heterogeneous mixing as in
heterosexual-only models of disease transmission. This is not the only way to represent this
form of mixing, but it does facilitate the modeling of mode-specific network terms (e.g.,
different degree distributions) and disease features as one might need in sex-differentiated
epidemics.
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421 Network Estimation and Diagnostics

As with the independent network model in Section 4.1, the first step is to specify a network
structure, including features like size and nodal attributes. Here, we construct an empty
network of 100 nodes, with 50 in each mode. One might conceive of the first mode as females
and the second mode as males.

num.ml <- 50
num.m2 <- 50
nw <- network.initialize(num.ml + num.m2,

bipartite = num.ml, directed = FALSE)

Degree Balancing For our target statistics, we will use sex-specific degree distributions.
Similar to the contact balancing requirements in acts described in Section 2.4, it is necessary
to balance the number of partnerships implied by a degree distribution in one mode to that
of another. This is particularly an issue when one sex tends to report higher average numbers
of partners in surveys used to calculate model parameters.

In EpiModel, we can check that the implied number of partnerships match given different
degree distributions specified in vectors of fractional values using the bip.degdist.check
function. Consider two degree distributions in which the proportion of females currently
having 0, 1, 2, or 3 partners is 40%, 55%, 4%, and 1%, respectively. The distribution for men
may be different within each degree but the total number of partnerships must match. Below
we plot the mode-specific degree distributions.

deg.dist.ml <- c(0.40, 0.55, 0.04, 0.01)

deg.dist.m2 <- c(0.48, 0.41, 0.08, 0.03)

par (mar=c(3,3,2,1))

barplot(cbind(deg.dist.ml, deg.dist.m2), beside = TRUE,
legend.text = paste("deg", 0:3, sep=""), ylim = c(0,0.6))
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Given these fractional degree distributions and the mode sizes set in when initializing
the network, the bip.degdist. check function checks for balance. The output is table with
the number of nodes with each degree, as well as the total number of edges in that mode.
The latter must match across modes to ensure degree balance. See the additional EpiModel
vignette on Network Ultility Functions for more information.

bip.degdist.check(num.ml, num.m2,

deg.dist.ml, deg.dist.m2)

Bipartite Degree Distribution Check

ml.dist ml.cnt m2.dist m2.cnt

Deg0 0.40 20.0 0.48 24.0
Degl 0.55 27.5 0.41 20.5
Deg2 0.04 2.0 0.08 4.0
Deg3 0.01 0.5 0.03 1.5
TOTAL 1.00 33.0 1.00 33.0

**x distributions balanced

Model Fit As with the independent network model, we next specify the partnership forma-
tion and dissolution model formulas for the STERGM fit (see Section 4.1 for more informa-
tion). The target statistics for partnership formation are the overall number of partnerships
at one point in time, the number of nodes in the first mode with no partners or only one
partner, and the similar degree terms for the second mode nodes. The dissolution model is
a homogeneous exponential decay with mean partnership duration of 25 time units. Note
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that we need to specify a background death rate using the d.rate parameter, to account for
the fact that death presents an exogenous competing risk to partnership dissolution on top
of the estimated, endogenous average duration. See the HTML vignette, EpiModel Network
Utility Functions, for more details.

formation <- ~ edges + bldegree(0:1) + b2degree(0:1)

target.stats <- c(33, 20, 27.5, 24, 20.5)

dissolution <- ~ offset(edges)

coef.diss <- dissolution.coefs(dissolution, duration=25, d.rate=0.01)

coef.diss

Dissolution Coefficients

Dissolution Model: ~offset(edges)
Edge Duration: 25

Adjusted Coefficient: 3.866
Crude Coefficient: 3.178

The network estimation process for this model uses the epiNet.est function in the exact
same way as our independent model in Section 4.1. For this example, we also show how
to obtain diagnostic formation statistics that are not included in the main formation model:
although we only target degree of zero and one for the model, we would like to monitor
the average number of nodes in each mode with two, three, four, and five partners. To do
that, we specify a right-hand sided formation formula called dx.stats, which we enter into
the epiNet.est in the stats.formula argument. Note also that we set the randomization
seed here; in testing the model fitting process, it takes quite some time for the Markov-chain
monte carlo (MCMC) estimation process to converge (see the help documentation for the
tergm package for details on these processes).

dx.stats <- ~ edges + bldegree(0:5) + b2degree(0:5)
set.seed(12345)
est2 <- epilNet.est(aw,

formation,

dissolution,

target.stats,

coef.diss,

stats.formula = dx.stats)

Model Diagnostics Printing the object will show the basic diagnostic summaries of av-
erage fit to the target statistics. Note that the diagnostic statistics for the terms that were
monitored but not entered into the model (degree terms above 2 for both modes) show as NA
in the target statistics column but summary means are provided. This also works in converse
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(it is possible to diagnostically monitor a set of network statistics that excludes terms from
the formation formula, although this is not recommended).

est2

EpiModel Object

Model class: epiNet.est
Esimation Method: ERGM with Edges Approximation

ERGM Model Form

Formation: “edges + bldegree(0:1) + b2degree(0:1)
Dissolution: ~offset(edges)

Constraints: ~

Formation Diagnostics

targets stats.means stats.sd

edges 33.0 31.787 3.912
bldeg0 20.0 20.780 3.229
bldegl 27.5 27.118 3.307
bldeg2 NA 1.667 1.225
bldeg3 NA 0.407 0.608
bldegé NA 0.026 0.165
bldegb NA 0.002 0.045
b2deg0 24.0 24.544 3.010
b2degl 20.5 20.153 3.127
b2deg?2 NA 4.387 1.768
b2deg3 NA 0.828 0.777
b2deg4 NA 0.066 0.248
b2degh NA 0.020 0.140

Duration Diagnostics
target.dur sim.mean.dur sim.sd.dur
25.00 23.40 23.75

Plotting the object will show varying target statistics fit over time. By default, the plots
are split because of the large number of statistics. Each plot has a different y-axis scale. There
are very few nodes of either mode with three or more partnerships at any one time.
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4.2.2 Disease Simulation on the Network

In a dependent network epidemic model (disease status influences partnership formation
and dissolution, and vice versa), the dynamic networks are all simulated concomitantly with
the main disease transmission simulation function, epiNet.simTrans. Therefore, no simu-
lation of a series of partnership networks is needed as with independent models (see Sec-
tion 4.1.2). In this model, we incorporate births and deaths into the simulation to allow for
an open population.

The main model parameters are as follows. We set the disease initial prevalence to 10%;
the exact number of nodes infected will be based on random draws from a binomial distribu-
tion summarized by that prevalence. Similar to epiDCM and epiICV, different transmission
probabilities by mode are allowed to incorporate a higher susceptibility for disease for one
mode.

Additionally, we set the birth rate to be based on the death rate for susceptibles to achieve
a relatively stable equilibrium prevalence (which we will not see here because of the short
time steps). Since the birth rate is calculated based on the size of the mode-one population
in bipartite simulations (again, with females implied as this mode), we multiply it by two.
Finally, the death rate for the infecteds is slightly higher than for the susceptibles.

i.num <- 10
trans.rate <- 0.5
trans.rate.m2 <- 0.1
b.rate <- 2/100
ds.rate <- 1/100
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di.rate <- 1/90

Note that for the disease simulation function, we pass the network estimation object di-
rectly from epiNet.est and specify vital=TRUE to include these demographic processes.
Also, the sims.per.nw has a different meaning than in independent simulations: here it is
simply the number of independent disease simulations requested, since each simulation uses
a newly simulated network because of the resimulation at each time step.

sim2 <- epiNet.simTrans(est2,
type = "SI",
vital = TRUE,
i.num = i.num,
trans.rate = trans.rate,
trans.rate.m2 = trans.rate.m2,
b.rate = b.rate,
ds.rate = ds.rate,

di.rate = di.rate,

sims.per.nw = 3,

nsteps = 50)

Printing the object shows that we have an EpiModel object that is an SI network model
with three simulations over 50 time steps with a two-mode network. The model output now
includes mode-specific output for compartments and flows, including the birth and death
transitions. The model output may be summarized using the summary function and extracted

using the as.data. frame function, similar to the independent model example in Section 4.1.

sim2

EpiModel Object

Model class: epilNet.simTrans

Simulation Summary

Model type: SI

No. simulations: 3
No. time steps: 50
No. NW modes: 2

Model Output

Compartments: s.num i.num s.num.m2 i.num.m2
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Flows: si.flow b.flow ds.flow di.flow si.flow.m2 b.flow.m2
ds.flow.m2 di.flow.m2
Networks: siml ... sim3

Transmissions: siml ... sim3

As with the independent network model, a listing of the transmissions by time is avail-
able through the transmissions data frames stored on the object. The columns show the
infection time, infecting partner, susceptible partner, edge ID number, infection time of the
infecting partner, the trans.rate parameter tied to that mode, and final transmission prob-

ability that is a function of the trans.rate and act.rate.

transl <- sim2$trans$simil

head(transi1)

time inf sus infdeg susdeg inft trans.rates act.rates tprob

1 2 F8 M1 3 1 172 ©odl 1 0.1
2 2 F45 M12 1 2 184 0.1 1 0.1
3 2 F20 M28 1 2 172 0.1 1 0.1
4 3 M12 F1 2 2 1 0.5 1 0.5
5 3 M38 F47 1 1 13 0.5 1 0.5
6 3 M33 F40 1 1 89 0.5 1 0.5

Note that the transmission rates are higher when the mode 1 nodes are the susceptible
partner, since the definition of the rates is the probability of infection to that mode given
contact with an infected of the other mode. Also, note that the ID numbers for the nodes
begin the a F or M prefix: because of the way that the ID system works for dynamic bipartite
networks, it is necessary to use this specialized ID that persists over time (see the help file
for the init.pids function).

Plotting The plotting for dependent disease simulations is the same as for independent
simulations as described in Section 4.1.3. Since this is a bipartite network, the default plot
shows the means only of the state sizes over time for each of the modes. Here we plot the
absolute numbers from the simulations, which is suggested at least for diagnostics after an
open population simulation is run because the compartment prevalences may use unexpect-
edly small denominators if the death rate is misspecified.

plot(sim2, popfrac=FALSE)
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Similar to the static network plots for the independent network model in Section 4.1.3,
plotting the network of partnership structure and disease status is made easy with argu-
ments to the generic network plotting functions. In addition to the col.inf argument that
automatically colors the infected red, bipartite simulations also allow for differential shapes
for the modes. Here, one may set the second-mode shapes to either triangle or square using
the shp. bip argument. Note how one mode only has formed partnerships with nodes of the
opposite mode, as signified by the different shapes.

par (mfrow=c(1,2))
plot(sim2, type = "network", at = 1, col.inf = TRUE, shp.bip = "triangle")
plot(sim2, type = "network", at = 50, col.inf = TRUE, shp.bip = "square")
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4.3 Dynamic Visualization with ndtv

A dynamic network animation that shows partnership change along with disease transi-
tions is available using the ndtv package. More detailed examples are provided in the ndtv
package vignette.

library(ndtv)

First, we extract the networkDynamic object from the epiNet . simTrans object from above.
Here we are just pulling the fifth network. The colorTEA function that sets up some color
attributes based on infection status for the animation (see the help file for this function).

nw <- sim2$network$simi

nw <- colorTEA(nw)

The next step is to compute coordinates for all the nodes over time. Here, we set the
animation for time steps 1 to 25, although the simulation runs twice as long. Additional
options are explained in the ndtv vignette.

slice.par <- list(start = 1, end = 50, interval = 1,
aggregate.dur = 1, rule = "any")
compute.animation(nw, slice.par = slice.par,

animation.mode = "MDSJ")

The render.animation function takes the dynamic coordinates and creates an anima-
tion object for the network. The function takes all the standard graphical parameters for

plot.network.

render.par=list(tween.frames = 10,
show.time = FALSE)
plot.par=list(mar = c(0,0,0,0))
render.animation (nw,
render.par = render.par,
plot.par = plot.par,

vertex.cex = 0.9,

vertex.col "ndtvcol",
edge.col = "darkgrey",
vertex.border = "lightgrey",

displaylabels = FALSE)

Finally, the animation may be saved out to a variety of formats, but here is one option, an
animated GIF file, that looks good on webpages.
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saveGIF (ani.replay(),
ani.width = 600,
ani.height = 600,
outdir = getwd())

Here’s how to save out out the animation to a mp4 video file.

saveVideo(ani.replay(),
video.name = "EpiModelndtv.mp4",
other.opts = "-b 5000k",
clean = TRUE,
ani.width = 1200,
ani.height = 1200)

5 Future Work

In future releases of EpiModel, we will extend the functionality of the software in a number

of ways. These include:

¢ Adding disease types: Currently, EpiModel model allows for easy modeling of SI, SIR,

and SIS disease types with relatively few governing parameters. These model types
may be insufficient for more complicated disease structures, such as an HIV model
with multiple stages of disease, or an SIRS model in which there is waning immunity
after infection. Our plan is to continue to implement basic structures of these models
across all three model classes (epiDCM, epiICV, and epiNet) for pedagogical and basic
research purposes.

Increasing the flexibility of models: Currently, our models are limited to basic part-
nership mixing and disease features that we have used in our teaching on modeling.
As we build in additional functionality for new model types, we will also increase the
flexibility of existing model types by, for example, allowing more than purely dissas-
ortative mixing.

Implementing research-level tools: Mathematical modeling of epidemics is difficult
to provide in general software because models often require very specific and complex
processes that dictate the partnership/contact process, the disease transitions given
contact, and underlying demographic features. Our goal with EpiModel is not to pro-
vide “out-of-the-box” solutions for all possible model types, but instead to provide
documented modules for use in these models.

— With some general knowledge of programming in R, it should be possible to ex-
tend these tools, specifically the network-based modeling tools, to accommodate
a variety of research needs.
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— We have modularized the specific processes of simulating stochastic network mod-
els in the epiNet.simTrans function, and one starting place to start unpacking

that main function is the help file for those modules:

help('epiNetModules"')

¢ Optimization: The first goal of this new software was to get it right, and only then can
we start working on making it fast. Network models in particular may take substantial
computational resources, especially for large networks over long time steps. The Stat-
net team is continually working on optimizing the core packages along with EpiModel

to reduce computational burdens.
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